Square-integrable basises in the few-body Coulomb scattering problem

S. A. Zaytsev

Pacific National University, Khabarovsk, Russia

Collaboration

- Yu. V. Popov. Nucl. Phys. Inst., Moscow State University, Moscow, Russia
- B. Piraux. Inst. of Condensed Matter and Nanosciences, Universite catolique de Louvain, Louvain-la-Neuve, Belgium
- M. M. Silenou. CEPAMoQ, Faculty de Science, University of Douala, Douala, Cameroon
- M. G. Kwato. Faculty de Science, University of Douala, Douala, Cameroon
- G. Gasaneo. Departamento de Fisica, Universidad Nacional del Sur, Bahia Blanca, Buenos Aires, Argentina

Impact ionization of helium atom

Two-Electron Continuum (TEC)

- Convergent Close Coupling approach (CCC);
- Coulomb-Sturmian Separable Expansion method;
- J-Matrix method;
- R-Matrix method with Pseudo-States (RMPS);
- Exterior Complex Scaling approach (ECS)

TEC wave function is approximated by a product of two fixed charge Coulomb waves

$$
\begin{aligned}
& \Psi_{C 2}=N_{1} e_{1}^{i \mathbf{k}_{1} \cdot \mathbf{r}_{1}} F_{1}\left[i \frac{Z}{k_{1}}, 1,-i\left(k_{1} r_{1}+\mathbf{k}_{1} \cdot \mathbf{r}_{1}\right)\right] \\
& \quad \times N_{2} e_{1}^{i \mathbf{k}_{2} \cdot \mathbf{r}_{2}} F_{1}\left[i \frac{Z}{k_{2}}, 1,-i\left(k_{2} r_{2}+\mathbf{k}_{2} \cdot \mathbf{r}_{2}\right)\right]
\end{aligned}
$$

A long-range potential appears in the kernel of the corresponding Lippmann-Schwinger equation

J-matrix approach to electron-impact ionization of He

Schrödinger equation

$$
\begin{gathered}
{\left[E+\frac{1}{2} \triangle_{1}+\frac{1}{2} \triangle_{2}+\frac{Z}{r_{1}}+\frac{Z}{r_{2}}-\frac{1}{r_{12}}\right] \Psi^{(-)}\left(\mathbf{k}_{1}, \mathbf{k}_{2} ; \mathbf{r}_{1}, \mathbf{r}_{2}\right)=0} \\
\frac{Z}{r_{i}}=V_{i}^{(s)}\left(r_{1}, r_{2}\right)+V_{i}^{(l)}\left(r_{1}, r_{2}\right), \\
V_{i}^{(s)}\left(r_{1}, r_{2}\right)=\frac{Z}{r_{i}} \zeta\left(r_{i}, r_{j}\right), \quad V_{i}^{(l)}\left(r_{1}, r_{2}\right)=\frac{Z}{r_{i}}\left[1-\zeta\left(r_{i}, r_{j}\right)\right] \\
\zeta\left(r_{i}, r_{j}\right)=2 /\left\{1+\exp \left[\left(r_{i} / a\right)^{\nu} /\left(1+r_{j} / b\right)\right]\right\} \\
\Omega_{0}: r_{1} \sim r_{2} \rightarrow \infty, \Omega_{1}: r_{1} \gg r_{2} \text { or } \Omega_{2}: r_{2} \gg r_{1} .
\end{gathered}
$$

The final state wave function

$$
\begin{align*}
& \Psi^{(-)}=\frac{1}{\sqrt{2}}\left\lfloor\Psi_{1}^{(-)}+\Psi_{2}^{(-)}\right\rfloor, \Psi_{2}^{(-)}=g \hat{P}_{12} \Psi_{1}^{(-)}, g= \pm 1 \\
& {\left[E+\frac{1}{2} \triangle_{1}+\frac{1}{2} \triangle_{2}+\frac{Z-1}{r_{1}}+\frac{Z}{r_{2}}\right] \Psi_{1}^{(-)}=V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \Psi_{1}^{(-)}} \tag{1}\\
& V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{1}{r_{12}}-V_{1}^{(l)}\left(r_{1}, r_{2}\right)+\frac{Z-1}{r_{1}}-g V_{2}^{(s)}\left(r_{1}, r_{2}\right) \widehat{P}_{12} \tag{2}
\end{align*}
$$

