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Preface:

The first International Workshop on “Nuclear Theory in the Supercomputing Era
(NTSE-2012)” was held at Pacific National University in Khabarovsk, Russia, June
18–22, 2012. The primary motivation for the meeting was the rapid growth of super-
computers and the impact they, along with theoretical and algorithmic developments,
are having on nuclear theory. Manuscripts of the invited talks and contributed papers
presented at the meeting constitute these proceedings.

It is a great pleasure for me, and I believe I speak on behalf of my fellow attendees,
to thank our gracious Russian sponsors and hosts, the Pacific National University and
its President, Professor Sergey Nikolaevich Ivanchenko. The consensus view among
all participants is that the sponsorship and hosting of the meeting was indeed first
class in all respects. We offer a special thanks to Prof. Alexander Mazur for his
thorough planning and guidance in all aspects of the meeting.

It is important to note that the workshop was organized according to the Pacific
National University Strategic Development Program for 2012–2016 and this Program
provided financial support for which we are grateful.

The sponsors and hosts assembled for this meeting many of the world’s top ex-
perts in this forefront area of physics with strong links to applied mathematics and
computational science. During the meeting we learned the latest developments and
explored research opportunities for the coming decade in areas of basic science im-
portant to the security of fissionable materials, to advanced nuclear reactor designs,
to fusion energy research as well as to astrophysical phenomena such as supernovae
and neutron stars.

It is a great pleasure for me to mention that last year Pacific National University
and Iowa State University signed an agreement launching an ambitious framework
for growing collaborations, exchanging students and faculty, and jointly sponsoring
research programs. During this meeting we discussed enhancing this framework with
further program development.

All participants anticipated and were rewarded with an exciting meeting and pro-
ductive discussions about recent developments in our field. We also discussed the
potential for further developing our international collaborations with the region of
East Asia represented by Pacific National University. It was especially valuable to
have participants from other countries in the region. Finally, we also learned a great
deal about the far-reaching vision for Pacific National University and its ambitious
plans for the future.

I sensed that while this was the first time for the international attendees to visit
Pacific National University, we all left with the anticipation to return again for an-
other very productive scientific meeting in the future.

James P. Vary,
Iowa State University,
Vice Chair of the NTSE-2012 Organizing Committee.
June 2012
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James P. Vary
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Abstract

The goals of ab initio theory of nuclear structure and nuclear reactions are
to preserve the predictive power of strong interactions based on QCD, to test
fundamental symmetries with the nucleus as laboratory and to develop new un-
derstandings of the vast array of nuclear phenomena. Recent progress includes
the derivation, within chiral perturbation theory (ChPT), of the leading terms
of the nucleon-nucleon (NN), three-nucleon (3N) and four-nucleon (4N) poten-
tials. Additional substantial progress includes using these ChPT interactions
to solve nuclear structure and reactions in light nuclei and some heavier nuclei
around closed shells and closed subshells. Advances in theoretical frameworks
(renormalization and many-body methods) as well as in computational resources
(new algorithms and leadership-class supercomputers) signal a new generation
of theory simulations that will yield valuable insights into origins of nuclear
shell structure, collective phenomena and complex reaction dynamics. I outline
some recent achievements that, with additional research, will strengthen the
links between nuclear theory and nuclear experiment, between nuclear physics
and astrophysics, and between nuclear physics and its practical applications.

Keywords: Nuclear theory; microscopic many-body theory; chiral interactions;
light nuclei

1 Introduction

A long-standing goal of nuclear theory is to predict nuclear structure and nuclear
reactions from knowledge of the underlying strong interactions based on the accepted
theory of the strong interactions, Quantum Chromodynamics (QCD). With this foun-
dation, we may address many fundamental questions of nuclear physics such as:

1. What controls nuclear saturation?

2. How do the nuclear shell and collective models emerge from the underlying
theory?

3. What are the properties of nuclei with extreme neutron/proton ratios?

4. Can we predict useful cross sections that cannot be measured?

5. Can nuclei provide precision tests of the fundamental laws of nature?

6. Under what conditions do we need explicit quark and gluon degrees of freedom
to describe nuclear properties?

Traditionally, we pursued this goal with meson-theoretical nucleon-nucleon (NN)
interactions that were tuned to provide high-quality descriptions of the NN scattering
phase shifts and the deuteron bound state properties. We also employed three-nucleon
forces (3NFs) that were derived from meson theory and then tuned to the properties
of A = 3 nuclei and/or other nuclear properties. The Argonne V18 [1] NN interaction
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8 James P. Vary

plus the Tucson–Melbourne [2, 3] 3NF or Urbana IX [4] 3NF represent popular choices
of this genre and we continue to use these interactions.

More recently, concerted efforts have led to the development of realistic NN and
3NF based upon QCD. Chiral perturbation theory (ChPT) within effective field the-
ory (EFT) [5] provides us with a promising bridge between QCD and the hadronic
systems [6]. In this approach one works consistently with systems of increasing nu-
cleon number [7, 8, 9] and makes use of the explicit and spontaneous breaking of chiral
symmetry to systematically expand the strong interaction in terms of a dimension-
less constant, the ratio of a generic small momentum divided by the chiral symmetry
breaking scale (about 1 GeV/c). The resulting NN and 3NFs [10, 11, 12] provide
a high-quality fit to the NN data and the A = 3 ground state properties. Continu-
ing world-wide efforts are expected to provide next-generation interactions within the
coming year or two.

To solve for the properties of finite nuclei with these realistic microscopic Hamil-
tonians, one faces immense theoretical and computational challenges. Recently, ab
initio approaches have been developed that preserve all the underlying symmetries
and they converge to the exact result. If we limit our discussions to nuclei heavier than
A = 6, there are two main approaches that have proven successful with these realistic
interactions. The first approach, called No-core Shell Model (NCSM) [13, 14] or No-
core Full Configuration (NCFC) [15], diagonalizes the Hamiltonian in a suitable basis.
The second approach, called Coupled Cluster (CC) [16, 17] solves coupled equations
that emerge from a representation of the nuclear eigenstate as a correlation operator
acting on a representative Slater determinant (SD). The primary advantages of these
ab initio no core methods are their flexibility for choosing (1) the Hamiltonian; (2)
the method of renormalization/regularization; and (3) the single-particle basis. These
advantages also support the adoption of these same techniques in light-front quantum
field theory [18].

Recent developments in other ab initio approaches show additional promise for
addressing fundamental questions posed above. These include the Green’s Function
Monte Carlo (GFMC) approach [19, 20, 21, 22] using meson exchange interactions
and a lattice-simulation approach with nucleons using effective field theory [23].

Additional notable advances attempt to retain advantages of a configuration inter-
action (CI) basis while overcoming the explosion in the basis space that occurs with
the original ab initio NCSM when one addresses collective modes such as clusters
or proceeds to heavier systems. These advances include the “Importance-truncated”
NCSM [24], the “Symmetry-adapted” NCSM [25], the “Monte-Carlo” NCSM [26],
and the NCSM with a core [27] (based on ideas presented in Ref. [28]). For a more
complete recent review of the ab initio NCSM and its connections with some of these
other methods one may consult Ref. [29].

2 Ab initio No-core Shell Model (NCSM) and
Full Configuration (NCFC) methods

The starting point of ab initio nuclear theory is the non-relativistic many-body Hamil-
tonian:

HA = Trel + V =
1

A

∑

i<j

(~pi − ~pj)2
2m

+

A∑

i<j

Vij +

A∑

i<j<k

Vijk + ... , (1)

where m is the nucleon mass, Vij is the NN interaction including the Coulomb in-
teraction between protons, Vijk is the three-nucleon interaction, and we allow for
higher-body interactions as well. Note that the Hamiltonian does not involve the
nuclear center of mass (CM) motion.
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We obtain solutions in a basis of Slater determinants (SDs) constructed with
single-particle states, usually from the harmonic oscillator (HO) but not exclusively.
To force the many-body eigenstates to factorize into a CM component times an in-
trinsic component, we add the “Lawson projection term” [30] β(HCM − 3

2~Ω) to the
Hamiltonian (1) to shift the spurious CM excitations. The center-of-mass Hamilto-

nian can be written as HCM = TCM+UCM, where UCM = 1
2AmΩ2 ~R2, ~R = 1

A

∑A
i=1 ~ri,

and Ω the HO frequency. With β chosen large and positive (a typical value is 10) the
eigenenergies of physical states are the low-lying solutions and are independent of the
parameter β. When a basis other than the HO is used or a many-body truncation
other than the preferred Nmax truncation is used within the HO basis, this factor-
ization may not be precise to within numerical precision. In that event, additional
investigation is needed to measure the extent of the factorization in each eigenstate.

Realistic nuclear NN interactions, such as those mentioned in the Introduction, fit
the NN phase shift data and deuteron properties to high precision. This implies that
these NN interactions have components that strongly couple low nucleon momen-
tum regions (regions typical of the nuclear Fermi momentum ≈ 1 fm−1 with higher
momentum regions ≈ 3 fm−1 and above. This strong coupling, which is a likely fea-
ture of 3NFs as well, requires us to “soften” these interactions using renormalization
techniques that preserve the exact many-body solutions in suitable limits that are
achievable with current computational methods and resources. An outline of selected
renormalization methods is presented in Section 5.

Refs. [13, 14, 31, 32, 33, 34, 35] and [15, 36, 37, 38] provide examples of the
recent advances in the ab initio NCSM and NCFC, respectively. The NCSM adopts
a renormalization method that provides an effective interaction dependent on the
chosen many-body basis space cutoff (Nmax for example discussed below). The NCFC
either retains the un-renormalized interaction or adopts a basis-space-independent
renormalization so that the exact results are obtained either by using a sufficiently
large basis space or by simple extrapolation to the infinite matrix limit. For a more
complete discussion of nomenclature and relationships to other methods, see Section 3
below.

Recent results for the NCSM employ realistic NN and 3NFs derived from ChPT
to solve nuclei with atomic numbers 10–13 [31]. Recent results for the NCFC feature a
realistic NN interaction that is sufficiently soft that binding energies and spectra from
a sequence of finite matrix solutions may be extrapolated to the infinite matrix limit
as in the case of results for the Li isotopes [38]. Experimental binding energies, low-
lying spectra, magnetic moments and Gamow–Teller transitions are well-reproduced
in both the NCSM and NCFC approaches. Convergence of long range observables such
as the rms charge radius and the electric quadrupole moment are more challenging.
A sample of recent results is presented in Section 6 below.

In a NCSM or NCFC application, one typically adopts a 3D HO for all the particles
in the nucleus (with harmonic oscillator energy ~Ω) as mentioned above, treats the
neutrons and protons independently, and generates a many-fermion basis space that
includes the lowest oscillator configurations as well as all those generated by allowing
up to Nmax oscillator quanta of excitations. Alternatives to the HO basis space
such as a Woods–Saxon basis [39] and a Coulomb–Sturmian basis [40] have recently
been investigated with promising results. The single-particle states specify the orbital
angular momentum projection and the basis is referred to as the m-scheme basis. For
the NCSM one also selects a renormalization scheme linked to the basis truncation
while in the NCFC the renormalization is either absent or of a type that retains an
infinite matrix problem.

