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Ab initio:

* No model assumptions (shell model with inert
core, cluster model, etc., are not ab initio)

* Ab initio approaches:

Faddeev (A § 4)

hyperspherical (A § 6)

Green function’s Monte Carlo (A § 13)
<no-core shell model (A <20)>

b S S R .

coupled-cluster approach

* Symmetry extensions, Monte Carlo no-core shell
model



Plan

Lanczos HORSE: reformulation of the J-matrix approach

Direct and inverse scattering or what do we obtain with
oscillator basis for resonances and scattering states?

Inverse scattering: JISP NN interaction
No-core shell model, No-core full configuration

What is next?
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Oscillator basis:
nuclear structure & reactions

* Searching for links between nuclear structure & reactions

* Oscillator basis: nuclear structure — shell model, Lanczos
algorithm

* Oscillator basis: scattering & reactions — can we have
something similar?

* HORSE = Harmonic Oscillator Representation of Scattering
Equations (J-matrix)

* Further discussion: Lanczos HORSE
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Lanczos algorithm

o — arbitrary (random) pivot vector

p—1 =10

Bo =0

Iterations:

Gjr1 = Hepj

orthogonalizing ¢;41 to ¢; and ¢;_; and normalizing:
aj = (941l

Gj+1 = jr1 — a5 — Bipj
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Oscillator basis

* Matrix of the kinetic energy operator T is tridiagonal in
oscillator basis: T, =0if |n-m| > 1.

Iy S Bl S i S = S L S T
* Kinetic energy operator T generates oscillator basis
* either from below:

po,  Lwo= 1, Tp1= o ..
* or from above:

AN R AR R BT | = OM-2, -y D
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Free Schrodinger equation

IV =FEV

* Wave function expanded in oscillator basis:

oo
U = Z b0
n=0

* The kinetic energy matrix in oscillator basis is tridiagonal, hence
a, are solutions of a three-term recurrent relation (TRR):

Tn,n—lan—l + (Tnn g E)a/n N5 Tn,n+1an+1 =0
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Free Schrodinger equation:
TRR solutions

Tn,n—lan—l = (Tnn = E)an =} Tn,n—|—1an—|—1 =0

* Analytical expressions are known for linearly-independent
solutions s, and c,, of this TRR.

* Properties of s, and c,;:

. /2 2 l
g SR e R — [ sin (kr — W—) :
r E=2coY T 2

=0
. - % 2 l
E cn(E) ¢on e \I;%“"Teg =1/ — krny(kr) — 4/ — cos (kr o5 W—) :
e r— 00 T r—oco \ T 9

* Any TRR solution a, can be expressed as a,, = C0s0s,, + SINOC,,
where 0 is a scattering phase shift.
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Oscillator function at large n

I B A

p, /
1081/ REA 8T A NE A VR AW AT ]
Wi BT SATARY RS

[ F@entIdtr ~ 1),
T = ToVN, N — 00

on(r) ~ 8(r —royv/n), n— o0

At n — oco:
[
sn(E) = /\If% ©n d°1 ~ sin (krof— %) ,
Oirreg 3 m
cn(E)zf\IfE ©n d°T ~ COS (krof—5> ;

One can calculate s, and ¢, by TRR
starting from asymptotically large n.

Nuclear Theory in the Supercomputing Era



Hamiltonian
H=T+V

A reasonable approximation is
to truncate the potential

energy matrix: V,, =0 for T+V
n,m > N, kinetic energy is not
truncated.

Justification: kinetic energy

m. e. increase with 7 linearly
atlargen: T _~n T .. ~n n—[],

n,nxl
while potential energy m. e.

V., decrease with n and m.
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Lanczos algorithm
H=T+V

V.., =0fornm> N, kinetic

energy matrix is infinite.

With H we first generate from
above the oscillator basis
functions /] with n > N.

After that we construct
Lanczos basis of states @,
which are superpositions of
oscillator states /[ withn < N.
H is tridiagonal in this basis.
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Lanczos HORSE = [-matrix

~

This is a reformulation of the [-matrix 4
formalism. Hopefully it is more convenient ~ _
for the shell model and ab initio no-core

shell model applications.

We just extended usual Lanczos procedure
in many-body applications and will use it
with different boundary conditions: (i)

scattering &, = C0SOS,, + SINOC, Or
(i1)decreasing a,, at large n.
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How does it work

and does it work at all?

