Scattering and nuclear structure with oscillator basis.

Andrey Shirokov Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University

Collaborators:

J. Vary, P. Maris (Iowa State University) V. Kulikov (Moscow State University) A. Mazur, E. Mazur, S. Zaytsev (Pacific National University)

Large-scale *ab initio* No-core Shell Model calculations

Large-scale *ab initio* No-core Shell Model calculations + new realistic *NN* interaction JISP

Large-scale *ab initio* No-core Shell Model calculations + new realistic *NN* interaction JISP Can we do also scattering?

Ab initio:

Ab initio:

No model assumptions (shell model with inert core, cluster model, etc., are <u>not *ab initio*</u>)

Ab initio:

- * No model assumptions (shell model with inert core, cluster model, etc., are <u>not *ab initio*</u>)
- * *Ab initio* approaches:
- ***** Faddeev $(A \ \delta \ 4)$
- * hyperspherical ($A \delta 6$)
- * Green function's Monte Carlo ($A \delta 13$)
- * no-core shell model (A < 20)
- coupled-cluster approach
- Symmetry extensions, Monte Carlo no-core shell model

Plan

- * Lanczos HORSE: reformulation of the J-matrix approach
- * Direct and inverse scattering or what do we obtain with oscillator basis for resonances and scattering states?
- * Inverse scattering: JISP NN interaction
- * No-core shell model, No-core full configuration
- * What is next?

Oscillator basis: nuclear structure & reactions

- * Searching for links between nuclear structure & reactions
- * Oscillator basis: nuclear structure shell model, Lanczos algorithm
- Oscillator basis: scattering & reactions can we have something similar?
- * HORSE = Harmonic Oscillator Representation of Scattering Equations (J-matrix)

* Further discussion: Lanczos HORSE

Lanczos algorithm

 φ_0 – arbitrary (random) pivot vector

 $\varphi_{-1}=0$

$$\beta_0 = 0$$

Iterations:

 $\phi_{j+1} = H\varphi_j$ orthogonalizing ϕ_{j+1} to φ_j and φ_{j-1} and normalizing: $\alpha_j = \langle \phi_{j+1} | \varphi_j \rangle$
$$\begin{split} \hat{\phi}_{j+1} &= \langle \phi_{j+1} - \alpha_j \varphi_j - \beta_j \varphi_{j-1} \\ \beta_{j+1} &= ||\tilde{\phi}_{j+1}|| \\ \varphi_{j+1} &= \frac{\tilde{\phi}_{j+1}}{\beta_{j+1}} \qquad \langle \varphi_i | H | \varphi_j \rangle = \begin{pmatrix} \alpha_0 & \beta_1 \\ \beta_1 & \alpha_1 & \beta_2 & 0 \\ \beta_2 & \alpha_2 & \ddots \\ & & \ddots & \ddots & \beta_{N-1} \\ 0 & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$$

Oscillator basis

* Matrix of the kinetic energy operator *T* is tridiagonal in oscillator basis: $T_{nm} = 0$ if |n - m| > 1.

$$T\varphi_n = T_{n,n-1}\varphi_{n-1} + T_{nn}\varphi_n + T_{n,n+1}\varphi_{n+1}$$

- * Kinetic energy operator *T* generates oscillator basis
- * either from below:

$$\varphi_0, \quad T\varphi_0 \Rightarrow \varphi_1, \quad T\varphi_1 \Rightarrow \varphi_2, \dots$$

* or from above:

..., $\varphi_{M+1}, \varphi_M, \quad T\varphi_M \Rightarrow \varphi_{M-1}, \quad T\varphi_{M-1} \Rightarrow \varphi_{M-2}, ..., \varphi_0$

Free Schrödinger equation

$T\Psi = E\Psi$

***** Wave function expanded in oscillator basis:

$$\Psi = \sum_{n=0}^{\infty} a_n \varphi_n$$

* The kinetic energy matrix in oscillator basis is tridiagonal, hence a_n are solutions of a three-term recurrent relation (TRR):

$$T_{n,n-1}a_{n-1} + (T_{nn} - E)a_n + T_{n,n+1}a_{n+1} = 0$$

Free Schrödinger equation: TRR solutions

 $T_{n,n-1}a_{n-1} + (T_{nn} - E)a_n + T_{n,n+1}a_{n+1} = 0$

- * Analytical expressions are known for linearly-independent solutions s_n and c_n of this TRR.
- * Properties of s_n and c_n :

$$\sum_{n=0}^{\infty} s_n(E) \varphi_n = \Psi_E^0 = \sqrt{\frac{2}{\pi}} kr j_l(kr) \xrightarrow[r \to \infty]{} \sqrt{\frac{2}{\pi}} \sin\left(kr - \frac{\pi l}{2}\right),$$
$$\sum_{n=0}^{\infty} c_n(E) \varphi_n \xrightarrow[r \to \infty]{} \Psi_E^{0irreg} = \sqrt{\frac{2}{\pi}} kr n_l(kr) \xrightarrow[r \to \infty]{} \sqrt{\frac{2}{\pi}} \cos\left(kr - \frac{\pi l}{2}\right)$$

* Any TRR solution a_n can be expressed as $a_n = \cos \delta s_n + \sin \delta c_n$ where δ is a scattering phase shift.