It is important to note three recent analytical and technical advances. First,
non-perturbative renormalization has been developed to accompany these basis-space
methods and their success is impressive. Several schemes have emerged and current
research focuses on understanding the scheme-dependence of convergence rates (differ-
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ent observables converge at different rates) [36]. For an introduction to two of these
methods see Section 5. Second, impressive new extrapolation tools have emerged
[41, 42] with indications they are the forerunners of even more powerful tools based
on improved theory of the infra-red and ultra-violet properties of the interactions and
basis spaces. Third, large scale calculations are performed on leadership-class parallel
computers to solve for the low-lying eigenstates and eigenvectors and to evaluate a
suite of experimental observables. Low-lying solutions for matrices of basis-space di-
mension 10-billion on 215,000 cores with a 5-hour run is the current record. However,
one expects these limits to continue growing as the techniques are evolving rapidly
[33] and the computers are growing dramatically. Matrices with dimensions in the
several tens of billions will soon be solvable with strong interaction Hamiltonians. It
remains to be seen if the higher degree of parallelism offered by the newest technolog-
ical advances, Graphics Processor Units (GPUs) adapted for numerical simulations,
can be efficiently exploited by the many-body methods described here.

Additional advances in physics and algorithm developments are well underway
and offer additional promise. One of the current ambitious undertakings seeks to
develop a symmetry-adapted no core shell model approach [25]. In this approach,
called the Symplectic No-core Shell Model (Sp-NCSM), one augments the conventional
spherical harmonic oscillator basis with the physically relevant symplectic Sp(3,R)
symmetry-adapted configurations of the symplectic shell model that describe natu-
rally the monopole–quadrupole vibrational and rotational modes, and also partially
incorporate α-cluster correlations. The potential savings in basis space dimensions
are enormous but there is a price — increased complexity of the Hamiltonian ma-
trix elements. Current projections indicate a net large gain in the scope of physics
problems that may be addressed with the Sp-NCSM.

Another ambitious program extends the Monte Carlo Shell Model (MCSM) to
the no-core regime and greatly increases the number of active shells [26]. Since the
MCSM has superior scaling properties with the number of nucleons, once validated,
we envision this will be a very fruitful avenue for addressing heavier nuclei — possibly
the entire periodic table. However, there are daunting challenges to overcome such as
developing a load-balanced and scalable code.

3 Relationships among many-body methods

There are several quantum many-body methods that are closely related to the meth-
ods we have developed and applied. The associated nomenclatures require some
discussion as well.

The term Configuration Interaction (CI) is the broadest term that seems widely
recognized across physics disciplines. In general any method that uses a basis space
developed from Slater Determinants (SDs) of single-particle wave functions (configu-
rations) is referred to as a CI method. It covers all the methods discussed here except
the Coupled Cluster, Greens Function Monte Carlo and lattice simulation methods
mentioned above.

The term Full Configuration Interaction (FCI) was introduced by the quantum
chemists and used widely by them. FCI signifies the use of all many-body configu-
rations consistent with a chosen set of symmetries and a defined finite set of single-
particle states. Most often there is an inert core of filled single-particle states in these
calculations. An FCI calculation is considered the “gold standard” in quantum chem-
istry to which, for example, Coupled Cluster and Density Functional Theory (DFT)
approaches are often benchmarked.

The use of no-core model spaces for solving light nuclei in Hamiltonian matrix
formulations has a long history. Some of that history is summarized, including the
distinction between the FCI truncation and the Nmax truncation in Ref. [43]. For a
more recent summary, see Ref. [29].
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The term “No-core Shell Model” (NCSM) first appeared in the title of a paper
in Ref. [44] where the renormalization scheme was the Brueckner G-matrix approach
adapted to the no-core basis. Limitations to this approach included the presence
of spurious CM motion in the effective NN interaction, the G-matrix, and in the
occurrence of a free parameter, the “starting energy”. While the first limitation
remains to this day, the starting-energy dependence of this approach could be removed
by including sufficiently large sets of higher-order processes formed with the G-matrix
as building block, including effective 3NFs and beyond.

To accurately preserve all the symmetries of the underlying strong interactions
and include sufficient renormalization to achieve accurate results, we developed the
“Ab Initio No-core Shell Model” [13, 14]. Indeed, the terminology “Ab Initio No-core
Shell Model” first appeared in a title in Ref. [14] while the term “ab initio no-core
nuclear shell model” appears in the first sentence of the abstract of Ref. [13]. At the
time of its introduction, we adopted the “Okubo–Lee–Suzuki” (OLS) method [45, 46]
of renormalizing the Hamiltonian (see Section 5 below for an introduction) since it
enabled us to preserve the factorization of the CM and internal motion which is
important especially in light nuclei.

It is important to note that both the Brueckner G-matrix and the OLS approaches
evaluate effective Hamiltonians specific to the many-body basis space for that appli-
cation. That is, they are dependent on the many-body basis truncation and may also
have dependence on the atomic number. More importantly, there is no variational
upper bound property of the resulting eigensolutions and this limits the ability to
extrapolate to the infinite matrix limit.

As a guide to our recent papers where a more extensive presentation of the meth-
ods and results may be found, it is useful to note that we have used the following
terminology:

1. No-core Shell Model (NCSM) — follows the original NCSM papers where the
interaction is derived for the chosen many-body model space. This could be any
renormalization scheme such as the Brueckner approach or the OLS approach
that has a dependence on the model space cutoff. It is “ab initio NCSM” if it
respects all the symmetries of the original nuclear Hamiltonian so this includes
OLS renormalization but not Brueckner G-matrix applications.

2. No-core Full Configuration (NCFC), first introduced in the title of Ref. [15], —
signifies we use interactions independent of the basis space and achieve con-
verged eigenenergies within numerical error estimates or we extrapolate to the
infinite matrix limit with error estimates. The interactions may be either the
“bare” interactions of Eq. (1) or interactions softened via methods that are
independent of the many-body basis space. Thus, the NCFC results are in-
dependent of all basis parameters (Nmax, Nshell (number of HO shells), ~Ω,
Woods–Saxon parameters, Coulomb–Sturmian parameters, etc). This newer
terminology emerged in response to the criticism that the NCSM was not so
much of a “Shell Model” as a CI approach which did not assume a shell model
structure for the solutions. In other words, the approach was general and should,
if successful, be able to derive the “Shell Model” from first principles. One col-
league even refers to the NCSM as the “no-core no-shell no-model” approach
to underscore that criticism. Additionally, quantum chemists have adopted the
terminology of CI and FCI which are widely understood in physics so we should
include the term “Configuration” as we do with NCFC.

3. No-core Configuration Interaction (NCCI), introduced in the text of Ref. [40], —
for a more general case where the variational upper bound is obtained for an
arbitrary finite basis (i. e. includes FCI, Nmax truncation, Nshell truncation,
Coulomb–Sturmian, etc.) — i. e. without the extrapolation and error estimation
of the NCFC.
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With this newer terminology, results from basis-space independent interactions,
therefore allowing for some forms of renormalization, with extrapolation and error
estimates would be be called NCFC calculations. Without extrapolation and error
estimates, they would be called NCCI calculations according to our current usage.

This usage has evolved since we earlier used NCSM more liberally (prior to in-
troducing “NCFC” in early 2009) to include both truncated calculations preserving
variational limits as well as extrapolations with error estimates in Ref. [36].

Due to the flexibility of renormalization procedures, choice of truncations, choice
of basis, etc., it may be that the above nomenclature does not cover all cases uniquely.
That is, it is easy to see there are possible overlaps in the use of these terminologies.

4 Realistic Hamiltonians

We began our no-core investigations in the 1980s and 1990s with the best available
interactions that were meson-theoretical nucleon-nucleon interactions, tuned to pro-
vide high-quality descriptions of the NN scattering phase shifts and the deuteron
bound state properties. For example, we introduced and employed no-core spectral
distribution methods [47, 48, 49] with realistic NN interactions in advance of the
current era where direct diagonalization in large basis spaces became feasible. Those
early results produced favorable comparisons with Coupled Cluster results [50] for
total binding energies.

As mentioned earlier, we also employed 3NFs that were derived from meson theory
and then tuned to the properties of A = 3 nuclei and/or other nuclear properties
such as the binding energy of nuclear matter. The Argonne V18 [1] NN interaction
plus the Tucson–Melbourne [2, 3] 3NF or Urbana IX [4] 3NF represent popular
choices of this class of interactions. Many current investigations continue to use
these interactions. When these interactions are employed, it is possible to include
a consistent treatment of meson-exchange currents in the development of effective
operators for other observables such as electromagnetic moments and transition rates.
There is an increasing trend to using these theoretically consistent operators.

More recently, concerted efforts have led to the development of realistic NN and
3NF based upon QCD using chiral perturbation theory (ChPT) within effective field
theory (EFT) [5]. This EFT approach provides us with a promising bridge between
QCD and the hadronic systems [6]. In this approach one works consistently with
systems of increasing nucleon number [7, 8, 9] and makes use of the explicit and spon-
taneous breaking of chiral symmetry to systematically expand the strong interaction
in terms of a dimensionless constant, the ratio of a small momentum (characteristic of
the low-energy application such as nuclear structure) divided by the chiral symmetry
breaking scale of QCD (taken to be about 1 GeV/c). The resulting NN and 3NFs
[10, 11, 12] have the appearance of a pion-exchange theory (no higher mass mesons
appear explicitly nor do baryon resonances) and they provide a high-quality fit to
the NN data and the A = 3 ground state properties. The ChPT is characterized
by the appearance of low-energy constants (LECs)which are, in principle, calcula-
ble with non-perturbative methods from QCD itself. However, since they are not
calculable with current computer resources, these constants are fit to NN data and
three-nucleon systems (for the new constants that appear in the 3NFs). One hall-
mark of this approach is the natural hierarchy that places NN interactions at lower
order than 3NFs. In addition, a cross check that ChPT is producing a convergent
series, i. e. one that is “under control”, is that these LECs all turn out to be of order
unity. The appearance of an LEC of order 10, for example, would signal the poten-
tial need to rearrange the series. Such a rearrangement is under development with a
“deltafull” version of ChPT where where the delta-resonance is included explicitly as
intermediate state excitations with the ChPT graphs.

At present we employ NN interactions complete through “next-to-next-to-next-to
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leading order” (N3LO). However, the 3NFs we use are only available in the useful
partial-wave decomposed form through N2LO. Fortunately, world-wide efforts are
expected to provide ChPT interactions for both NN and 3NFs complete through
N3LO within the coming year or two. At about the same time, we expect the deltafull
versions of ChPT to become available.

We also adopt the NN interaction JISP16, a realistic NN interaction initially
developed from NN data using inverse scattering techniques [32, 51, 52]. It is then
adjusted with phase-shift equivalent unitary transformations to describe light nuclei
without explicit 3NFs. One major advantage of JISP16 is that it is considerably
softer (reduced high-momentum components) relative to the meson-exchange or ChPT
NN interactions. Since JISP16 incorporates some of the 3NF effects of the other
interactions, and is sufficiently soft, we can achieve NCFC results in light nuclei and
the results are in remarkably good agreement with experiment [15, 37, 38, 41, 53].

With all these interaction developments, we can expect an era of vigorous scientific
activity testing these improved interactions in nuclear structure and nuclear reactions.
With the emerging predictive power, we expect to be able to reliably predict quantities
that cannot be measured directly in the laboratory but have practical significance such
as in the design of advanced nuclear reactors.