Woods-Saxon potential with 3 bond states

Scattering

300

d wave, hw=25 MeV
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Hamiltonian eigenstates

Hn,n—lan—l =iF (Hnn o E)an e Hn,’n—I—lan—l—l =
Boundary condition: HN,N—lCLN—l(EA) = (HNN e E)GN(EA) — 0

or ani1(Ey) =0

If the phase shifts are known experimentally,
it is easy to solve numerically:

Scattering:
an11(ExN) = cosd(Ex)sny(Ey) +sind(FEy)en(FEy)

E, are eigenstates that are consistent with scattering information for
given 72 and N, ,,; this is what you should obtain in any calculation

max”/

with oscillator basis and what you should compare with your ab initio results.
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Na non-resonant inverse scattering and NCo5M
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Inverse scattering

Hn,n—laﬂn—l = (Hnn RE E)an 5k Hn,’n—I—lan—l—l :9

S. Zaytsev was the first to study the J-matrix \
inverse scattering. \

One can obtain not only E, but restore completely
the tridiagonal matrix with n < N for given Nand h2 -~
provided that the phase shifts are known. Larger N and hQ

larger is the energy interval where the phase shifts will be
described.

JISP = J-matrix inverse scattering potential

NN interaction is a small matrix of the in the oscillator basis:
9hQ truncation, hQ = 40 MeV
Fast convergence of shell model calculations

Good description of NN data

Nuclear Theory in the Supercomputing Era



Modern NN interaction
models:

* Realistic (phenomenological) meson-exchange NN
potentials (Nijmegen, Bonn, Argonne)

+ NNN phenomenological potentials
* EFT (ChPT) NN potentials
+ NNN EFT (ChPT) potentials

* JISP16 NN

Interaction no
NNN interaction

fitted to light nuclei



Why would be nice to avoid NNN forces?
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Role of NNN force?

* W. Polyzou and W. Glockle theorem (Few-body Syst. 9, 97
(1990)): SIS =T+ V4V,
where V; and V’; are phase-equivalent, H and H" are isospectral.
Hope:

ERe R =2y H=T+V,
with (approximately) isospectral H and H".

JISP type interaction seems to be NN interaction minimizing NNN
force.

Without NNN force calculations are simpler, calculations are faster,
larger model spaces become available; hence predictions are more
reliable.



Ambiguity of JISP NN
interaction

Hn,n—lan—l RE (Hnn FF E)a'n 55 Hn,n—I—lan—I—l =0

We construct NN potential as a tridiagonal
matrix in oscillator basis. However the basis
functions with n < N can be any mixture of
oscillator functions (unitary transformations,
phase-equivalent transformations).

We use this ambiguity trying to fit JISP to
binding energies and spectra of s and p shell
nuclei.

JISP6 - fitted to A < 6 nuclei.

JISP16 - fitted to A < 16 nuclei.
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JISP16 properties

* 1992 np data base (2514 data): x?/datum =1.03
* 1999 np data base (3058 data): x?/datum =1.05

Table I: Deuteron properties.

d state rms radius, As. norm. const. o 4

Potential Eyg, MeV Q, fm? n =
probability, % fin o, fm=1/2 s
JISP16 —2.224575 4.1360 1.9643 0.2886 0.8629 0.0252
Nijmegen-IT —2.224575 5.635 1.968 0.2707 0.8845 0.0252
AV18 —2.224575 5.76 1.967 0.270 0.8850 0.0250
CD-Bonn  —2.224575 4.85 1.966 0.270 0.8846 0.0256

Nature — —2.224575(9) — 1.971(6)  0.2859(3)  0.8846(9)  0.0256(4)




How it was done initially
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Binding energies
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JISP16

Ground state energy E,s and excitation energies E, (in MeV), ground state point-proton rms radius r,
(in fm) and quadrupole moment @ (in e - fm?) of the Li nucleus; fiw = 17.5 MeV.

Interaction JISP6 JISP16 AVR'+TM’ AV18+UIX AV18+1L2
Method  2*UT®  NCSM, 10hw [6] NCSM, 125w NCSM, 6hw [2] GFMC [8,15] GFMC [10,15
Eg(1/,0)  —31.995 —31.48 —31.00 —31.04 —31.25(8) —32.0(1)
" 2.32(3) 2.083 2.151 2.054 2.46(2) 2.39(1)
Q —0.082(2) ~0.104 —0.0646 —0.025 —0.33(18) —0.32(6)
E.(3%,0)  2.186 2.102 2.529 2.471 2.8(1) 2.2
E.(0%,1)  3.563 3.348 3.701 3.886 3.94(23) 3.4
E.(21,0)  4.312 4.642 5.001 5.010 4.0(1) 4.2
E.(2*,1)  5.366 5.820 6.266 6.482 5.5
E.(13,0) 5.5 6.86 6.573 7.621 5.1(1) 5.6