$V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ is short-range in the two-body scattering region $\Omega_{1}\left(r_{1} \gg r_{2}\right)$

$$
\begin{gathered}
\hat{g}_{1}^{(-)}\left(E_{1}\right)=\left[E_{1}+\frac{1}{2} \triangle_{1}+\frac{Z-1}{r_{1}}\right]^{-1} \\
\hat{g}_{2}^{(-)}\left(E_{2}\right)=\left[E_{2}+\frac{1}{2} \triangle_{2}+\frac{Z}{r_{2}}\right]^{-1}
\end{gathered}
$$

Lippmann-Schwinger type equation

$$
\begin{aligned}
\Psi_{1}^{(-)}\left(\mathbf{k}_{1}, \mathbf{k}_{2} ; \mathbf{r}_{1}, \mathbf{r}_{2}\right) & =\left[\varphi^{(-)}\left(\mathbf{k}_{2}, \mathbf{r}_{2} ; Z\right) \varphi^{(-)}\left(\mathbf{k}_{1}, \mathbf{r}_{1} ; Z-1\right) \theta\left(k_{1}-k_{2}\right)\right. \\
& \left.+g \varphi^{(-)}\left(\mathbf{k}_{1}, \mathbf{r}_{2} ; Z\right) \varphi^{(-)}\left(\mathbf{k}_{2}, \mathbf{r}_{1} ; Z-1\right) \theta\left(k_{2}-k_{1}\right)\right] \\
& +\iint d \mathbf{r}_{1}^{\prime} d \mathbf{r}_{2}^{\prime} G^{(-)}\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \mathbf{r}_{1}^{\prime}, \mathbf{r}_{2}^{\prime} ; E\right) V\left(\mathbf{r}_{1}^{\prime}, \mathbf{r}_{2}^{\prime}\right) \Psi_{1}^{(-)}\left(\mathbf{k}_{1}, \mathbf{k}_{2} ; \mathbf{r}_{1}^{\prime}, \mathbf{r}_{2}^{\prime}\right)
\end{aligned}
$$

Green's Function

$G^{(-)}\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \mathbf{r}_{1}^{\prime}, \mathbf{r}_{2}^{\prime} ; E\right)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathcal{C}} d \mathcal{E} g^{(-)}\left(\mathbf{r}_{1}, \mathbf{r}_{1}^{\prime} ; \mathcal{E}-\mathrm{i} 0 ; Z-1\right) g^{(-)}\left(\mathbf{r}_{2}, \mathbf{r}_{2}^{\prime} ; E-\mathcal{E}-\mathrm{i} 0 ; Z\right)$.

Partial decomposition

$$
\begin{aligned}
& \Psi_{1}^{(-)}\left(\mathbf{k}_{1}, \mathbf{k}_{2} ; \mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{2}{\pi} \frac{1}{k_{1} k_{2}} \sum_{\substack{L_{0} \lambda_{0} \lambda_{0}}}^{m_{0}}\left(l_{0} m_{0} \lambda_{0} \mu_{0} \mid L M\right) i^{l_{0}+\lambda_{0}} \\
& {\left[e^{-i\left(\sigma_{l_{0}}\left(k_{1}, Z-1\right)+\sigma_{\lambda_{0}}\left(k_{2}, Z\right)\right)} \psi_{l_{0} \lambda_{0}}^{L M}\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; k_{1}, k_{2}\right) Y_{l_{0} m_{0}}^{*}\left(\widehat{\mathbf{k}}_{1}\right) Y_{\lambda_{0} \mu_{0}}^{*}\left(\widehat{\mathbf{k}}_{2}\right) \theta\left(k_{1}-k_{2}\right)+\right.} \\
& \left.g e^{-i\left(\sigma_{l_{0}}\left(k_{2}, Z-1\right)+\sigma_{\lambda_{0}}\left(k_{1}, Z\right)\right)} \psi_{l_{0} \lambda_{0}}^{L M}\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; k_{2}, k_{1}\right) Y_{l_{0} m_{0}}^{*}\left(\widehat{\mathbf{k}}_{2}\right) Y_{\lambda_{0} \mu_{0}}^{*}\left(\widehat{\mathbf{k}}_{1}\right) \theta\left(k_{2}-k_{1}\right)\right] .
\end{aligned}
$$