5 Renormalization and regularization

Given that the NN interaction and 3NFs couple strongly the low-momentum regions
of phase space with the high-momentum regions, we require methods to soften these
interactions (reduce those couplings) while maintaining the full predictive power of
the microscopic theory. This leads to the introduction of renormalization and regular-
ization methods. When properly used, these methods allow the exact results (results
from the original input interactions) to be obtained in a systematic and controllable
approach. Different methods have been introduced and each has its advantages and
disadvantages. Here, I will summarize two of those methods that we have been using
extensively. The first is the Okubo–Lee–Suzuki (OLS) method [45, 46] and the second
is the Similarity Renormalization Group (SRG) method [54, 55, 56, 57, 58, 59]. There
is considerable freedom in each of these renormalization methods and there is ongoing
research that investigates the potential utility of these freedoms. For the subsections
of this section, I will follow our descriptions presented in Ref. [29] that should be
consulted for additional details and key references.

The topic of regulators is one that requires its own discussion. For the present
paper, I will simply mention that regulators appear at all levels of the development of
effective Hamiltonians. These occur in the choices of form factors regulating vertices
in the underlying interactions all the way up to the choice of basis space parameters
such as Nmax and ~Ω. Ultimately, the test of a good theory is to obtain converged
results that agree with experiment as regulators are removed. These challenges are
addressed, at least in part, by the ChPT approach of EFT and by the NCFC method
discussed above.

5.1 Okubo–Lee–Suzuki method

For pedagogical purposes, we outline the OLS approach with NN interactions alone
and point the reader to the literature [29] for the extensions to include 3NFs. We
begin with the simplified purely intrinsic Hamiltonian for the A-nucleon system, i. e.
we retain only the first two terms of Eq. (1) to write

HA = Trel + V =
1

A

A∑

i<j

(~pi − ~pj)2
2m

+

A∑

i<j

V (~ri − ~rj), (2)
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where m is the nucleon mass and V (~ri−~rj), the NN interaction, with both strong and
electromagnetic components. Note the absence of a phenomenological single-particle
potential. We may use either coordinate-space or momentum-space NN potentials.
They may also be non-local interactions.

Next, we add the center-of-mass HO Hamiltonian to the Hamiltonian (2) HCM =

TCM + UCM, where UCM = 1
2AmΩ2 ~R2, ~R = 1

A

∑A
i=1 ~ri. In the full Hilbert space

the added HCM term has no influence on the intrinsic properties. However, when we
introduce our cluster approximation below, the added HCM term facilitates conver-
gence to exact results with increasing basis size. The modified Hamiltonian, with a
pseudo-dependence on the HO frequency Ω, can be cast into the form

HΩ
A = HA +HCM =

A∑

i=1

[
~p 2
i

2m
+

1

2
mΩ2~r 2

i

]
+

A∑

i<j=1

[
VN(~ri − ~rj)−

mΩ2

2A
(~ri − ~rj)2

]
.

(3)
In the spirit of Da Providencia and Shakin [60] the OLS method [45, 46] introduces
a unitary transformation, which is able to accommodate the short-range two-body
correlations in a nucleus, by choosing an antihermitian operator S, acting only on
intrinsic coordinates, such that

H = e−SHΩ
Ae

S. (4)

In our approach, S is determined by the requirements that H and HΩ
A have the

same symmetries and eigenspectra over the subspace K of the full Hilbert space.
In general, both S and the transformed Hamiltonian are A-body operators. Our
simplest, non-trivial approximation to H is to develop a two-body (a = 2) effective
Hamiltonian, where the upper bound of the summations “A” is replaced by “a”, but
the coefficients remain unchanged. The next improvement is to develop a three-body
effective Hamiltonian, (a = 3). This approach consists then of an approximation to a
particular level of clustering with a ≤ A,

H = H(1) +H(a) =

A∑

i=1

hi +

(
A
2

)
(
A
a

)(
a
2

)
A∑

i1<i2<...<ia

Ṽi1i2...ia , (5)

with

Ṽ12...a = e−S(a)

HΩ
a e

S(a) −
a∑

i=1

hi, (6)

and S(a) is an a-body operator; HΩ
a = h1 +h2+h3 + . . .+ha +Va, and Va =

∑a
i<jVij .

Note that there is no sum over “a” in Eq. (5). Also, we adopt the HO basis states

that are eigenstates of the one-body Hamiltonian
∑A

i=1hi.
If the full Hilbert space is divided into a finite model space (“P -space”) and a com-

plementary infinite space (“Q-space”), using the projectors P and Q with P +Q = 1,
it is possible to determine the transformation operator Sa from the decoupling con-
dition

Qae
−S(a)

HΩ
a e

S(a)

Pa = 0, (7)

and the simultaneous restrictions PaS
(a)Pa = QaS

(a)Qa = 0. Note that a-nucleon-
state projectors (Pa, Qa) appear in Eq. (7). Their definitions follow from the defi-
nitions of the A-nucleon projectors P , Q. The net effect of the OLS renormalization
procedure is to develop a finite P -space effective Hamiltonian decoupled from the
infinite complementary Q-space as illustrated in Fig. 1.

The unitary transformation and decoupling condition, introduced by Suzuki and
Okamoto and referred to as the unitary-model-operator approach (UMOA) [61], has
a solution that can be expressed in the following form

S(a) = arctanh(ω − ω†), (8)
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Figure 1: Schematic illustration on how Okubo–Lee–Suzuki (OLS) similarity trans-
formation yields an H̄eff in a finite model space P decoupled from the infinite com-
plementary Q-space.

with the operator ω satisfying ω = QaωPa, and solving its own decoupling equation,

Qae
−ωHΩ

a e
ωPa = 0. (9)

Let us also note that H̄a−eff = Pae
−S(a)

HΩ
a e

S(a)

Pa leads to the relation

H̄a−eff = (Pa + ω†ω)−1/2(Pa + Paω
†Qa)HΩ

a (QaωPa + Pa)(Pa + ω†ω)−1/2. (10)

Given the eigensolutions, HΩ
a |k〉 = Ek|k〉, then the operator ω can be determined

from
〈αQ|ω|αP 〉 =

∑

k∈K

〈αQ|k〉〈k̃|αP 〉, (11)

where we denote by tilde the inverted matrix of 〈αP |k〉, i. e.,
∑

αP
〈k̃|αP 〉〈αP |k′〉 = δk,k′

and
∑

k〈α′
P |k̃〉〈k|αP 〉 = δα′

P
,αP

, for k, k′ ∈ K. In the relation (11), |αP 〉 and |αQ〉
are the model-space and the Q-space basis states, respectively, and K denotes a set
of dP eigenstates, whose properties are reproduced in the model space, with dP equal
to the dimension of the model space.

With the help of the solution for ω (11) we obtain a simple expression for the
matrix elements of the Hermitian effective Hamiltonian

〈αP |H̄a−eff |α′
P 〉 =

∑

k∈K

∑

α′′

P

∑

α′′′

P

〈αP |(Pa + ω†ω)−1/2|α′′
P 〉〈α′′

P |k̃〉Ek〈k̃|α′′′
P 〉

× 〈α′′′
P |(Pa + ω†ω)−1/2|α′

P 〉. (12)

For computation of the matrix elements of (Pa + ω†ω)−1/2, we can use the relation

〈αP |(Pa + ω†ω)|α′′
P 〉 =

∑

k∈K

〈αP |k̃〉〈k̃|α′′
P 〉. (13)

We note that in the limit a → A, we obtain the exact solutions for dP states of the
full problem for any finite basis space, with flexibility for choice of physical states
subject to certain conditions [62].
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On account of our cluster approximation a dependence of our results on Nm and on
Ω arises. For a fixed cluster size, the smaller the basis space, the larger the dependence
on Ω. The residual Nm and Ω dependences can be used to infer the uncertainty in
our results.

The model space P2 is defined by the maximal number of allowed HO quanta of the
A-nucleon basis states Nm from the condition 2n+ l ≤ Nm −Nspsmin, where Nspsmin

denotes the minimal possible HO quanta of the spectators, i. e., nucleons not affected
by the interaction process. For example, 10B, Nspsmin = 4 as there are 6 nucleons
in the 0p-shell in the lowest HO configuration and, e. g., Nm = Nspsmin + 2 + Nmax,
where Nmax represents the maximum HO quanta of the many-body excitation above
the unperturbed ground-state configuration. For 10B, Nm = 12 for an Nmax = 6 or
“6~Ω” calculation.

In order to construct the operator ω (11) we need to select the set of eigenvectorsK.
We select the lowest states obtained in each two-body channel. It turns out that these
states also have the largest overlap with the model space for the range of ~Ω we have
investigated and the P -spaces we select. Their number is given by the number of
basis states satisfying 2n+ l ≤ Nm −Nspsmin.

We input the effective Hamiltonian, now consisting of a relative 2-body operator
and the pure HCM term introduced earlier, into an m-scheme Lanczos diagonalization
process to obtain the P -space eigenvalues and eigenvectors. At this stage we also add
the term HCM again with a large positive coefficient (referred to as β above) to
separate the physically interesting states with 0s CM motion of the HO from those
with excited CM motion according to the Lawson method [30]. We retain only the
states with pure 0s CM motion when evaluating observables.

All observables that are expressible as functions of relative coordinates, such as
the rms radius and radial densities, are then evaluated free of CM motion effects. In
addition, all observables that are not spherically symmetric such as electromagnetic
multipole operators receive no contribution from the 0s CM motion component of
state vectors so they are correctly dependent only on the internal motion though they
may be evaluated within the full SD basis.

We close our presentation on the theoretical framework with the observation that
all observables require the same transformation as implemented on the Hamiltonian.
To date, we have found rather small effects on the rms radius operator when we
transformed it to a P -space effective rms operator at the a = 2 cluster level [13, 14].
On the other hand, substantial renormalization was observed for the kinetic energy
operator when using the a = 2 transformation to evaluate its expectation value [63].

5.2 Similarity Renormalization Group method

The Similarity Renormalization Group (SRG) method also develops effective two-,
three- (and even higher-) body forces (induced many-body interactions) while reduc-
ing the strong couplings of the available initial interactions across large regions of
momentum space. This will also aid convergence in many-body calculations provided
the induced interactions are retained to the level needed. One perceived advantage of
SRG is that it retains the effective interactions in the full (infinite) Hilbert space. With
a given SRG-evolved effective Hamiltonian, the variational principle allows smooth
extrapolations to the ground state energy from above as a function of the many-
body truncation. Thus NCFC results are, in principle, obtainable with SRG-evolved
effective Hamiltonians. This advantage is absent in the OLS approach.

