Symmetry-Guided Ab Initio Approach to Light and Medium-Mass Nuclei

Tomáš Dytrych, Jerry P. Draayer, Kristina D. Launey

Daniel Langr

Czech Technical University

Collaborators:

Pieter Maris, James P. Vary

Iowa State University

Mark Caprio, Chairul Bahri

University of Notre Dame

Erik Saule, Umit Catalyurek

Ohio State University

Horizons of Innovative Theories, Experiments, and Supercomputing in Nuclear Physics, June 4-7 2012, New Orleans, Louisiana

Symmetry-Guided Ab Initio Approach

Symmetry-Guided Approach

- realistic interactions + symmetries of nuclear collective motion: Sp(3,R) & SU(3)
- extend reach of ab initio approaches towards medium mass nuclei
- include physically relevant many-particle correlations beyond current coputational limits

SU(3)-Scheme Basis

- Complete basis
- Relevant for description of spatially deformed nuclei & nuclear collective motion
- SU(3) is a subgroup of the symplectic model of the nuclear collective motion
- $(\lambda \ \mu)$ related to shape variables eta and γ of the collective model
- Allows to include correlations important for α cluster structures

Shape & Spin Decomposition of Model Space

Example: decomposition of Nmax=12 model space of ⁶Li in terms of shapes $(\lambda \mu)$ and spins $S_p S_n S$

ullet Each circle represents states carrying $(\lambda \ \mu) \ S_p S_n S$ quantum numbers

• Area is proportional to the number of such states [log]

• Center-of-mass degrees of freedom can be factorized within each $(\lambda \mu) S_p S_n S$ subspace

Winnowing of Model Space

Winnowing of model space by (1) intrinsic spins

Winnowing of Model Space

Winnowing of model space by (1) intrinsic spins (2) deformations

Winnowing of Model Space

Winnowing of model space by (1) intrinsic spins
(2) deformations

Realistic interactions: enormous mixing of different $S_p S_n S$ $(\lambda \mu)$ subspaces

Coherent mixing ?

⁶Li : decomposition of the ground state

⁶Li : decomposition of the ground state

⁶Li - intrinsic structure of T=0 states

12[6] Model Space

Structure of 12[6] winnowed model space

Properties of the ground state in 12[6] and full Nmax=12 model space

	12[6]	Full
Binding energy [MeV]	-30.433	-30.875
rms [fm]	2.075	2.09
E2 moment [e fm^2]	-0.074	-0.066
M1 moment $[\mu_N]$	0.837	0.836
dimension	~1%	100%

Spectroscopic Properties in 12[6] Model Space

$N_{\rm max} = 12$ 1^+_{as}	3^+ 2)+ 1+	
90	<u> </u>	$\frac{1}{2}$	
full 0.838 1.8	866 0.96	0.336	
12[6] 0.840 1.8	866 1.01	5 0.337	

BE2 transitions in 12[6] and full Nmax=12 model space

Physical Observables in 12[6] Model Space

E2 moments in 12[6] and full Nmax=12 model space

		Matter rms radii [fm]				
$N_{\rm max} = 12$	1^+_{gs}	3^+	2^{+}	1_{2}^{+}		
full	2.146	2.092	2.257	2.373		
12[6]	2.139	2.079	2.236	2.355		

: model space decomposition

16 0

¹⁶ O : ground state (12,3)(13,1)10,411.2 12.0 (8.5) 19:31 (10.1)(6.6)(7,4)47 · · O 8.2 . -0.0 -0.9 (6.3)(3.6) · O O -(7.1)(1.7)4.4 · 🔵 🛛 • . . 0 (6.0)-(0.6)(3:3) (1,4)0 (2.2)(3,0) -(0.3)(1,1)(0.0)(8,4)(92) (10.0)(6.5)(7.3)(4.6)· 0 . .6 **.** . · 0 ο. 3 (2.1) 1.0° 42 (5.0)(2'3'). 2.0· • -(0,1)(0,0)f

Sd-shell Nuclei

SRG-N3LO $\lambda = 2.0 \text{ fm}^{-1} \hbar\Omega = 15 \text{ MeV}$

We have tested SU(3) and spin based truncation scheme

Our results suggest the existence of coherent SU(3) structures and reaffirm the importance of the symplectic symmetry

Move toward sd-shell nuclei

Collaboration with computer scientists is crutial