Partial wave function

$$
\begin{array}{r}
\psi_{l_{0} \lambda_{0}}^{L M}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{l, \lambda, n, \nu} C_{n \nu}^{L(l \lambda)}(E)\left\langle\mathbf{r}_{1}, \mathbf{r}_{2} \mid n l \nu \lambda ; L M\right\rangle \\
\left\langle\mathbf{r}_{1}, \mathbf{r}_{2} \mid n l \nu \lambda ; L M\right\rangle=\frac{\phi_{n}^{l}\left(r_{1}\right)}{r_{1}} \frac{\phi_{\nu}^{\lambda}\left(r_{2}\right)}{r_{2}} \mathcal{Y}_{l \lambda}^{L M}\left(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}\right) .
\end{array}
$$

Sturmians

$$
\begin{aligned}
& \phi_{\nu}^{\lambda}(r)=\left[\frac{(\nu-\lambda-1)!}{(\nu+\lambda)!}\right]^{1 / 2}(2 \kappa r)^{\lambda+1} e^{-\kappa r} L_{\nu-\lambda-1}^{2 \lambda+1}(2 \kappa r), \quad \nu \geq 1+\lambda \\
& \int_{0}^{\infty} \frac{d r}{r} \phi_{\nu}^{\lambda}(r) \phi_{\nu^{\prime}}^{\lambda}(r)=\delta_{\nu, \nu^{\prime}}
\end{aligned}
$$

Coulomb partial spectral state

$$
\begin{gathered}
\varphi_{l}^{\alpha}(r ; Z)=\sum_{n} \mathcal{S}_{n l}^{\alpha}(Z) \phi_{n}^{l}(r) . \\
\mathcal{S}_{n l}(k ; Z)=\left[\frac{(n+l)!}{(n-l-1)!}\right]^{1 / 2} 2^{l} \sin (\zeta)^{l+1} e^{-\pi t / 2} \xi^{-i t} \frac{|\Gamma(l+1-i t)|}{(2 l+1)!} \times \\
(\xi)^{-(n-l-1)}{ }_{2} F_{1}\left(-n+l+1, l+1-i t ; 2 l+2 ; 1-\xi^{2}\right) . \\
t=\frac{Z}{k} ; \quad \xi=e^{i \zeta}=\frac{i k-\kappa}{i k+\kappa} .
\end{gathered}
$$

Equation for coefficients

$$
\begin{gathered}
C_{n \nu}^{L(l \lambda)}\left(k_{1}, k_{2}\right)=\delta_{(l \lambda)\left(l_{0} \lambda_{0}\right)} \mathcal{S}_{n l_{0}}\left(k_{1}, Z-1\right) \mathcal{S}_{\nu \lambda_{0}}\left(k_{2}, Z\right)+ \\
\sum_{n^{\prime} \nu^{\prime} n^{\prime \prime} \nu^{\prime \prime}}^{N}\left[\frac{1}{2 \pi i} \int d \mathcal{C} d \mathcal{E} g_{n n^{\prime}}^{(-) l}(\mathcal{E}, Z-1) g_{\nu \nu^{\prime}}^{(-) \lambda}(E-\mathcal{E}, Z)\right] \\
\sum_{l^{\prime \prime} \lambda^{\prime \prime}}^{\sum} V_{n^{\prime} \nu^{\prime},\left(n^{\prime \prime} \nu^{\prime \prime}\right.}^{L(l \lambda)\left(l^{\prime \prime} \lambda^{\prime \prime}\right)} C_{n^{\prime \prime} \nu^{\prime \prime}}^{L\left(l^{\prime \prime} \lambda^{\prime \prime}\right)}(E) . \\
V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{1}{r_{12}}-V_{1}^{(l)}\left(r_{1}, r_{2}\right)+\frac{Z-1}{r_{1}}-g V_{2}^{(s)}\left(r_{1}, r_{2}\right) \widehat{P}_{12} .
\end{gathered}
$$