The SRG is a continuous unitary transformation of the free-space Hamiltonian
H (2) (H ≡ Hλ=∞),

Hλ = UλHλ=∞U
†
λ, (14)

labeled by a momentum parameter λ that runs from∞ toward zero, which keeps track
of the sequence of Hamiltonians (s = 1/λ4 has been used elsewhere [54, 64, 65]). These
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Figure 2: Illustration of how the SRG procedure [64, 66, 65, 67] weakens the strong
off-diagonal couplings of the 1S0 chiral N3LO NN potential [11, 12] in momentum
space as the flow proceeds to smaller values of λ (left to right panels). The flow
increasingly concentrates the non-vanishing potential strength to an attractive region
near the origin and a repulsive region at higher momenta with both regions lying
along the diagonal.

transformations are implemented as a flow equation in λ (in units where ~
2/M = 1),

dHλ

dλ
= − 4

λ5
[[Trel, Hλ], Hλ] , (15)

whose form guarantees that the Hλ’s are unitarily equivalent [54, 55, 56, 66].
The utility of the nucleon relative kinetic energy Trel in Eq. (15) is that it reduces

the coupling of the high- and low-momentum parts of Hλ, which means softer and
more convergent may-body calculations [36, 57]. This is evident in a partial-wave
momentum basis, where matrix elements 〈k|Hλ|k′〉 connecting states with (kinetic)

energies differing by more than λ2 are suppressed by e−(k2−k′2)2/λ4

factors and, there-
fore, the states decouple as λ decreases. (Decoupling also results from replacing Trel in
Eq. (15) with other generators [54, 56, 58, 59] where the common feature is a generator
having diagonal or nearly diagonal structure in the relative HO basis.) The decou-
pling between the high-momentum and low-momentum parts of the NN interaction
is illustrated in Fig. 2.

To see how the two-, three-, and higher-body potentials are identified, it is useful
to decompose Hλ in second-quantized form. Schematically (suppressing indices and
sums),

Hλ = 〈T 〉a†a+ 〈V (2)
λ 〉a†a†aa+ 〈V (3)

λ 〉a†a†a†aaa+ · · · , (16)

where a†, a are creation and destruction operators with respect to the vacuum in

some (coupled) single-particle basis. This defines 〈T 〉, 〈V (2)
λ 〉, 〈V

(3)
λ 〉, ... as the one-

body, two-body, three-body, ... matrix elements at each λ. Upon evaluating the
commutators in Eq. (15) using Hλ from Eq. (16), we see that even if initially there
are only two-body potentials, higher-body potentials are generated with each step
in λ. Thus, when applied in an A-body subspace, the SRG will “induce” A-body

forces. But we also see that 〈T 〉 is fixed, 〈V (2)
λ 〉 is determined only in the A = 2

subspace with no dependence on 〈V (3)
λ 〉, 〈V

(3)
λ 〉 is determined in A = 3 given 〈V (2)

λ 〉,
and so on.

While it may seem natural to solve Eq. (15), in momentum representation, it is an
operator equation, so we can use any convenient basis. In our applications, we evolve
in a discrete HO basis, where spectators are handled without a decomposition and
induced many-body forces can be directly identified. Having chosen such a basis, we
obtain coupled first-order differential equations for the matrix elements of the flowing
Hamiltonian Hλ, where the right side of Eq. (15) is evaluated using simple matrix
multiplications.

Calculations may be performed in the Jacobi coordinate HO basis. We start by
evolving Hλ in the A = 2 subsystem, which completely fixes the two-body matrix
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elements 〈V (2)
λ 〉. Next, by evolving Hλ in the A = 3 subsystem we determine the

combined two-plus-three-body matrix elements. We can isolate the three-body matrix

elements by subtracting the evolved 〈V (2)
λ 〉 elements in the A = 3 basis [68]. Having

obtained the separate NN and NNN matrix elements, we can apply them unchanged
to any nucleus. We are also free to include any initial three-nucleon force in the
initial Hamiltonian without changing the procedure. If applied to A ≥ 4, four-body
(and higher) forces will not be included and so the transformations will be only
approximately unitary.

Once the evolved interactions are determined in the Jacobi HO basis, transforma-
tions to the SD basis are performed, in particular, when nuclei with A > 4 are studied.
The transformations of two-body interactions are standard. The correspondent 3NF
transformations were derived and implemented in Refs. [69, 70] with recent advances
presented in Ref. [71], where a JT -coupled representation was developed with a highly
efficient storage scheme, which allows us to handle 3NF matrix-element sets up to
Nmax = 12 model spaces for p-shell nuclei.

6 Recent NCSM and NCFC results

In this section, I present a selection of NCSM and NCFC results. First, recall that in
the NCFC case [15], one extrapolates to the continuum limit (infinite matrix result)
illustrated in Fig. 3.

Here, I show results for the ground state (gs) of 12C as a function of Nmax ob-
tained with the realistic NN interaction, JISP16 [32, 51, 52]. The smooth curves
portray exponential fits that achieve asymptotic independence of Nmax and ~Ω. The
NCFC gs energy (the common asymptote) of −94.5 MeV indicates overbinding of
∼ 2.5% leading us to conclude that 3NFs must play a role. The assessed uncertainty
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Figure 3: Calculated ground state (gs) energy of 12C for Nmax = 2−10 (symbols)
at selected values of ~Ω. For each ~Ω, the results are fit to an exponential plus a
constant, the asymptote, constrained to be the same for all ~Ω [15]. Horizontal lines
indicate the experimental gs and the NCFC result (uncertainty = 0.5 MeV).
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Figure 4: Ab-initio NCSM calculations the Gamow–Teller (GT) matrix element for
the beta decay of 14C [34]. Contributions to the 14C beta decay matrix element are
displayed as a function of the HO shell in the Nmax = 8 basis space using interactions
from ChPT. The top panel displays the contributions without and with the 3NF with
two reasonable choices for the 3NF parameter cD. Contributions are summed within
each shell to yield a total for that shell. The bottom section displays the running
sums of the GT contributions over the shells. Two choices for for cD in the 3NF
lead to similar strong suppression of the GT matrix element where the final sums are
closer to zero. cD = −2.0 yields the final sum closest to zero. Note, in particular, the
order-of-magnitude suppression of the 0p-shell contributions arising from the 3NF.

in the NCFC result is 0.5 MeV shown in parenthesis in the figure. The largest calcu-
lations correspond to Nmax = 10, with an m-scheme matrix dimension near 8 billion.
Nmax = 12 produces an m-scheme matrix dimension near 81 billion which we hope
to solve in the future.

A particular example of the recent NCSM accomplishments stands out and that is
the demonstration that the anomalous long half life of 14C is a consequence of ChPT
3NFs strongly quenching the Gamow-Teller (GT) matrix element [34]. The results
without and with 3NFs are shown in Fig. 4. In the top of Fig. 4 one observes that,
without 3NFs there is a large contribution to the GT matrix element coming from
the 0p-shell single particle spin flip as a neutron converts to a proton. This is the
conventional shell-model single-particle GT transition and it leads to a “normal” beta
decay halflife of a light nucleus which is not suppressed.

Inclusion of 3NFs shows little effect on the contribution of most shells to the GT
matrix element. However, the contribution of the 0p-shell terms becomes strongly
suppressed — by more than an order of magnitude in the two examples shown. The
two examples differ by changes in the LECs of the 3NF that are allowed within the
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Figure 5: Comparison of the 14F theoretical spectra with the Texas A&M Cyclotron
experiment showing excellent agreement between ab initio predictions of Ref [37] and
experiment [53]. This figure also shows comparisons with predictions of traditional
phenomenological shell model calculations with a core labelled by “WBP” and “MK”
(see Ref [53] for details).

range that is “natural” as discussed above. The conclusion is that one may easily
fit the exact experimental halflife with an allowed adjustment of the LECs for the
3NFs. However, we did not carry out this fine tuning since there remain additional
corrections from enlarging the basis and including ChPT corrections to the weak
decay matrix element. These additional small corrections will not change the main
conclusion (large suppression due to 3NFs) but will effect the fine tuning of the LECs.

As another example of NCFC achievements, we successfully predicted the spectra
for the proton unstable nucleus 14F [37] before it was measured using JISP16 [32,
51, 52] as shown in Fig. 5. This figure is adapted from the paper [53] reporting
the experimental results and presenting the comparison with our published ab initio
NCFC predictions.

As a final example illustrating recent NCSM progress in light nuclei, I select the
example of 7Li calculated with NN + 3NFs from ChPT. The resulting excitation
spectra is shown in Fig. 6 at Nmax = 4−6−8 [35] and compared with experiment
shown in the leftmost column. The HO energy is chosen, where the g.s. energy of
7Li is a minimum in the 8~Ω basis space. Note that our NN +3NF (also referred
to as “NNN” in the legend) spectral ordering is in agreement with experiment for
the 9 lowest states in 7Li and the excitation spectra is rather stable with increasing
Nmax. We also obtain theoretical excitation spectra showing comparable agreement
with experiment for 7Be.

7 Summary

The ab initio NCSM and NCFC approaches treat all A nucleons equally with modern
NN + 3NF interactions and successfully describe properties of nuclei throughout the
0p-shell. Collaborations with computer scientists and applied mathematicians as well
as the use of supercomputers is critical to the progress achieved to date. Several inves-
tigations are underway to extend these ab initio methods to nuclei with A > 16 and
to more completely unify these ab initio structure approaches with a corresponding
predictive theory of nuclear reactions [72]. The outlook is very promising for resolving
many long-standing problems in microscopic nuclear theory.
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[10] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A 637, 107 (1998);
671, 295 (2000).

[11] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003)

[12] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011); arXiv:1105.2919
[nucl-th] (2011).
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Abstract

We give an overview of the development of the Monte Carlo shell model
(MCSM). MCSM was originally based on the auxiliary-field Monte Carlo tech-
nique, but it is more like a stochastic variational method within multiple Slater
determinants incorporating symmetry restoration. It is shown that compli-
cated shell-model wave functions can be satisfactorily approximated with the
MCSM calculation. MCSM has been applied to several cases, one of which is
the neutron-rich region around N = 20, often called the island of inversion. A
unified picture of the island of inversion is obtained with the MCSM calcula-
tions. The study of the island of inversion leads to a general concept of the shell
evolution.

Keywords: Shell model; Monte Carlo shell model; magic numbers; shell struc-
ture

1 Introduction

Large-scale computing has been an indispensable tool in various fields of science.
For instance, Japan has recently completed a new 10-PFlops supercomputer called
K computer [1] in order to solve urgent problems in science and technology. Among
various applications of the K computer, basic science including nuclear physics, has
been regarded as one of the most important. In nuclear physics, large-scale computing
enables one to describe nuclei from a more fundamental viewpoint. According to the
forecast of Ref. [2], ab initio calculations in which a nucleus is built from nucleons
interacting one with another via a bare nucleon-nucleon force only, will be extended
to the sd-shell region in a near future. As for medium-heavy nuclei, the nuclear shell
model, or the configuration interaction (CI) approach in terms of quantum chemistry,
will be applicable up to the region around 132Sn. Both methods need capability to deal
with a huge number of many-body states. While exact calculation of the innumerable
states such as the Lanczos diagonalization is developing accordingly, approximate
methods should also be developed for surpassing the current limitation. The Monte
Carlo shell model (MCSM) [3] is one of such methods, being developed to give a
precise description of the CI problems with huge dimensionality. Its applicability
is not limited to the conventional shell model which assumes an inert core and a
relatively small number of valence orbits, but also includes ab initio calculations due
to recent methodological and computational progress [4].

In this paper, we show some basics of MCSM and its early successful applications
to the structure of exotic nuclei in the region near N = 20 which is often called “island
of inversion” [5]. It is noted that a recent development of MCSM and a benchmark
test for the ab initio calculation are presented in another paper [6]. We also show how
the large-scale MCSM calculation plays an essential role in deeper understanding of
exotic nuclei as exemplified by the so-called “shell evolution” that has been strongly
motivated by the success of MCSM in the island of inversion.
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2 Brief overview of the Monte Carlo shell model

The methodology of MCSM was proposed by Honma, Mizusaki and Otsuka in 1995
[7]. It is aimed at overcoming the limitation of CI due to huge dimensionality. It is
noted that the first application was not the shell model but was the Interacting Boson
Model (IBM). The computational method employed by MCSM is named the Quantum
Monte Carlo Diagonalization (QMCD). QMCD was hinted by the shell model Monte
Carlo (SMMC) method [8]. Thus, we first introduce basic ideas of SMMC in Sect. 2.1,
and then present the QMCD method in Sect. 2.2.