Oscillator function at large *n*

At
$$n \to \infty$$
:

$$s_n(E) = \int \Psi_E^0 \varphi_n \, d^3 r \sim \sin\left(kr_0\sqrt{n} - \frac{\pi l}{2}\right),$$
$$c_n(E) = \int \Psi_E^{0irreg} \varphi_n \, d^3 r \sim \cos\left(kr_0\sqrt{n} - \frac{\pi l}{2}\right).$$

One can calculate s_n and c_n by TRR starting from asymptotically large n.

Hamiltonian

H = T + V

A reasonable approximation is to truncate the potential energy matrix: $V_{nm} = 0$ for n,m > N, kinetic energy is not truncated.

Justification: kinetic energy m. e. increase with *n* linearly at large *n*: $T_{nn} \sim n$, $T_{n,n\pm 1} \sim n$, $n \rightarrow \Box$, while potential energy m. e. V_{nm} decrease with *n* and *m*.

Lanczos algorithm

H = T + V

 $V_{nm} = 0$ for n,m > N, kinetic energy matrix is infinite.

With *H* we first generate from above the oscillator basis functions Π_{ν} with $n \ge N$.

After that we construct Lanczos basis of states Φ_m which are superpositions of oscillator states Π_{ν} with $n \leq N$. *H* is tridiagonal in this basis.

Lanczos HORSE = J-matrix

< N

This is a reformulation of the *J*-matrix formalism. Hopefully it is more convenient for the shell model and *ab initio* no-core shell model applications.

We just extended usual Lanczos procedure in many-body applications and will use it with different boundary conditions: (i) scattering $a_n = \cos \delta s_n + \sin \delta c_n$ or (ii)decreasing a_n at large n.

How does it work and does it work at all?

Hamiltonian eigenstates

 $H_{n,n-1}a_{n-1} + (H_{nn} - E)a_n + H_{n,n+1}a_{n+1} = 0$

Boundary condition: $H_{N,N-1}a_{N-1}(E_{\lambda}) + (H_{NN} - E)a_N(E_{\lambda}) = 0$ or $a_{N+1}(E_{\lambda}) = 0$

If the phase shifts are known experimentally, it is easy to solve numerically:

Scattering:

 $a_{N+1}(E_{\lambda}) = \cos \delta(E_{\lambda})s_N(E_{\lambda}) + \sin \delta(E_{\lambda})c_N(E_{\lambda}) = 0$

 E_{λ} are eigenstates that are consistent with scattering information for given $\hbar\Omega$ and N_{max} ; this is what you should obtain in any calculation with oscillator basis and what you should compare with your *ab initio* results.

Na inverse scattering and NCSM

 $N\alpha$ non-resonant inverse scattering and NCSM

Inverse scattering

 $H_{n,n-1}a_{n-1} + (H_{nn} - E)a_n + H_{n,n+1}a_{n+1} = 0$

S. Zaytsev was the first to study the *J*-matrix inverse scattering.

One can obtain not only E_{λ} but restore completely the tridiagonal matrix with $n \le N$ for given N and $\hbar\Omega$ provided that the phase shifts are known. Larger N and $\hbar\Omega$ larger is the energy interval where the phase shifts will be described.

JISP = *J*-matrix inverse scattering potential

NN interaction is a small matrix of the in the oscillator basis: $9\hbar\Omega$ truncation, $\hbar\Omega = 40$ MeV Fast convergence of shell model calculations Good description of NN data

Modern NN interaction models:

* Realistic (phenomenological) meson-exchange NN potentials (Nijmegen, Bonn, Argonne)

+ NNN phenomenological potentials

- * EFT (ChPT) NN potentials
 + NNN EFT (ChPT) potentials
- * JISP16 NN interaction NNN interaction

no

fitted to light nuclei

Why would be nice to avoid NNN forces?

Role of NNN force?

★ W. Polyzou and W. Glöckle theorem (Few-body Syst. <u>9</u>, 97 (1990)): $H=T+V_{ij} \rightarrow H'=T+V'_{ij}+V_{ijk'}$ where V_{ij} and V'_{ij} are phase-equivalent, H and H' are isospectral. Hope:

 $H'=T+V'_{ij}+V_{ijk} \rightarrow H=T+V_{ij}$ with (approximately) isospectral *H* and *H'*.