Potential matrix elements

$$
\begin{equation*}
V_{n \nu, n^{\prime} \nu^{\prime}}^{L(l \lambda)\left(l^{\prime} \lambda^{\prime}\right)}=\langle n l \nu \lambda ; L M| V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)\left|n^{\prime} l^{\prime} \nu^{\prime} \lambda^{\prime} ; L M\right\rangle \tag{3}
\end{equation*}
$$

Green's function matrix elements

$$
g_{\nu \nu}^{(\pm) \lambda}(E ; Z)=-\frac{2}{p} \mathcal{S}_{\nu<\lambda}(p, Z) \mathcal{C}_{\nu>\lambda}^{(\pm)}(p, Z),
$$

with $\nu_{<}=\min \left\{\nu, \nu^{\prime}\right\} ; \quad \nu_{>}=\max \left\{\nu, \nu^{\prime}\right\}$ and $p=\sqrt{2 E}$.

$$
\begin{gathered}
\mathcal{C}_{n l}^{(\pm)}(p, Z)=-\left[\frac{(n+l)!!}{(n-l-1)!}\right]^{1 / 2} \frac{(n-l-1)!}{(2 \sin \zeta)^{l t / 2}} \xi^{i t} \frac{\Gamma(l+1 \mp i t)}{\left.\Gamma(l+1 \mp i t)\right|^{l}} \times \\
\times \frac{(\xi)^{\mp n-l)}}{\Gamma(n+1 \mp i t)}{ }_{2} F_{1}\left(-l \mp i t, n-l ; n+1 \mp i t ; \xi^{\mp 2}\right) . \\
\mathcal{C}_{n l}^{(+)}(p, Z)=\mathcal{C}_{n l}^{(-)}(p, Z)+2 i \mathcal{S}_{n l}(p, Z) .
\end{gathered}
$$

The five-fold differential cross-section of the (e, 3e) reaction

$$
\begin{gathered}
\frac{d^{5} \sigma}{d \Omega_{s} d E_{1} d \Omega_{1} d E_{2} d \Omega_{2}}=\frac{4 p_{s} k_{1} k_{2}}{p_{i} Q^{4}} \times \\
\left.\left|\left\langle\Psi^{(-)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)\right| \exp \left(i \mathbf{Q} \mathbf{r}_{1}\right)+\exp \left(i \mathbf{Q r}_{2}\right)-2\right| \Psi_{0}\right\rangle\left.\right|^{2}
\end{gathered}
$$

Here $\left(E_{i}, \mathbf{p}_{\mathbf{i}}\right),\left(E_{s}, \mathbf{p}_{\mathbf{s}}\right),\left(E_{1}, \mathbf{k}_{\mathbf{1}}\right)$ and $\left(E_{2}, \mathbf{k}_{\mathbf{2}}\right)$ are energies and momenta of, respectively, the fast incident, fast scattered, and two slow ejected electrons; $\mathbf{Q}=\mathbf{p}_{\mathbf{i}}-\mathbf{p}_{\mathrm{s}}$ is the (little) transferred momentum,

Phys. Rev. A. 2011. V. 83. P. 052708-1-11.

FIG. 1: (Color online) Fully five-fold differential cross section (5DCS) for electron impact double ionization reaction $H e(e, 3 e) \mathrm{He}^{++}$. The incident energy is $E_{0}=5599 \mathrm{eV}$ and the energies of the slow ejected electrons are $E_{1}=E_{2}=10 \mathrm{eV}$. The scattering angle θ_{s} of the fast incident electron is fixed and equal to 0.45° while the angles of the ejected electrons are θ_{1} and θ_{2}. One of these angles, θ_{1} is fixed and the other varies. The blue dashed line is our result obtained by means of a zero order calculation. The red solid line is the result obtained by solving the Lippmann-Schwinger equation (11) for the double continuum wave function. The solid dots with error-bars are the absolute experimental data of Lahmam-Bennani [4].