2.1 SMMC: an auxiliary-field Monte Carlo method for the
shell model

In general, the ground state of a quantum many-body system with the Hamiltonian
H can be obtained, in principle, as

exp(−βH)|Φ〉 (1)

with β → ∞ for any state |Φ〉 that is not orthogonal to the ground state. How-
ever, in practice, a direct operation of exp(−βH) is almost impossible for a general
Hamiltonian including two-body terms or higher. On the other hand, according to
Thouless theorem [9], the operation of exp(−βh) on a Slater determinant leads to
another Slater determinant for a one-body operator h. This is the starting point of
SMMC.

Let us then take a simple two-body operator H = O2 with O being a one-body
operator. In this case, exp(−βH) is analytically expressed as

exp(−βH) =

∫ ∞

−∞

dσ
√
β/π exp(−βσ2 − 2βσO). (2)

Since any two-body operator disappears in Eq. (2), Eq. (1) can be computed for a
Slater determinant |Φ〉. For an arbitrary two-body operator H , a similar expression
is obtained but is associated with more integration variables, which prevent one from
directly performing the integration in practice. On the other hand, the integration
can be practically carried out by using the Monte Carlo sampling. This is the essence
of the so-called auxiliary-field Monte Carlo method where the integral variable σ is
called the auxiliary field. The SMMC method [8] is based on this technique.

Although SMMC is suitable for studying properties of ground states and of systems
at finite temperature, it is not so for properties of discrete excited levels. In addi-
tion, SMMC suffers from the sign problem for general two-body operators. These
shortcomings are the motivation to develop another method called QMCD.

2.2 MCSM: application of the Quantum Monte Carlo
Diagonalization method to the shell model

In the SMMC method, observables are obtained by using the Monte Carlo integration.
In the QMCD method instead, a many-body wave function is obtained by using the
diagonalization of the Hamiltonian in which basis states are generated by following
the Monte Carlo sampling. This is the original idea of QMCD, and its efficiency has
been demonstrated with an IBM Hamiltonian [7].

Once the many-body wave function is calculated with a finite number of basis
states, it follows the variational principle. Namely, the energy of this wave function
must be higher than the exact energy of the lowest state. In addition, the exact wave
function must have good quantum numbers due to the symmetry of the Hamiltonian.
Thus, keeping a stochastic procedure, the QMCD method has been developed to
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directly utilize those properties. QMCD has adopted the projection technique in
Ref. [10], and has been applied to the shell model in Ref. [11].

In the late 1990s, MCSM, the application of the QMCD method to the shell model,
has been rather close to the present form and has been applied to systems beyond the
limit of the exact diagonalization at that time [12]. Here, the formulation of MCSM
is presented briefly. The many-body wave function of MCSM having total angular
momentum J and its z component M is expressed as

|ΨJM 〉 =

NMCSM∑

k=1

f (k)P π
J∑

K=−J

g
(k)
K P J

MK |Φ(D(k))〉, (3)

where P π and P J
MK are the parity and angular-momentum projectors. g

(k)
K denotes

the mixing amplitude of the state having the intrinsic K and the basis index k. f (k) is
the mixing amplitude for the k-th basis state (Slater determinant1) |Φ(D(k))〉 defined
as

|Φ(D(k))〉 =
∏

l

(
∑

i

D
(k)
il c

†
i

)
|−〉. (4)

In this expression, g
(k)
K , f (k) and D

(k)
il are the parameters to be determined. Once

all the D
(k)
il are fixed, g

(k)
K and f (k) that follows the variational principle are easily

calculated by the diagonalization of the Hamiltonian. On the other hand, it is not

straightforward to obtain the optimum form of each basis state, D
(k)
il .

In the MCSM calculation, D
(k)
il are determined as follows. The number of the basis

states, NMCSM, increases step by step: only D
(k)
il of the last basis with k = NMCSM

can be varied at a time. The other D
(k)
il with k ≤ NMCSM are kept unchanged. As for

determining D
(k=NMCSM)
il , at first, initial candidates are generated according to the

Monte Carlo sampling using the auxiliary field σ (see Eq. (2)), and the σ 7→ Dil that
gives the lowest energy is selected. The total energy labeled by σ is denoted as E(σ).
Next, around this σ, a small variation δσ is applied. If E(σ+ δσ) < E(σ) is satisfied,
σ + δσ is adopted as the new σ. Otherwise, this σ + δσ is discarded. This process is
repeated until E(σ) is saturated.

When the number of the basis states NMCSM increases, the energy is lowered. The
lowering of the energy at each increment becomes very small as the wave function is
close to the eigenstate. Hence, the number of basis states NMCSM increases until the
energy is well converged. NMCSM is typically several tens to hundred even though
the dimension of the shell-model Hamiltonian is very large. In fact, it has been
demonstrated that the ground-state energy of 56Ni in the full pf -shell calculation
with 1 billion M -scheme dimension is very well approximated by about 100 basis
states in MCSM [12, 14].

3 MCSM description of the island of inversion

After the feasibility of MCSM was confirmed with some benchmark studies for the pf -
shell calculation as shown in the last section, MCSM has been applied to cases where
the exact diagonalization was impossible at that time. The neutron-rich region around
N = 20, often referred to as the “island of inversion” [5], is one of the most successful
applications of MCSM. The island of inversion is known as a region, including 32Mg,
where a strong deformation occurs in spite of the neutron magic number N = 20. The
nuclei in the island are considered to be dominated by the 2p-2h excitation across the
N = 20 shell gap. The dominance of the 2p-2h state is caused by energy gain due to

1For different form of the basis state, the pair-condensed basis has been used for a description of
medium-heavy nuclei [13].
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Figure 1: The neutron effective single-particle energies for (a) oxygen isotopes from
N = 8 to 20 and (b) N = 20 isotones from Z = 8 to 20. See Ref. [3] for details . For
the definition of the effective single-particle energy, see Ref. [15].

correlation or deformation that is larger than the energy loss of the spherical single-
particle energy. Thus, accurate calculation of the correlation energy is needed for the
description of the island of inversion.

Although the shell model is suitable for calculating the correlation energy, its
application to the island of inversion was a difficult task due to the numerical limit of
exact diagonalization. In order to describe excitation of nucleons from the sd to pf
shell, the full sd shell and part of the pf shell should be included as the valence shell.
Even if the pf shell is truncated up to 0f7/2 and 1p3/2, the number of single-particle
states (including the degeneracy of jz) reaches 24, which is larger than that of the full
pf shell. For instance, the M = 0 dimension of 32Mg in the sd+ f7/2 + p3/2 valence
shell is larger than 109, which is beyond the computational limit in the early 2000s.

Thus, MCSM was best fitted for the shell-model calculation of the island of in-
version. Taking the advantage of MCSM that is applicable to any nucleus on the
same footing, we have succeeded in obtaining a unified picture for the N = 20 region
ranging from stable to unstable nuclei [15]. As mentioned above, the shell gap is one
of the most important ingredients for the theoretical framework. We have proposed
a neutron shell structure which strongly changes from a smaller to a larger Z as pre-
sented in Fig. 1. Whereas the N = 20 shell gap is large for stable nuclei around 40Ca,
it is sharply reduced for lower Z. Instead of the disappearance of the normal N = 20
magicity, a new N = 16 magic structure appears near oxygen isotopes. This strong
change of the shell structure was phenomenologically introduced in the shell-model
Hamiltonian named SDPF-M [15] so that the drip line of oxygen isotopes, N = 16,
can be reproduced with the shell-model calculation. In Ref. [15], a systematic cal-
culation of yrast states of even-even nuclei has been carried out, demonstrating good
agreement with the experimental energy levels and the B(E2) values.

According to the varying shell gap shown in Fig. 1, the N = 20 shell gap is rather
reduced for nuclei in the island of inversion with Z = 10−12. This helps those nuclei
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to be dominated by the 2p-2h configurations. When the shell gap is reduced, it is
expected that the extent of the island of inversion is enlarged. Thus, investigating
the boundary of the island is of a great interest for probing the quenching of the shell
gap proposed in Ref. [15]. This has been conducted with a systematic calculation
of neutron-rich sodium isotopes (Z = 11) in Ref. [16]. In sodium isotopes, although
electromagnetic moments of the ground states were known, their dominant configu-
rations were not clear due to the lack of precise nuclear-structure calculations such
as the shell model. The MCSM calculation has clarified that the 2p-2h dominance
takes place at N = 19 from comparison between theoretical and experimental mo-
ments [16], enlarging the extent of the island of inversion from the original map [5]. It
has been also demonstrated that this early onset of the 2p-2h dominance occurs only
with a Hamiltonian having a reduced N = 20 shell gap. Thus, exotic properties of
neutron-rich nuclei around N = 20 are successfully accounted for by the sharp change
of the shell structure from stable to unstable nuclei.

4 Shell evolution

In Sec. 3, guided by large-scale shell-model calculations with MCSM, a strongly vary-
ing shell structure was phenomenologically introduced. Its origin and universality
were not clear. After the MCSM study of the island of inversion, the understanding
of the evolution of the shell structure, often called shell evolution, has been advanced.
Thus, the shell evolution is one of good examples that a large-scale nuclear structure
calculation leads to a deeper understanding of the nuclear structure from the funda-
mental point of view. In the following, a brief overview about the shell evolution is
presented on the basis of our works.

As for the single-particle structure shown in Fig. 1, what causes the shift of magic-
ity is the strong lowering of the neutron 0d3/2 orbit as protons occupy the 0d5/2 orbit.
This is a consequence of a strong attraction between a proton in 0d5/2 and a neu-
tron in 0d3/2. Since those two orbits are opposite in spin direction, the nuclear force
dependent on spin seems to be essential. In Ref. [17], we have pointed out that the
spin dependent central force can explain this strong attraction, generalizing a strong
T = 0 attraction between the j> orbit and the j< orbit, where j> and j< stand for
the orbits whose j’s are l+ 1/2 and l− 1/2, respectively. Indeed, realistic p-shell and
pf -shell interactions have a strong attraction between 0p1/2 and 0p3/2 and between
0f5/2 and 0f7/2, respectively. As a result of this property, a new N = 34 magic
number has been predicted in the neutron-rich calcium region.

