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Ab initio: 
 No model assumptions (shell model with inert 

core, cluster model, etc., are not ab initio) 

  Ab initio approaches: 

        Faddeev (A 4) 

        hyperspherical (A 6) 

        Green function’s Monte Carlo (A 13) 

        no-core shell model (A < 20) 

        coupled-cluster approach 

 Symmetry extensions, Monte Carlo no-core shell 
model 

 



Plan 
 Lanczos HORSE: reformulation of the J-matrix approach 

 Direct and inverse scattering or what do we obtain with 
oscillator basis for resonances and scattering states? 

 Inverse scattering: JISP NN interaction 

 No-core shell model, No-core full configuration 

 What is next? 
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Oscillator basis: 
nuclear structure & reactions 
 Searching for links between nuclear structure & reactions 

 Oscillator basis: nuclear structure − shell model, Lanczos 
algorithm 

 Oscillator basis: scattering & reactions − can we have 
something similar? 

 HORSE 

 

 Further discussion: Lanczos HORSE 
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Harmonic Oscillator Representation of Scattering    
Equations (J-matrix) 

= 



Lanczos algorithm 
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Oscillator basis 
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 Matrix of the kinetic energy operator T is tridiagonal in 
oscillator basis: Tnm = 0 if |n – m| > 1. 

 

 Kinetic energy operator T generates oscillator basis 

 either from below: 

              

  or from above: 

 

 



Free Schrödinger equation 
 

 Wave function expanded in oscillator basis: 

      

 The kinetic energy matrix in oscillator basis is tridiagonal, hence 

an are solutions of a three-term recurrent relation (TRR): 
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Free Schrödinger equation: 
TRR solutions 

 

 Analytical expressions are known for linearly-independent 
solutions sn and cn of this TRR. 

 Properties of sn and cn: 

 

 

 

 Any TRR solution an can be expressed as an = cosδsn + sinδcn 
where δ is a scattering phase shift. 
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Oscillator function at large n 
   

 

 

 

 

 

Nuclear Theory in the Supercomputing Era 

One can calculate sn and cn by TRR 
starting from asymptotically large n. 



Hamiltonian 
       H = T + V 

      A reasonable approximation is 
to truncate the potential 
energy matrix: Vnm = 0 for   
n,m > N, kinetic energy is not 
truncated. 

      Justification: kinetic energy   
m. e. increase with n linearly 
at large n:                                                    
while potential energy m. e. 
Vnm decrease with n and m. 
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Tnn ~ n, Tn,n±1 ~ n, n®¥,



Lanczos algorithm 
       H = T + V 

      Vnm = 0 for n,m > N, kinetic 
energy matrix is infinite. 

      With H we first generate from 
above the oscillator basis 
functions nwith n ≥ N. 

      After that we construct 
Lanczos basis of states Φm 
which are superpositions of 
oscillator states nwith n  ≤ N. 
H is tridiagonal in this basis. 
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n < N



Lanczos HORSE = J-matrix 

n < N
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This is a reformulation of the J-matrix 
formalism. Hopefully it is more convenient 
for the shell model and ab initio no-core 
shell model applications. 
 
We just extended usual Lanczos procedure 
in many-body applications and will use it 
with different boundary conditions: (i) 

scattering an = cosδsn + sinδcn or 

(ii)decreasing an at large n. 



How does it work  
and does it work at all? 
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Scattering 



Hamiltonian eigenstates 

n < N
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Boundary condition: 

 If the phase shifts are known experimentally, 
it is easy to solve numerically:  

Eλ are eigenstates that are consistent with scattering information for 
given ħΩ and Nmax; this is what you should obtain in any calculation 
with oscillator basis and what you should compare with your ab initio results. 



Nα inverse scattering and NCSM 

 



Nα non-resonant inverse scattering and NCSM 

 



Inverse scattering 

n < N
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S. Zaytsev was the first to study the J-matrix 
inverse scattering. 
 
One can obtain not only Eλ but restore completely  
the tridiagonal matrix with n ≤ N for given N and ħΩ  
provided that the phase shifts are known. Larger  N and ħΩ  
larger is the energy interval where the phase shifts will be 
described. 
 
JISP = J-matrix inverse scattering potential 
 
NN interaction is a small matrix of the in the oscillator basis:  
   9ћΩ truncation, ћΩ = 40 MeV  
Fast convergence of shell model calculations 
Good description of NN data 
 



Modern NN interaction 
models: 
 Realistic (phenomenological) meson-exchange NN 

potentials (Nijmegen, Bonn, Argonne)  

        + NNN phenomenological potentials 

 EFT (ChPT) NN potentials 

        + NNN EFT (ChPT) potentials 

 JISP16 NN 
interaction            no 
NNN interaction 

                                                             fitted to light nuclei 



Why would be nice to avoid NNN forces? 

 



Role of NNN force? 