- Convergence of the results with increasing N is not as satisfactory; there are abrupt (up to three times) kinks in the cross section in certain angular regions even for a small variation of N.
- Calculations show that, at $\theta_{1}=\theta_{2}$, the cross section grows with increasing N, whereas here it should vanish.

This is an obvious deficiency of the theoretical scheme with a truncated potential.

Three particles of masses m_{1}, m_{2}, m_{3}, charges Z_{1}, Z_{2}, Z_{3} and momenta k_{1}, k_{2}, k_{3}

Hamiltonian

$$
\begin{equation*}
\hat{H}=-\frac{1}{2 \mu_{12}} \Delta_{\mathbf{R}}-\frac{1}{2 \mu_{3}} \Delta_{\mathbf{r}}+\frac{Z_{1} Z_{2}}{r_{12}}+\frac{Z_{2} Z_{3}}{r_{23}}+\frac{Z_{1} Z_{3}}{r_{13}} \tag{1}
\end{equation*}
$$

Relative coordinates

$$
\begin{equation*}
\mathbf{r}_{l s}=\mathbf{r}_{l}-\mathbf{r}_{s}, \quad r_{l s}=\left|\mathbf{r}_{l s}\right| \tag{2}
\end{equation*}
$$

Jacobi coordinates

$$
\begin{equation*}
\mathbf{R}=\mathbf{r}_{1}-\mathbf{r}_{2}, \quad \mathbf{r}=\mathbf{r}_{3}-\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}} \tag{3}
\end{equation*}
$$

Reduced masses

$$
\begin{equation*}
\mu_{12}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}, \quad \mu_{3}=\frac{m_{3}\left(m_{1}+m_{2}\right)}{m_{1}+m_{2}+m_{3}} . \tag{4}
\end{equation*}
$$

Schrödinger equation

$$
\hat{H} \Phi=E \Phi
$$

Energy E>0

$$
E=\frac{1}{2 \mu_{12}} \mathbf{K}^{2}+\frac{1}{2 \mu_{3}} \mathbf{k}^{2},
$$

Wave function

$$
\Phi=e^{i(\mathbf{K} \cdot \mathbf{R}+\mathbf{k} \cdot \mathbf{r})} \Psi
$$

Reduced wave function

$$
\begin{equation*}
\left[-\frac{1}{2 \mu_{12}} \Delta_{\mathbf{R}}-\frac{1}{2 \mu_{3}} \Delta_{\mathbf{r}}-\frac{i}{\mu_{12}} \mathbf{K} \cdot \nabla_{\mathbf{R}}-\frac{i}{\mu_{3}} \mathbf{k} \cdot \nabla_{\mathbf{r}}+\frac{Z_{1} Z_{2}}{r_{12}}+\frac{Z_{2} Z_{3}}{r_{23}}+\frac{Z_{1} Z_{3}}{r_{13}}\right] \Psi=0 \tag{5}
\end{equation*}
$$

Generalized parabolic coordinates

$$
\begin{array}{ll}
\xi_{1}=r_{23}+\hat{\mathbf{k}}_{23} \cdot \mathbf{r}_{23}, & \eta_{1}=r_{23}-\hat{\mathbf{k}}_{23} \cdot \mathbf{r}_{23}, \\
\xi_{2}=r_{13}+\hat{\mathbf{k}}_{13} \cdot \mathbf{r}_{13}, & \eta_{2}=r_{13}-\hat{\mathbf{k}}_{13} \cdot \mathbf{r}_{13}, \\
\xi_{3}=r_{12}+\hat{\mathbf{k}}_{12} \cdot \mathbf{r}_{12}, & \eta_{3}=r_{12}-\hat{\mathbf{k}}_{12} \cdot \mathbf{r}_{12},
\end{array}
$$