Further study has clarified that the origin of this spin dependence is the tensor
force [18], while the spin dependence of the central force plays a minor role. The
tensor force gives the strong attraction between j> and j′< orbits even with different
orbital angular momenta l and l′. The tensor force thus works to change the spin-
orbit splitting. The effective tensor force turns out to be very close to the bare
π + ρ exchange force. This finding is based on comparison with experiment [18] and
also on the analysis of the microscopic effective interaction [19, 20] using the spin-
tensor decomposition [21]. It has also been found recently that the monopole part
of the interaction, which is responsible for the shell evolution, after subtracting the
tensor part is well simulated by a simple Gaussian force [19]. The tensor-subtracted
effective interaction includes various effects such as a renormalization of the model
space and the effect of the three-body force. Nonetheless, its monopole part can be
well described by a simple interaction in terms of phenomenology. The reason for the
validity of the Gaussian central force is yet to be clarified. The interaction consisting
of the π + ρ tensor force and the Gaussian central force seems to describe the shell
evolution in a wide range of the nuclear chart, being named the monopole-based
universal interaction (VMU) [19]. It has been shown that the phenomenological shell
evolution of Fig. 1 is followed by the VMU interaction.
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Quite recently, VMU has been applied to the effective interaction of the shell-model
calculation in the neutron-rich region around N = 28 [22]. Using the shell-model
calculation, we are able to discuss the shell evolution beyond the framework of the
single-particle state. It is shown that the distribution of the spectroscopic factors for
one-proton removal from 48Ca is excellently reproduced by a Hamiltonian based on
VMU. This result indicates that the proton spin-orbit splitting is strongly reduced
from N = 20 to 28 by the tensor force, and that the reduction is quantitatively
reproduced with VMU including the π + ρ tensor force. It is also shown that a very
neutron-rich nucleus 42Si is strongly oblate deformed because of quenching of proton
sub-shell gaps induced by the tensor force. This deformation accounts for the low 2+1
state in 42Si measured recently [23].

5 Summary

In summary, this paper reports a brief overview of the development of the Monte
Carlo shell model (MCSM) and its earliest successful application to the neutron-rich
region around N = 20. The shell evolution due to the effective interaction, an idea
following the success of the MCSM calculation, is also presented. In the present paper,
we stress that the development of large-scale nuclear-structure calculation leads not
only to a quantitative description of various nuclei from a fundamental point of view
but also to the construction of a new paradigm of nuclear physics.
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Abstract

We report recent developments of the Monte Carlo Shell Model (MCSM)
and its application to the no-core calculations. It is shown that recent develop-
ments enable us to apply the MCSM to the shell-model calculations without a
core. Benchmarks between the MCSM and Full-Configuration Interaction (FCI)
methods demonstrate consistent results with each other within estimated uncer-
tainties. No-Core Full Configuration (NCFC) results are also presented as full
ab initio solutions extrapolated to the infinite basis limit.

Keywords: Shell model; Monte Carlo shell model; ab initio approaches

1 Introduction

One of the major challenges in nuclear physics is to understand nuclear structure
and reactions from ab initio calculations. Such calculations have recently become
feasible for nuclear many-body systems beyond A = 4 due to the rapid evolution of
computational technologies. Together with the Green’s Function Monte Carlo [1] and
Coupled Cluster theory [2], the No-Core Shell Model (NCSM) is one of the relevant
ab initio methods and has been emerging for about a decade. It is now available for
the study of nuclear structure and reactions in the p-shell nuclei [3].

As the NCSM treats all the nucleons democratically, computational demands for
the calculations explode exponentially as the number of nucleons increases. Current
computational resources limit the direct diagonalization of the Hamiltonian matrix
using the Lanczos algorithm to basis spaces with a dimension of around 1010. In
order to access heavier nuclei beyond the p-shell region with larger basis dimensions,
many efforts have been devoted to the NCSM calculations. One of these approaches
is the Importance-Truncated NCSM [4] where the model spaces are extended by
using an importance measure evaluated using perturbation theory. Another approach
is the Symmetry-Adapted NCSM [5] where the model spaces are truncated by the
selected symmetry groups. Similar to these attempts, the no-core Monte Carlo Shell
Model (MCSM) [6, 7, 8] is one of the promising candidates to go beyond the Full
Configuration Interaction (FCI) method which is a different truncation of the basis
states that commonly used in the NCSM.

In these proceedings, we focus on the latest application of the MCSM toward
the ab initio no-core calculations, which has become viable recently with the aid
of major developments in the MCSM algorithm [8, 9, 10] and also a remarkable
growth in the computational power of state-of-the-art supercomputers. The overview
of the benchmarks in the no-core MCSM is based on the results mostly presented in
Refs. [7, 8].
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2 MCSM

The MCSM has been developed mainly for conventional shell-model calculations with
an assumed inert core [11]. Recently the algorithm and code itself have been heavily
revised and rewritten so as to accommodate massively parallel computing environ-
ments [8, 9, 10]. In this section, we briefly overview the MCSM and introduce some
of recent developements.

2.1 Brief overview

The MCSM approach [11] proceeds through a sequence of diagonalization steps within
the Hilbert subspace spanned by the deformed Slater determinants in the HO single-
particle basis as the selected importance-truncated bases. A many-body basis state
|ΨJπM 〉 is a linear combination of non-orthogonal angular-momentum (J) and par-
ity (π) projected deformed Slater determinants with good total angular momentum
projection (M) as a stochastically selected basis,

|ΨJπM 〉 =

Nb∑

n=1

fn

J∑

K=−J

gnKP
J
MKP

π|φn〉, (1)

where the deformed Slater determinant is |φ〉 =
∏A

i=1 a
†
i |−〉 with the vacuum |−〉

and the creation operator a†i =
∑Nsp

α=1 c
†
αDαi. Nsp is specified by the cutoff of the

single particle orbits, Nshell. One then stochastically samples the coefficient Dαi in all
possible many-body basis states around the mean field solutions through the auxiliary
fields and diagonalizes the Hamiltonian matrix within the subspace spanned by these
bases Nb. Stochastically sampled bases are accepted so as to minimize the energy
variationally. Therefore the MCSM can evade the so-called negative sign problem,
which is the fundamental issue that cannot be avoided in quantum Monte Carlo
methods. With increasing MCSM basis dimension, Nb, the ground state energy of a
MCSM calculation converges from above to the exact value. The energy, therefore,
always gives the variational upper bound in this framework.

An exploratory no-core MCSM investigation demonstrating a proof-of-the princi-
ple has been done for the low-lying states of the Berylium isotopes by applying the
existing MCSM algorithm with a core to a no-core problem [6]. Recent improvements
on the MCSM algorithm have enabled significantly larger calculations [8, 9, 10]. We
adopt these improvements in the present work [7, 8].

2.2 Recent developments

Among the recently achieved developments of our MCSM algorithm [8, 9, 10], in this
subsection, we focus on two improvements: (1) the efficient computation of the two-
body matrix elements (TBMEs) for the most time-consuming part in our calculations
[8, 9] and (2) the energy-variance extrapolation for our MCSM (approximated) results
to the FCI (exact) ones [8, 10]. There are other improvements such as the conjugate
gradient method in the process of the basis search and the re-ordering technique in
the energy variance extrapolations. Because of space limitations, we refer for the
details of these improvements to Refs. [8, 10].

2.2.1 Efficient computation of the TBMEs

One of the main issues in the shell-model calculations is to evaluate TBMEs efficiently.
As the matrix for the TBMEs is sparse in general, the indirect-index (list-vector)
method is usually adopted in the shell-model calculations by keeping the value of the
non-zero matrix elements and their indices. However, it tends to give slow perfor-
mance due to the irregular memory access patterns.
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Figure 1: Schematic illustraion of the (vector)t × (matrix) × (vector) operation.

Alternatively, in our recent MCSM code, we transform the sparse matrix to a block
matrix with dense blocks by utilizing the symmetries of the two-body interaction [9].
The one-body density-matrix elements ρll′ are grouped as ρ̃(∆m) according to ∆m ≡
jz(l′)− jz(l) where l and l′ are the labels for the state. The TBMEs are also similarly
categorized. Then, the two-body part of the Hamiltonian overlap can be expressed
as schematically indicated in Fig. 1. Furthermore, most of the computational time is
devoted to the (matrix) × (vector) operation. It is usually repeated a number of times
for different ρ̃’s. By binding Nvec ρ̃-vectors into a matrix, repeated (matrix)×(vector)
operations are replaced by a (matrix)×(matrix) operation at once. As shown in Fig. 2,
we can achive 70−80 % of the peak performance with Nvec ∼ 30−100 in the test case
of the (matrix) × (matrix) operation [9].

2.2.2 Energy-variance extrapolation to the FCI results

With increasing Monte Carlo basis dimension Nb, the MCSM results converge to the
FCI results from above. In order to estimate the exact FCI answer, we extrapolate the
energy and other observables evaluated by MCSM wave functions using the energy

Figure 2: Comparison of the computational performance among the indirect-index
method (Ind.), matrix-vector method (M-V) and matrix-matrix method (M-M) with
different Nvec measured on the SPARC64 VII and Xeon X5570 systems. The values
are normalized by their theoretical peak performance. See Ref. [9] for the details.
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Figure 3: 4He ground-state energies as functions of number of basis states (left) and
energy variance (right). From the above to the bottom, the symbols (horizontal
dashed lines in the left figure and open symbols at the zero energy variance in the
right figure) are the MCSM (FCI) results in Nshell = 2, 3, 4 and 5, respectively. See
Ref. [7] for the details.

variance [8, 10]. That is, the MCSM results are plotted as a function of the evalu-

ated energy variance, ∆E2 = 〈Ψ|H2|Ψ〉 − (〈Ψ|H |Ψ〉)2, and then extrapolated to zero
variance.

As a typical example, the behavior of the ground-state energies of 4He (0+) with
respect to the number of basis states and to the energy variance are shown in Fig. 3.
From Fig. 3, one can see that the MCSM results can be extrapolated to the FCI ones
by using the quadratic fit function of E(∆E2) = E(∆E2 = 0) + c1∆E2 + c2(∆E2)2

with the fitting parameters E(∆E2 = 0), c1, and c2.

3 Benchmarks

Augmented by the recent development of the MCSM algorithm [8, 9, 10], we have
performed benchmarks of the no-core MCSM calculations [7, 8]. The main outcome
of the initial benchmark project is summarized in Table 1. In Table 1, we illustrates
the comparisons of the energies for each state and model space between the MCSM
and FCI methods. The FCI gives the exact energies in the given model space while
the MCSM gives approximate energies. Thus the comparisons between them show
how well the MCSM works in no-core calculations. Furthermore, we also put the
No-Core Full Configuration (NCFC) [12] results for the states of 4 ≤ A ≤ 10 as the
fully converged energies in the infinite model space.

For this benchmark comparison, the JISP16 two-nucleon interaction [13] is adopted
and the Coulomb force is turned off. Isospin symmetry is assumed. The energies
are evaluated for the optimal harmonic oscillator frequencies where the calculated
energies are minimized for each state and model space. Here the contributions from
the spurious center-of-mass motion are ignored for simplicity.

The comparisons are made for the states; 4He (0+), 6He (0+), 6Li (1+),
7Li (1/2−, 3/2−), 8Be (0+), 10B (1+, 3+) and 12C (0+). The model space ranges
from Nshell = 2 to 5 for A ≤ 6 (4 for A ≥ 7). Note that the energies of 10B (1+, 3+)
and 12C (0+) in Nshell = 4 are available only from the MCSM results. The M -scheme
dimensions for these states are already close to or above the current limitation in the
FCI approach. The numbers of basis states are taken up to 100 in Nshell = 2−4 and
50 in Nshell = 5.

As seen in Table 1, the energies are consistent with each other where the FCI
results are available to within ∼ 100 keV (∼ 500 keV) at most of the MCSM re-
sults with(out) the energy-variance extrapolation of the MCSM results. The other



Application of the Monte Carlo shell model to ab initio no-core calculations 37

Table 1: Energies in MeV calculated for seven ground states and two excited states
within the MCSM and FCI methods using the JISP16 NN interaction. The entries
of the MCSM indicate the MCSM results before the energy variance extrapolation,
while those of the “extrp” line denote the MCSM results after the extrapolations.
Uncertainties in extrapolated results are quoted in parenthesis. See Ref. [7] for the
details.