 W. Polyzou and W. Glöckle theorem (Few-body Syst. 9, 97 
(1990)):      H=T+Vij  H’=T+V’ij+Vijk, 

      where Vij and V’ij are phase-equivalent, H and H’ are isospectral. 

  Hope:      
         
H’=T+V’ij+Vijk   H=T+Vij 

        with (approximately) isospectral H and H’ .  

 

  JISP type interaction seems to be NN interaction minimizing NNN 
force. 

 

  Without NNN force calculations are simpler, calculations are faster, 
larger model spaces become available; hence predictions are more 
reliable. 



Ambiguity of JISP NN 
interaction 

n < N
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We construct NN potential as a tridiagonal 
matrix in oscillator basis. However the basis 
functions with n ≤ N can be any mixture of 
oscillator functions (unitary transformations, 
phase-equivalent transformations). 
 
We use this ambiguity trying to fit JISP to 
binding energies and spectra of s and p shell 
nuclei.   
 
JISP6 – fitted to A ≤ 6 nuclei. 
 
JISP16 – fitted to A ≤ 16 nuclei. 
 



JISP16 properties 
 1992 np data base (2514 data):  χ2/datum = 1.03 

 1999 np data base (3058 data):  χ2/datum = 1.05 



How it was done initially 
 

Nuclear Theory in the Supercomputing Era 



 





JISP16 







From effective interactions to  
full configuration calculations 

 Extrapolation:  

                   Egs(Nmax) = ae-bNmax + Egs(∞) 

 Works with bare interaction only 

 Example: 

 

P. Maris, J. P. Vary,  A. M. Shirokov, 
Phys. Rev. C 79, 014308 (2009) 



14F 

 1,990,061,078 basis states  

  each ħΩ point requires 2 to 3 hours on 7,626 quad-core 
compute nodes (30,504 processors in total) at the Jaguar 
supercomputer at ORNL  



14F spectrum 



 Deficiency of JISP16 revealed by NCFC extrapolations 



How it looked initially: 

How it looks now: 



Improved interaction 
JISP162010 

Obtained by a more accurate 
fit to nuclear data 



Nuclear matter with JISP16 
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What is next? 
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Possible many-body  
ab initio applications 

n < N
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n-A scattering: if A wave function is  
obtained with Nmax= 0, everything looks 
like a conventional Lanczos SM run in the     
A+1 system with a specific pivot vector. 
The SM Lanczos basis is extended 
analytically to involve states with large 
quanta. Interpretation of the results is 
different. 
 

an = cosδsn + sinδcn , n ≥ N. 



Possible many-body  
ab initio applications 

n < N
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n-A scattering: if A wave function is  
obtained with Nmax> 0, the Lanczos SM run 
in the A+1 system become more 
complicated and involves few additional 
vectors added to the A+1 system model 
space. All the rest looks like in the previous 
case. 
  



Possible many-body  
ab initio applications 

n < N
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p-A scattering: Coulomb interaction can be 
included in the approach. This requires 
adding additional channel states in the 
Lanczos SM run in the A+1 system – the 
number of such states is below 100. 
  



Possible many-body  
ab initio applications 

n < N
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A1 + A2 scattering: looks like that the most 
complicated problem now is 
transformation from the A1 + A2 cluster 
structure to the SM structure of the A1 + A2 

system.  
  



Possible many-body  
ab initio applications 

n < N
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Bound states: the TRR solutions an decrease 
with n when n > N at E < 0. Extending the 
SM Lanczos basis by oscillator states with  
n > N is equivalent to calculating binding 
energies as the respective S-matrix pole. It 
improves the variational binding energies, 
rms radii, etc. 
   



How does it work  
and does it work at all? 
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Bound state: 
11Li in a cluster model  
Note rms radius 
 



Convergence 
 Poor convergence to get reasonable results for phase shifts 

in available model spaces in systems with A > 4. 
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Hungarian smoothing 
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 J. Revai, M. Sotona, J. Žofka,  J. Phys. G 11, 745 (1985). 

   

 

 

 

 This is some kind of effective interaction that makes 
convergence of various observables smoother.   

  The properties of such effective interaction were not studied 
in many-nucleon systems 

 



Hungarian smoothing 
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Hungarian smoothing 
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Hungarian smoothing 
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Conclusions 
 I’ve tried to formulate scattering theory in a way that it 

looks very like a conventional shell model, no-core shell 
model. That means that it can be more or less easily 
implemented in ab initio nuclear structure models. 

 I’ve recalled an idea of Hungarian smoothing, a simple 
effective interaction that smooths convergence of various 
observables and simplifies extrapolations. Probably, it 
would be interesting to study it in many-body applications 
in more detail. 

 JISP16 is a reasonable NN interaction describing a wide 
range of data. Further development of improved releases of 
JISP interaction is under way. 

 Knowing phase shifts one can get eigenstates to be obtained 
in ab initio NCSM with given Nmax and ħΩ. 
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Conclusions 
 

 

 

            Thank you! 
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