Development of J-matrix approach for the analysis of resonant states obtained in no core shell model

<u>A. Mazur (</u>Pacific National University) A. Shirokov (Moscow State University) J. Vary and P. Maris (Iowa State University)

> International Workshop "Nuclear Theory in the Supercomputing Era" Khabarovsk, June 18-22, 2012

some general properties for oscillator basis calculations; this is the only relevance to NCSM

- ✓ Problem
- ✓ J-matrix formalism
- \checkmark resonance information from E_{λ}

J-matrix A NCSM: Na scattering

NB this is still work in progress, some observations, examples

Problem

Conventional:

bound state energies are associated with variational minimum in shell model calculations

Problem

Is it also true for resonant states? Can we get resonance width from such calculations?

So, the phase shift at the eigenenergies E_j can be easily calculated! **Unfortunately**, this does not work:

- The dimensionality of the matrix is small, the average spacing between the levels is not well-defined.
- One needs sometimes D_j value below the lowest E_j^{0}

Schrödinger equation:

 $H^{l}u_{l}(E,r) = Eu_{l}(E,r).$

Expansion:

$$u_{l}(E,r) = \sum_{n=0}^{\infty} a_{nl}(E) R_{nl}(r).$$

$$R_{nl}(r) = (-1)^n \sqrt{\frac{2n!}{r_0 \Gamma(n+l+3/2)}} \left(\frac{r}{r_0}\right)^{l+1} \exp\left(-\frac{r^2}{2r_0^2}\right) L_n^{l+1/2}\left(\frac{r^2}{r_0^2}\right)$$

 $r_0 = \sqrt{\hbar / m\omega}, \quad \hbar \omega \quad - \text{ oscillator parameters, } m - reduced mass.$

 $E = (q^2/2)\hbar\omega$ – c.m. energy, $q = kr_0$ – dimensionless momentum.

$$\sum_{n'=0}^{\infty} (H_{nn'}^{l} - \delta_{nn'}E)a_{n'l}(E) = 0.$$

Structure of Hamiltonian:

Hamiltonian matrix:

$$H_{nn'}^l = T_{nn'}^l + V_{nn'}^l$$

Phase shift:
$$\tan \delta(E) = -\frac{S_{Nl}(q) - G_{NN}(E)T_{N,N+1}^{l}S_{N+1,l}(q)}{C_{Nl}(q) - G_{NN}(E)T_{N,N+1}^{l}C_{N+1,l}(q)}$$

$$G_{NN}(E) = -\sum_{\lambda=0}^{N} \frac{\langle N | \lambda \rangle^2}{E_{\lambda} - E}$$

$$E_{\lambda}, \langle n \mid \lambda \rangle \ (\lambda = 0, 1, ..., N)$$
 are obtained from

$$\sum_{n'=0}^{N} H_{nn'}^{l} \langle n' | \lambda \rangle = E_{\lambda} \langle n | \lambda \rangle, \ n \leq N$$

Regular and irregular oscillator solutions

$$\begin{split} S_{nl}(q) &= \sqrt{\frac{\pi r_0 n!}{\Gamma(n+l+3/2)}} \ q^{l+1} \exp\left(-\frac{q^2}{2}\right) L_n^{l+1/2}(q^2) \ ,\\ C_{nl}(q) &= (-1)^l \sqrt{\frac{\pi r_0 n!}{\Gamma(n+l+3/2)}} \ \frac{q^{-l}}{\Gamma(-l+1/2)} \exp\left(-\frac{q^2}{2}\right) \Phi(-n-l-1/2,-l+1/2;q^2) \end{split}$$

J-matrix

compare J-matrix with Lifshitz

J-matrix resonance information from E_{λ}

Let us try to extract resonance information from E_{λ} behavior only

$$\delta(E_{\lambda}) = -\arctan\left(\frac{S_{N+1,l}(E_{\lambda})}{C_{N+1,l}(E_{\lambda})}\right)$$

- E_{λ} should increase with $\hbar \omega$
- Within narrow resonance E_{λ} is nearly $\hbar \omega$ -independent
- The slope of $E_{\lambda}(\hbar\omega)$ depends however on N_{max} , l, E_{λ} value

• Breit-Wigner:

$$\delta^{BW} = \arctan \frac{\Gamma/2}{E_r - E} + \varphi$$
$$\tan \delta(E_{\lambda}) = -\frac{S_{N+1,l}(q_{\lambda})}{C_{N+1,l}(q_{\lambda})}$$
$$E_r = E_{\lambda} + \Delta_{\lambda}$$

Simple approximation: φ=0

$$\tan \delta(E_{\lambda}) = -\frac{S_{N+1,l}(q_{\lambda})}{C_{N+1,l}(q_{\lambda})} = \frac{\Gamma/2}{\Delta}$$
$$\frac{d \tan \delta(E)}{dE} \bigg|_{E=E_{\lambda}} = \frac{\Gamma/2}{\Delta^{2}}$$

Derivatives calculated through

$$E_{\lambda}(\hbar\Omega), E_{\lambda}^{\pm}(\hbar\Omega \pm \Delta(\hbar\Omega))$$

Do not expect to get a reasonable result for E_r or Γ if $\Gamma/2\Delta$ is small!

If $|\Gamma/2\Delta|$ is large, we get good results for E_r , Γ and φ .

Resonance

What can we do if we obtain E_{λ} in a non-resonant region above the resonance?

• We can extrapolate energies to larger (but finite) N_{max} value when E_{λ} is in the resonant region.

Expected dependence is $E_{\lambda}(N_{\max}) \approx A \frac{\exp(-a\sqrt{N_{\max}}+b)}{\sqrt{N_{\max}}+b}$

Resonance

More convenient is an exponential xtrapolation

$$E_{\lambda}(N_{\max}) = a \exp(-cN_{\max}) + E_{\lambda}(\infty)$$

 E_1 exponential extrapolation. h Ω =35 MeV

na scattering

Resonance parameters obtained from NCSM calculations for ⁵He

- We get stable
 E_r and Γ;
- F is too small as compared with experiment.

- The best way to compare the calculated results with experiment is to use "experimental" phase shifts and get E_{λ} consistent with scattering data using simple inverse scattering technique.
- Studying ħω dependence of E_λ obtained in NCSM, one can get resonance energy and width. However, usually an extrapolation to a reasonable N_{max} value is required.

Спасибо за внимание!

11