E (MeV)
Nuclei Method Nshell = 2 3 4 5 NCFC
4He MCSM -25.956 -27.914 -28.737 -29.011 -29.164(2)
(0+) extrp -28.738(1) -29.037(1)

FCI -25.956 -27.914 -28.738 -29.036
6He MCSM -13.343 -19.186 -23.480 -25.080 -29.51(5)
(0+) extrp -19.196(1) -23.687(4) -26.086(76)

FCI -13.343 -19.196 -23.684 -26.079
6Li MCSM -14.218 -21.549 -26.757 -28.410 -33.22(4)

(1+) extrp -21.581(1) -27.166(16) -29.873(83)
FCI -14.218 -21.581 -27.168 -29.893

7Li MCSM -14.459 -24.073 -30.904 -39.8(1)
(1/2−) extrp -24.167(2) -31.780(51)

FCI -14.458 -24.165 -31.748
7Li MCSM -17.232 -25.978 -32.494 -40.4(1)

(3/2−) extrp -26.061(4) -33.272(89)
FCI -17.232 -26.063 -33.202

8Be MCSM -28.435 -41.242 -50.222 -59.1(1)
(0+) extrp -41.293(1) -50.753(32)

FCI -28.435 -41.291 -50.756
10B MCSM -29.755 -41.965 -52.239 -68.5(1.5)
(1+) extrp -42.357(46) -54.89(16)

FCI -29.755 -42.338
10B MCSM -34.221 -46.263 -56.346 -69.8(2)
(3+) extrp -46.618(22) -58.41(13)

FCI -34.221 -46.602
12C MCSM -62.329 -76.413 -90.158
(0+) extrp -76.621(4) -91.957(43)

FCI -62.329 -76.621

observables besides the energies; the point-particle root-mean-square matter radii and
electromagnetic moments also give reasonable agreements between the MCSM and
FCI results. The detailed comparisons among the MCSM, FCI, and NCFC methods
are discussed in Ref. [7].

4 Summary

By exploiting the recent development in the efficient computation of the Hamilto-
nian matrix elements between non-orthogonal Slater determinants and the technique
of energy-variance extrapolation, the observables give good agreement between the
MCSM and FCI results in the p-shell nuclei. From the benchmark comparison, the
no-core MCSM is now verified in the application to the ab initio no-core calculations
for light nuclei. The application to heavier nuclei is expected in the near future.
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Abstract

We propose a phase-equivalent transformation of NN interaction of a new
type, the DET-PET transformation, which does not affect the wave function of
the bound system (deuteron). The DET-PET properties and its manifestation in
many-body systems are studied. In particular, we investigate the correlation of
the 3H and 4He binding energies (Tjon line) in calculations with NN potentials
obtained by means of DET-PET from the JISP16 NN interaction.

Keywords: Phase-equivalent transformation; NN interaction.

1 Introduction

One of the best ab initio approaches in the theory of light atomic nuclei is the No-core
Full Configuration (NCFC) approach [1] based on extrapolation of results obtained
in the No-core Shell Model (NCSM) calculations [2]. This approach does not imply
any model assumption, a nucleon-nucleon interaction is the only input information
utilized by NCFC. The NCFC approach was designed for calculations with the J-
matrix Inverse Scattering Potentials (JISP) [3–5], the NN interactions obtained in
the J-matrix inverse scattering approach, and was carefully tested in calculations
with these NN interactions (see, e. g., Ref. [6–9]). Various versions of JISP inter-
actions are related by phase-equivalent transformations (PETs) which do not affect
the NN potential on-shell and hence preserve description of scattering phase shifts
and deuteron binding energy, however modify the potential off-shell and therefore the
description of few-body systems. A remarkable feature of JISP-type potentials is that
they are able to reproduce nuclear properties without three-body nuclear forces reduc-
ing significantly the computer resources required for calculations. Up to now, nuclear
studies were mostly performed [6–9] with the JISP16 interaction version [5, 10]; a
more accurate interaction version JISP162010 providing a better description of the
binding energies of A ≥ 10 nuclei, was introduced [11–13].

Recently we proposed a new type of PETs, a deuteron-equivalent transformation
(DET-PET) [14], which properties we discuss here. Contrary to conventional PETs
resulting in the modification of potential and bound state wave functions [3, 15–17],
DET-PET guarantees that the transformed interaction generates not only the same
scattering phase shifts but also the same bound state (deuteron) wave function as
the initial untransformed interaction. To the best of our knowledge, such PETs have
not been ever discussed in literature. Obviously, DET-PET preserves the description
of deuteron observables. DET-PET, as well as any other PET, modifies a two-body
interaction off-shell, and hence can be used for fitting potentials to many-body systems
without violation of high-quality description of two-body data.

40
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After introducing DET-PET, we discuss the DET-PET modification of the JISP16
NN interaction providing an accurate description of light nuclei [1, 2, 6–9]. A DET-
PET manifestation in many-body systems is illustrated by the study 3H and 4He
binding energies and their correlation (the so-called Tjon line [18]) in particular.

2 Theory

Two types of PETs are known in scattering theory: local PETs [15] that transform
a local potential into another local potential and nonlocal PETs [16] which generate
nonlocal potential terms. We focus the discussion here on nonlocal PETs.

The Schrödinger equation

HΨ(E, r) = EΨ(r) (1)

describes a relative motion in two-body quantum system. The wave function Ψ(r) can
be expanded in infinite series of L2 functions which are supposed to form a complete
orthonormalized basis. We denote these functions by |an〉, their orthonormalization
condition is

〈ai|aj〉 = δij , (2)

and the wave function expansion is

Ψ(E, r) =

∞∑

n=0

cn(E)|an〉. (3)

Using this expansion we obtain an infinite set of algebraic equations defining the
expansion coefficients cn(E),

∞∑

n′=0

(Hnn′ − δnn′E)cn′(E) = 0, (4)

where Hnn′ = 〈an|H |an′〉 are the Hamiltonian matrix elements..

A phase-equivalent transformation of Hamiltonian H can be defined by means of
a unitary transformation,

[H̃ ] = [U ][H ][U †], (5)

where [H ] is the Hamiltonian H matrix in basis {|an〉}. The infinite unitary matrix
[U ] is supposed to be of the form

[U ] = [U0]⊕ [I] =

[
[U0] 0

0 [I]

]
, (6)

where [I] is an infinite unit matrix and [U0] is a finite matrix mixing only a few low-
lying states in a given basis. The Hamiltonian H̃ is defined through its matrix [H̃ ] in
the initial basis {|an〉}.

Obviously, the Hamiltonians H̃ and H have identical eigenvalue spectra and their
eigenfunctions Ψ̃(E, r) and Ψ(E, r) differ by a linear combination of a finite number
of functions {|an〉}. Any superposition of a finite number of L2 functions does not
affect asymptotics of scattering wave functions, hence the Hamiltonian H̃ is phase-
equivalent to the initial Hamiltonian H .

The unitary operator U0 can be written as

U0 =
∑

i,j6N ′

|ai〉Ũ0
ij〈aj |. (7)
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|ai〉 in Eq. (7) can be any L2 function, e. g., any oscillator function ϕl or any linear
combination of oscillator functions ϕl. We shall use DET-PETs with the functions
|ai〉 defined as

|ai〉 =
∑

l6N ′′

αl
iϕl, (8)

supposing that they fit the orthonormalization condition (2).
The transformation (5) becomes a DET-PET, i. e. it does not affect the deuteron

wave function |d〉, when each of the functions |ai〉 in Eq. (7) is orthogonal to |d〉:

〈ai|d〉 = 0. (9)

At this stage, we assert that we have obtained our DET-PET defined through
the unitary transformation (5) with additional constraints (2), (7)–(9). The simplest
DET-PET is obtained with arbitrary unitary matrix [U0] of the rank 2. In this case,
[U0] is associated either with a rotation by the angle β, when detU0 = +1 (we will
use the index + to denote these transformations) or with a rotation by the angle β
combined with reflection when detU0 = −1 (these type of transformations will be
denoted by the index −).

We need to specify not only the unitary matrix but also the vectors |a1〉 and |a2〉
to define completely the simplest DET-PET. We use the deuteron wave function |d〉
to construct these vectors.

The function |d〉 can be expanded in infinite series of oscillator functions ϕi,

|d〉 =
∞∑

i=0

diϕi, (10)

where, generally, all the coefficients di are non-zero,

di 6= 0. (11)

Since the vectors |a1〉 and |a2〉 should fit Eq. (9), none of them can be one of the
basis functions ϕi due to Eq. (10)-(11). The simplest way to construct the vectors |a1〉
and |a2〉 is to define each of them as a linear combination of two different oscillator
functions ϕ1 and ϕ2,

|a1〉 = an1 ϕn + am1 ϕm, (12)

|a2〉 = ak2 ϕk + al2 ϕl, (13)

The normalization of these vectors requires

(an1 )
2

+ (am1 )
2

= 1, (14)
(
ak2
)2

+
(
al2
)2

= 1. (15)

Using Eqs. (9) and (10), we obtain

an1 dn + am1 dm = 0, (16)

ak2 dk + al2 dl = 0. (17)

The solution of Eqs. (14) and (16) can be written as

an1 = +
dm√
d2n + d2m

, (18a)

am1 = − dn√
d2n + d2m

; (18b)
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the same type solution of Eqs. (15) and (17) for the vector |a2〉 is

ak2 = +
dl√

d2k + d2l
, (19a)

al2 = − dk√
d2k + d2l

. (19b)

We need to find all coefficients an1 , am1 , ak2 , al2 fitting the orthogonality condition

〈a2|a1〉 = 0. (20)

It means that all indexes k, l, m, n should be different, i. e., vectors |a1〉 and |a2〉
should be superpositions of different oscillator functions.

To define completely the simplest DET-PET, we need to fix the rotation angle β,
the index ± related to the sign of detU0, and the set of four oscillator functions used
to build the vectors |a1〉 and |a2〉. To distinguish various DET-PET types we use
notations like 0s2s1s2d±. In this example, the vector |a1〉 is a linear combination of
the oscillator states 0s and 2s, the vector |a2〉 is a linear combination of the oscillator
states 1s and 2d and detU0 = ±1 respectively.

3 Results

We study modifications of JISP16 NN interaction induced by DET-PET. Vectors |a1〉
and |a2〉 [see Eqs. (12), (13)] are constructed as various superpositions of two low-lying
oscillator functions 0s, 1s, 2s, 3s, 0d and 1d. It is interesting to explore DET-PETs
acting in the s channel only and compare them with DET-PETs mixing s and d
channels in different ways. It is interesting also to investigate the transformations
associated with both pure rotation and a rotation-reflection combination in case of
each DET-PET type.

Plots of the np scattering wave functions in the sd coupled partial waves at labo-
ratory energy Elab = 10 MeV are presented in Figs. 1–3 in the K-matrix formalism.
We use here the nomenclature and terminology adopted in Ref. [3]. The DET-PET
0s2s1s3s± modifies significantly the large s wave component as is seen in Fig. 1. The
modification of the small s wave component is much less pronounced. The d wave
components, as expected, are nearly unaffected by 0s2s1s3s±. We observe modi-
fications of both waves by DET-PETs 0s1s0d1d± and 1s0d0s1d± in Figs. 2 and 3,
however, unlike the previous case, they are more pronounced in the small components
of the scattering wave function since the DET-PETs mix s and d waves in these cases.
We see that DET-PETs are able to generate essential modifications of scattering wave
functions.