$\mathbf{k}_{l s}=\frac{\mathbf{k}_{l} m_{s}-\mathbf{k}_{s} m_{l}}{m_{l}+m_{s}}$ is the relative momentum, $\hat{\mathbf{k}}_{l s}=\frac{\mathbf{k}_{l s}}{k_{l s}}$ and $k_{l s}=\left|\mathbf{k}_{l s}\right|_{7}$

$$
\begin{equation*}
\left[D_{0}+D_{1}\right] \Psi=0 \tag{5'}
\end{equation*}
$$

D_{0} contains the leading term of the kinetic energy and the total potential energy:

$$
\begin{gathered}
\hat{D}_{0}=\sum_{j=1}^{3} \frac{1}{\mu_{l s}\left(\xi_{j}+\eta_{j}\right)}\left[\hat{h}_{\xi_{j}}+\hat{h}_{\eta_{j}}+2 k_{l s} t_{l s}\right] \\
\quad \text { for } j \neq l, s \text { and } l<s \\
\hat{h}_{\xi_{j}}= \\
-2\left(\frac{\partial}{\partial \xi_{j}} \xi_{j} \frac{\partial}{\partial \xi_{j}}+i k_{l s} \xi_{j} \frac{\partial}{\partial \xi_{j}}\right) \\
\hat{h}_{\eta_{j}}=-2\left(\frac{\partial}{\partial \eta_{j}} \eta_{j} \frac{\partial}{\partial \eta_{j}}-i k_{l s} \eta_{j} \frac{\partial}{\partial \eta_{j}}\right) . \\
t_{l s}=\frac{Z_{l} Z_{s} \mu_{l s}}{k_{l s}} \text { and } \mu_{l s}=\frac{m_{l} m_{s}}{m_{l}+m_{s}} .
\end{gathered}
$$

D_{1} is the non-orthogonal part of the kinetic energy operator.

In the case of $\left(e^{-}, e^{-}, \mathrm{He}^{++}\right)=(123)$ system with $m_{3}=\infty$

$$
\begin{gathered}
\hat{D}_{1}=\sum_{j=1}^{2}(-1)^{j+1}\left[\mathbf{u}_{j}^{-} \cdot \mathbf{u}_{3}^{-} \frac{\partial^{2}}{\partial \xi_{j} \partial \xi_{3}}+\mathbf{u}_{j}^{-} \cdot \mathbf{u}_{3}^{+} \frac{\partial^{2}}{\partial \xi_{j} \partial \eta_{3}}\right. \\
\left.+\mathbf{u}_{j}^{+} \cdot \mathbf{u}_{3}^{-} \frac{\partial^{2}}{\partial \eta_{j} \partial \xi_{3}}+\mathbf{u}_{j}^{+} \cdot \mathbf{u}_{3}^{+} \frac{\partial^{2}}{\partial \eta_{j} \partial \eta_{3}}\right] \\
\mathbf{u}_{j}^{ \pm}=\hat{\mathbf{r}}_{l s} \mp \hat{\mathbf{k}}_{l s} .
\end{gathered}
$$

C3 wave function

$$
\begin{gathered}
\hat{D}_{0} \Psi_{C 3}=0 \\
\Psi_{C 3}=\prod_{j=1}^{3}{ }_{1} F_{1}\left(i t_{l s}, 1 ;-i k_{l s} \xi_{j}\right) .
\end{gathered}
$$

Two-dimensional Coulomb Green's function

$$
\begin{gathered}
\hat{G}^{(\pm)}=[\mathfrak{h}+C]^{-1} . \\
\mathfrak{h}=\frac{1}{\mu(\xi+\eta)}\left[\hat{h}_{\xi}+\hat{h}_{\eta}+2 k t\right] .
\end{gathered}
$$