1'I]B

Potential Nature JISP1G AVELTMT JAVIS+HIL2f ChPT
Approach NCSM, 8hw[NCSM, 4he®| GFMC® |[NCSM, Gl
Ey(37.0) —64.751 —60.14 —60.57 | —65.6(5) | —64.78
ry 2.30(12) 2.168 2.168 2.33(1) 2.197
Q +8.472(56)|  6.481 +5.682 | 49.5(2) +6.327
E(17.0) 0.718 0.555 0.340 0.9 0.523
EL(0F, 1) 1.740 1.202 1.259 1.279
E-(1F,0) 2.154 2.379 1.216 1.432
EL(2F,0) 3.587 3.721 2775 3.0 3.178
F,(3%.0) 477 6.162 5.971 6.729
E(2f. 1) 5. 164 5.049 5.182 5.315
£, (2.0 5.92 5.548 3.987 1.835
EL(41,0) 6.025 5.775 5.220 5.6 5.960
E 25, 1) 7ATR 7.776 7.401 7.823
B(E2; 170 — 370y | £.13(6) 3.317 1.959 3.05
B{E2 150 — 3F0) | 1.71(26) 0.627 LO10 0.50
BIGT;370 — 27 1)| 0.083(3) 0.042 0066 0.07
B(GT:310 — 25 1)| 0.95(13) 1.652 1.291 1.22

*A M Shirokov, J.P.Vary, AL Mazur, T A Weber, Phys. Lett. B644, 33 {2007).
PP, Navrdtil, W. E. Ormand, Phys. Rev. € 68, 034305 (2003).
F5. 0 Pieper, Ik Varga, B, B. Wirninga, Phys. Rev. C 66, 044310 (2002).

4P, Navritil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, A. Nogga, Phys. Rev. Lett. 99, (42501 {2007).
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From etfective interactions to
full configuration calculations

* Extrapolation:

(N

max

gs(

* Works with bare in

* Example:

P. Maris, J. P. Vary, A. M. Shirokov,
Phys. Rev. C 79, 014308 (2009)
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* 1,990,061,078 basis states

14F

* each hQ point requires 2 to 3 hours on 7,626 quad-core
compute nodes (30,504 processors in total) at the Jaguar
supercomputer at ORNL

Nucleus | Extrapolation A | Extrapolation B | Experiment
20 —75.7(2.2) —77.6(3.0) —75.556
“B —84.4(3.2) —86.6(3.8) —85.423
l9F —70.9(3.6) —73.1(3.7) 74.00(0.04)




14F spectrum
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* Deficiency of JISP16 revealed by NCFC extrapolations
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Nuclear matter with JISPP16

Nuclear Matter from JISP16

with various J truncations
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What is next?
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Possible many-body
ab initio applications

-~

n-A scattering: if A wave function is
obtained with N_ .= 0, everything looks
like a conventional Lanczos SM run in the
A+1 system with a specific pivot vector.
The SM Lanczos basis is extended
analytically to involve states with large
quanta. Interpretation of the results is

different.

a, = C0sOs, + sinoc,,, n > N.
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Possible many-body
ab initio applications

-~

n-A scattering: if A wave function is
obtained with N, . > 0, the Lanczos SM run
in the A+1 system become more
complicated and involves few additional
vectors added to the A+1 system model
space. All the rest looks like in the previous

case.
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Possible many-body
ab initio applications

p-A scattering: Coulomb interaction can be .
included in the approach. This requires
adding additional channel states in the
Lanczos SM run in the A+1 system - the
number of such states is below 100.
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Possible many-body
ab initio applications

-~

A, + A, scattering: looks like that the most .
complicated problem now is
transformation from the A; + A, cluster
structure to the SM structure of the A; + A,
system.
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Possible many-body
ab initio applications

-~

Bound states: the TRR solutions a, decrease .
with n when n > N at E < 0. Extending the
SM Lanczos basis by oscillator states with

n > N is equivalent to calculating binding
energies as the respective S-matrix pole. It
improves the variational binding energies,
rms radii, etc.
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How does it work
and does 1t work at all?

Bound state:
1T in a cluster model
Note rms radius
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Convergence

* Poor convergence to get reasonable results for phase shifts
in available model spaces in systems with A > 4.
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Hungarian smoothing

J. Revai, M. Sotona, J. Zofka, J. Phys. G 11, 745 (1985).
The N x N potential energy matrix V;;, 7,7 =1,2,...,. N
is replaced by

e S N
Vij = 03 Vijo;

e 1 —exp{—[ali — N —1)/(N + 1)]?}
1 — exp(—a?) :

1

This is some kind of effective interaction that makes
convergence of various observables smoother.

The properties of such effective interaction were not studied
in many-nucleon systems
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Hungarian smoothing

Ground state , WS potential with 3 bound states

d wave, hw=5 MeV
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Hungarian smoothing

Woods-Saxon potential with 3 bound states
d wave, hw=25 MeV
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Hungarian smoothing
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Conclusions

I've tried to formulate scattering theory in a way that it
looks very like a conventional shell model, no-core shell
model. That means that it can be more or less easily
implemented in ab initio nuclear structure models.

I've recalled an idea of Hungarian smoothing, a simple
effective interaction that smooths convergence of various
observables and simplifies extrapolations. Probably, it
would be interesting to study it in many-body applications
in more detail.

JISP16 is a reasonable NN interaction describing a wide
range of data. Further development of improved releases of
JISP interaction is under way.

Knowing phase shifts one can get eigenstates to be obtained
in ab initio NCSM with given N, and h€.
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Conclusions

Thank you!