JISP type interaction seems to be *NN* interaction minimizing *NNN* force.

Without *NNN* force calculations are simpler, calculations are faster, larger model spaces become available; hence predictions are more reliable.

Ambiguity of JISP NN interaction

n < N

 $H_{n,n-1}a_{n-1} + (H_{nn} - E)a_n + H_{n,n+1}a_{n+1} = 0$

We construct *NN* potential as a tridiagonal matrix in oscillator basis. However the basis functions with $n \le N$ can be any mixture of oscillator functions (unitary transformations, phase-equivalent transformations).

We use this ambiguity trying to fit JISP to binding energies and spectra of *s* and *p* shell nuclei.

JISP6 – fitted to $A \le 6$ nuclei.

JISP16 – fitted to $A \le 16$ nuclei.

JISP16 properties

* 1992 *np* data base (2514 data): χ^2 /datum = 1.03

* 1999 *np* data base (3058 data): χ^2 /datum = 1.05

Table 1: Deuteron properties.						
Potential	E_d , MeV	d state	rms radius,	0 f 2	As. norm. const.	\mathscr{A}_d
		probability, $\%$	${ m fm}$	Q, tm^2	$\mathscr{A}_s, \mathrm{fm}^{-1/2}$	$\eta = \overline{\mathscr{A}_s}$
JISP16	-2.224575	4.1360	1.9643	0.2886	0.8629	0.0252
Nijmegen-II	-2.224575	5.635	1.968	0.2707	0.8845	0.0252
AV18	-2.224575	5.76	1.967	0.270	0.8850	0.0250
CD–Bonn	-2.224575	4.85	1.966	0.270	0.8846	0.0256
Nature	-2.224575(9)		1.971(6)	0.2859(3)	0.8846(9)	0.0256(4)

How it was done initially

Binding energies

JISP16

Ground state energy E_{gs} and excitation energies E_x (in MeV), ground state point-proton rms radius r_p (in fm) and quadrupole moment Q (in $e \cdot \text{fm}^2$) of the ⁶Li nucleus; $\hbar \omega = 17.5$ MeV.

Interaction	Nature	JISP6	JISP16	AV8'+TM'	AV18+UIX	AV18+IL2
Method		NCSM, $10\hbar\omega$ [6]	NCSM, $12\hbar\omega$	NCSM, $6\hbar\omega$ [2]	GFMC [8,15]	GFMC [10,15]
$E_{gs}(1_1^+, 0)$	-31.995	-31.48	-31.00	-31.04	-31.25(8)	-32.0(1)
r_p	2.32(3)	2.083	2.151	2.054	2.46(2)	2.39(1)
Q	-0.082(2)	-0.194	-0.0646	-0.025	-0.33(18)	-0.32(6)
$E_x(3^+, 0)$	2.186	2.102	2.529	2.471	2.8(1)	2.2
$E_x(0^+, 1)$	3.563	3.348	3.701	3.886	3.94(23)	3.4
$E_x(2^+, 0)$	4.312	4.642	5.001	5.010	4.0(1)	4.2
$E_x(2^+, 1)$	5.366	5.820	6.266	6.482		5.5
$E_x(1_2^+, 0)$	5.65	6.86	6.573	7.621	5.1(1)	5.6

Potential	Naturo	JISP16	AV8'+TM'	AV18+IL2	ChPT
Approach	Nature	NCSM, $8\hbar\omega^a$	NCSM, $4\hbar\omega^b$	GFMC^{c}	NCSM, $6\hbar\omega^d$
$E_{gs}(3^+_1, 0)$	-64.751	-60.14	-60.57	-65.6(5)	-64.78
r_p	2.30(12)	2.168	2.168	2.33(1)	2.197
Q	+8.472(56)	6.484	+5.682	+9.5(2)	+6.327
$E_x(1_1^+, 0)$	0.718	0.555	0.340	0.9	0.523
$E_x(0^+, 1)$	1.740	1.202	1.259		1.279
$E_x(1_2^+, 0)$	2.154	2.379	1.216		1.432
$E_x(2_1^+, 0)$	3.587	3.721	2.775	3.9	3.178
$E_x(3^+_2, 0)$	4.774	6.162	5.971		6.729
$E_x(2_1^+, 1)$	5.164	5.049	5.182		5.315
$E_x(2^+_2, 0)$	5.92	5.548	3.987		4.835
$E_x(4^+, 0)$	6.025	5.775	5.229	5.6	5.960
$E_x(2_2^+, 1)$	7.478	7.776	7.491		7.823
$B(E2;1^+_10\to 3^+_10)$	4.13(6)	3.317	1.959		3.05
$B(E2;1^+_20\to 3^+_10)$	1.71(26)	0.627	1.010		0.50
$B(\mathrm{GT}; 3^+_1 0 \rightarrow 2^+_1 1)$	0.083(3)	0.042	0.066		0.07
$B(\mathrm{GT}; 3^+_1 0 \rightarrow 2^+_2 1)$	0.95(13)	1.652	1.291		1.22