$$
\begin{gathered}
G^{(\pm)}\left(t, \mathcal{E} ; \xi, \eta, \xi^{\prime}, \eta^{\prime}\right)=\mp \frac{i \gamma}{4} e^{\frac{i}{2} k\left(\xi^{\prime}-\xi+\eta-\eta^{\prime}\right)} \mu\left(\xi^{\prime}+\eta^{\prime}\right) \int_{0}^{\infty} d z \sinh (z)\left[\operatorname{coth}\left(\frac{z}{2}\right)\right]^{\mp 2 i \tau} \\
\times e^{ \pm i \frac{\gamma}{2}\left(\xi+\xi^{\prime}+\eta+\eta^{\prime}\right) \cosh (z)} I_{0}\left(\mp i \gamma \sqrt{\xi \xi^{\prime}} \sinh (z)\right) I_{0}\left(\mp i \gamma \sqrt{\eta \eta^{\prime}}, \sinh (z)\right) \\
C=\frac{1}{\mu}\left(\frac{k^{2}}{2}-\mathcal{E}\right), \mathcal{E}=\frac{\gamma^{2}}{2}, \quad \tau=\frac{k}{\gamma} t
\end{gathered}
$$

Six-dimensional Green's function

$$
\begin{gathered}
\hat{\mathcal{G}}=\hat{D}_{0}^{-1}, \\
\hat{D}_{0}=\hat{\mathfrak{h}}_{1}+\hat{\mathfrak{h}}_{2}+\hat{\mathfrak{h}}_{3} . \\
\mathcal{G}^{(+)}\left(X, X^{\prime}\right)=\frac{1}{\mu_{23} \mu_{13}} \int_{\mathcal{C}_{1}} \int_{\mathcal{C}_{2}} d \mathcal{E}_{1} d \mathcal{E}_{2} G^{(+)}\left(t_{23}, \mathcal{E}_{1} ; X_{1}, X_{1}^{\prime}\right) \\
\times G^{(+)}\left(t_{13}, \mathcal{E}_{2} ; X_{2}, X_{2}^{\prime}\right) G^{(+)}\left(t_{12}, \mathcal{E}_{3} ; X_{3}, X_{3}^{\prime}\right), \\
X=\left\{X_{1}, X_{2}, X_{3}\right\}, \quad X_{j}=\left\{\xi_{j}, \eta_{j}\right\}, j=1,2,3 .
\end{gathered}
$$

Path of integration

Lippmann-Schwinger type equation

$$
\Psi=\Psi_{C 3}-\hat{\mathcal{G}} \hat{D}_{1} \Psi
$$

The kernel of $\hat{\mathcal{G}} \hat{D}_{1}$ is non-compact

Square integrable parabolic basis functions

$$
\begin{gather*}
|\mathfrak{N}\rangle=\prod_{j=1}^{3} \phi_{n_{j} m_{j}}\left(\xi_{j}, \eta_{j}\right), \\
\phi_{n_{j} m_{j}}\left(\xi_{j}, \eta_{j}\right)=\psi_{n_{j}}\left(\xi_{j}\right) \psi_{m_{j}}\left(\eta_{j}\right), \\
\psi_{n}(x)=\sqrt{2 b_{j}} e^{-b_{j} x} L_{n}\left(2 b_{j} x\right), \\
\Psi=\Psi_{C 3}-\sum_{j=1}^{3} \sum_{n_{j}=0}^{N_{j}-1} \sum_{m_{j}=0}^{M_{j}-1}[\underline{C}]_{\mathfrak{N}} \hat{\mathcal{G}}|\mathfrak{N}\rangle \tag{6}
\end{gather*}
$$

Wave function

$$
\begin{gather*}
\Psi=\Psi_{s c}+\Psi_{C 3} \\
\Psi_{s c} \sim \sum a_{\mathfrak{N}} f_{\mathfrak{N}} \tag{6'}
\end{gather*}
$$

Quasi Sturmians $\left\{f_{\mathfrak{N}}\right\}$

$$
f_{\mathfrak{N}}=\hat{\mathcal{G}}|\mathfrak{N}\rangle
$$

Driven equation

$$
\left[\hat{D}_{0}+\hat{D}_{1}\right] \Psi_{s c}=-\hat{D}_{1} \Psi_{C 3}
$$

- We expect that the resulting Sturmian functions to provide a basis of expansion for this kind of three-body Coulomb problem.

Thanks for attention!