^aA.M.Shirokov, J.P.Vary, A.I.Mazur, T.A.Weber, Phys. Lett. B644, 33 (2007).

^bP. Navrátil, W. E. Ormand, Phys. Rev. C 68, 034305 (2003).

^cS. C. Pieper, K. Varga, R. B. Wiringa, Phys. Rev. C 66, 044310 (2002).

^dP. Navrátil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).

 $^{10}\mathrm{B}$

From effective interactions to full configuration calculations

* Extrapolation:

 $E_{\rm gs}(N_{\rm max}) = a {\rm e}^{-bN_{\rm max}} + E_{\rm gs}(\infty)$

$^{14}\mathrm{F}$

- ***** 1,990,061,078 basis states
- each ħΩ point requires 2 to 3 hours on 7,626 quad-core compute nodes (30,504 processors in total) at the Jaguar supercomputer at ORNL

Nucleus	Extrapolation A	Extrapolation B	Experiment
¹³ O	-75.7(2.2)	-77.6(3.0)	-75.556
$^{14}\mathbf{B}$	-84.4(3.2)	-86.6(3.8)	-85.423
14 F	-70.9(3.6)	-73.1(3.7)	74.00(0.04)

¹⁴F spectrum

* Deficiency of JISP16 revealed by NCFC extrapolations

Binding energies

Nuclear matter with JISP16

What is next?

n < N

<u>*n*-A scattering</u>: if A wave function is obtained with N_{max} = 0, everything looks like a conventional Lanczos SM run in the A+1 system with a specific pivot vector. The SM Lanczos basis is extended analytically to involve states with large quanta. Interpretation of the results is different.

 $a_n = \cos \delta s_n + \sin \delta c_n, \ n \ge N.$

n < N

<u>*n*-A scattering:</u> if A wave function is obtained with $N_{max} > 0$, the Lanczos SM run in the A+1 system become more complicated and involves few additional vectors added to the A+1 system model space. All the rest looks like in the previous case.

n < N

p-A scattering: Coulomb interaction can be included in the approach. This requires adding additional channel states in the Lanczos SM run in the *A*+1 system – the number of such states is below 100.

n < N

<u> $A_1 + A_2$ scattering</u>: looks like that the most complicated problem now is transformation from the $A_1 + A_2$ cluster structure to the SM structure of the $A_1 + A_2$ system.

n < N

Bound states: the TRR solutions a_n decrease with n when n > N at E < 0. Extending the SM Lanczos basis by oscillator states with n > N is equivalent to calculating binding energies as the respective *S*-matrix pole. It improves the variational binding energies, rms radii, etc.

How does it work and does it work at all?

Convergence

★ Poor convergence to get reasonable results for phase shifts in available model spaces in systems with A > 4.

- * J. Revai, M. Sotona, J. Žofka, J. Phys. G 11, 745 (1985).
- * The $N \times N$ potential energy matrix V_{ij} , i, j = 1, 2, ..., N is replaced by

$$\tilde{V}_{ij} = \sigma_i^N V_{ij} \sigma_j^N,$$

$$\sigma_i^N = \frac{1 - \exp\left\{-\left[\alpha(i - N - 1)/(N + 1)\right]^2\right\}}{1 - \exp(-\alpha^2)}$$

- * This is some kind of effective interaction that makes convergence of various observables smoother.
- The properties of such effective interaction were not studied in many-nucleon systems

Nuclear Theory in the Supercomputing Era

Conclusions

- * I've tried to formulate scattering theory in a way that it looks very like a conventional shell model, no-core shell model. That means that it can be more or less easily implemented in *ab initio* nuclear structure models.
- * I've recalled an idea of Hungarian smoothing, a simple effective interaction that smooths convergence of various observables and simplifies extrapolations. Probably, it would be interesting to study it in many-body applications in more detail.
- * JISP16 is a reasonable NN interaction describing a wide range of data. Further development of improved releases of JISP interaction is under way.
- * Knowing phase shifts one can get eigenstates to be obtained in *ab initio* NCSM with given N_{max} and $\hbar\Omega$.

Conclusions

Thank you!