The NCSM calculations involve two basic parameters: the oscillator spacing ~Ω
and model space dimension associated with the maximal excitation quanta Nmax. It
has been proposed [1] to use the ~Ω and Nmax dependences to improve the results
of calculations (the NCFC approach). Based on these dependences, we extrapolate
the NCSM results to the infinite basis space limit and estimate the accuracy of the
extrapolation. NCFC suggests two extrapolation methods: extrapolation A and ex-
trapolation B [1]. The extrapolations A and B usually provide consistent results. We
present here only the extrapolation A results based on the NCSM calculations with
model spaces up through Nmax = 16; we checked the consistency of our results with
the ones obtained by extrapolation B in a number of cases. The evaluated uncertain-
ties of results for binding energies presented here are less then 10 keV in most cases;
in a few cases, we performed the NCSM calculations up to Nmax = 18 to obtain the
binding energies with uncertainty of about 10 keV.
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Figure 1: Large and small components of the np scattering wave function at the
laboratory energy Elab = 10 MeV in the sd coupled partial wave in the K-matrix
formalism (see Ref. [3] for details and nomenclature) generated by JISP16 and NN
interactions obtained from JISP16 by means of DET-PET 0s2s1s3s±. The sign of
detU0 is given in the legends in parenthesis after the value of rotation angle β.

The binding energies of 3H and 4He nuclei were calculated with JISP16 NN inter-
action modified by DET-PETs 0s2s1s3s±, 0s1s0d1d± and 1s0d0s1d±. The ranges of
3H and 4He binding energy variations for each DET-PET type are shown in Table 1.
We see that the 4He binding energy Eα can be varied by DET-PETs on the interval
from 21.25 through 30.41 MeV, i. e., DET-PET can change Eα by more than 7 MeV

Table 1: Ranges of 3H and 4He binding energy variations (in MeV) caused by various
types of DET-PET in comparison with the binding energies obtained with JISP16
and their experimental values.

3H 4He 3H 4He 3H 4He

0s2s1s3s+ 0s1s0d1d+ 1s0d0s1d+

7.2–8.37 21.25–28.49 7.67–8.41 23.50–28.83 7.98–8.64 25.79–30.36
0s2s1s3s− 0s1s0d1d− 1s0d0s1d−

7.25–8.35 21.46–28.59 7.68–8.39 23.46–28.91 8.05–8.67 26.18–30.41
JISP16 Experiment

8.369(1) 28.299(1) 8.482 28.296
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Figure 2: Same as Fig.1 but for DET-PET 0s1s0d1d±.

from its original value provided by the original JISP16 interaction. In the case of 3H
the range of the DET-PET binding energy variation is 7.21 ≤ Et ≤ 8.67, i. e., the 3H
binding energy Et can be shifted by DET-PET by 1 MeV from its original JISP16
value.

The Tjon line [18] is a correlation of the 3H and 4He binding energies which was
usually studied using results obtained with various NN interaction models allowing
for two-nucleon forces only or various combinations of NN and NNN interactions
(see, e. g., Ref. [19]). Here we study the Tjon line using families of NN potentials
generated by DET-PET with continuous parameter which generate the same deuteron
wave function. Two types of Tjon lines are shown in the each of Figs. 4-6. For each of
DET-PETs mixing a particular combination of partial wave components, one of the
Tjon line types corresponds to the case of pure rotation while the other corresponds to
the rotation-reflection transformation. The symbols at the curves present the results
obtained with different values of the angle β in the range from 0◦ through 360◦. We use
the step 60◦ for smooth regions of the curves and 30◦ in some cases around extremums
of the 3H and 4He binding energies which are found usually around 180◦ and 360◦. In
addition to our results, we present in the figure also the experimental value and results
of Refs. [19, 20, 21], obtained with other potential models which involve either two-
nucleon forces only or combinations of two-nucleon and three-nucleon interactions.

We begin the discussion of the Tjon lines from the results obtained with the
1s0d0s1d±. It is seen from the Fig. 4 that our results are concentrated close to
the Tjon line connecting the points extracted from other interactions. We recall here
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Figure 3: Same as Fig.1 but for DET-PET 1s0d0s1d±.
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Figure 4: Tjon line obtained with DET-PET 1s0d0s1d± in comparison with results
obtained with variousNN andNN+NNN interaction models from Refs. [19, 20, 21].
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Figure 5: Same as Fig. 4 but for DET-PET 0s1s0d1d±.

that this DET-PET leave the large wave function components nearly unchanged while
modifies essentially the small components as is seen from Fig. 3; such transformations
correspond to strong modification of the tensor component of NN interaction.

Now we turn the discussion to the DET-PET 0s1s0d1d±. In this case, the DET-
PET results in a very different range of binding energies variations (see the Table 1
and Fig. 5). The binding energies in this case are also correlated along a nearly
straight line, however this line has a very different slope. As a result, our binding
energy correlations around the maximal 3H and 4He binding energies accessible by this
DET-PET are consistent with the correlations derived from other interaction models;
however our correlations deviate from those obtained with other interactions as the
binding energies decrease and the difference between our correlations and derived
from other potential models become essential around the minimal binding energies.
We have also a strong modification of the tensor component of the NN force in this
case as seen in Fig. 2.

Let us discuss now the DET-PET 0s2s1s3s±. It results in the 3H and 4He binding
energy correlation shown in Fig. 6. We see that in this case the Tjon lines transform
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Figure 6: Same as Fig. 4 but for DET-PET 0s2s1s3s±.



48 V. A. Kulikov, A. M. Shirokov, A. I. Mazur, J. P. Vary and P. Maris

into closed-loop curves surrounding large enough areas. In the case of the DET-PET
0s2s1s3s− our Tjon curve surrounds the line derived from other NN interactions.
The DET-PET 0s2s1s3s+ generates the Tjon curve shifted down from the Tjon line
suggested by other interactions. This DET-PET 0s2s1s3s± mixes only s-waves and
does not affect the tensor component of the NN forces (see Fig.1.)

4 Conclusions

We have introduced [14] a new type of phase-equivalent transformations, DET-PET,
preserving the deuteron wave function and investigated transformations of the JISP16
NN interaction induced by few DET-PET versions mixing oscillator components in
various combinations. We demonstrated that DET-PETs are able to modify signif-
icantly the np scattering wave functions. We studied DET-PET manifestations in
the binding energies of 3H and 4He nuclei and found out that these bindings can be
significantly changed by DET-PETs. We investigated also the correlation of these
binding energies and found out that DET-PETs with some values of their param-
eters can significantly modify this correlation; more, in some cases, this correlation
is washed out by DET-PET as compared with the conclusions based on the results
obtained with other potential models. We speculate that DET-PET can be helpful
in the further development of JISP-like NN interactions. It would be interesting to
study DET-PET manifestations in binding energies and other observables of heavier
nuclei.
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Abstract

We use algorithms of computational group theory to perform ab initio no-
core shell model calculations in a SU(3)-based coupling scheme for p-shell nuclei.
Details given for 6Li are reflective of similar results found for 8B, 8Be, 12C, and
16O, all of which exhibit a strong preference for large quadrupole deformations
and a narrow set of intrinsic spin quantum numbers. Our results suggest that
a small subspace of symmetry-adapted configurations can very closely approx-
imate the exact solutions while allowing for exact factorization of the center-
of-mass degrees of freedom. This, in turns, promises to allows us to extend
the reach of the ab initio framework for structure and reaction studies towards
sd-shell nuclei and beyond.

Keywords: No-core shell model; SU(3) coupling scheme; p-shell nuclei

1 Introduction

Theoretical advances achieved in recent years in the development of realistic nuclear
potential models [1, 2, 3, 4] along with progress in high performance computing have
placed ab initio many-particle approaches [5, 6, 7] at the frontier of nuclear structure
explorations. The ab initio methods are built on fundamental principles and therefore
hold promise to provide predictive capabilities essential for a description of the struc-
ture and reactions of unstable and exotic nuclei, many of which are of high interest,
e. g., in nucleosynthesis, but remain inaccessible even to experiment.

The no-core shell model (NCSM) [5] is a prominent ab initio method that has
achieved a good description of low-lying states and associated spectroscopic properties
up through p-shell nuclei [8, 9, 10]. The NCSM typically employs the Lanczos algo-
rithm to solve the eigenvalue problem for a realistic Hamiltonian. Matrix elements of
the Hamiltonian are calculated in a many-particle basis of m-scheme states, which are
constructed as an antisymmetrized product of the harmonic oscillator single-particle
wave functions, and carry the z-component of the total angular momentum along with
the total parity as good quantum numbers. The main limitation of this approach,
and the predictive power thereof, is inherently coupled with the combinatorial growth
in the size of the many-particle model space with increasing nucleon numbers and
expansion in the number of single-particle levels in the model space.

We developed an innovative ab initio model, the symmetry-adapted no-core shell
model (SA-NCSM), which utilizes a many-particle basis that exploits the physically
relevant SU(3)⊃SO(3) group-subgroup chain. The significance of the SU(3) group for
a microscopic description of the nuclear collective dynamics can be readily seen from
the fact that it is the symmetry group of the Elliott model [11], and a subgroup of
the Sp(3,R) symplectic model of nuclear collective motion [12, 13]. The concept of
symmetry-adapted many-particle basis represents a powerful tool that allows one to
winnow a model space to correlations indispensable for modeling important modes
of nuclear collective dynamics, specifically nuclear deformation and cluster substruc-
tures, thereby overcoming the scale explosion bottleneck of ab initio nuclear structure
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computations. Hence, the SA-NCSM framework holds promise to expand dramati-
cally the reach of current ab initio approaches toward describing heavier mass nuclei
with unprecedented accuracy.

2 Ab initio calculations in SU(3)-scheme basis

The basis states of the SA-NCSM are constructed in the proton-neutron formalism and
are labeled by the physical SU(3)⊃SO(3) subgroup chain quantum numbers (λµ)κL,
and by proton, neutron, and total intrinsic spins Sp, Sn, and S. The orbital angular
momentum L is coupled with S to the total angular momentum J and its projection
MJ . Each basis state is thus labeled in the SU(3)-scheme as

|~αN(λµ)κL;SpSnS; JMJ〉, (1)

where N signifies the number of harmonic oscillator quanta with respect to the mini-
mal number for a given nucleus. The deformation-related (λµ) set of quantum num-
bers labels SU(3) irreducible representations (irreps) and bring forward important
information about nuclear shapes and deformation. For example, (00), (λ 0) and
(0µ) describe spherical, prolate and oblate shapes, respectively. The label κ distin-
guishes multiple occurrences of the same L value in the parent irrep (λµ). The symbol
~α schematically denotes the additional quantum numbers needed to unambiguously
distinguish between irreps carrying the same N (λµ)SpSnS quantum numbers. These
irreps compose a well-defined subspace with a unique feature that allows for the com-
plete separation of intrinsic and center-of-mass degrees of freedom [14].

The SA-NCSM implements a set of powerful algorithms [15, 16] which facilitate
calculations of matrix elements of arbitrary (currently up to two-body, but expand-
able to higher-rank) operators in the SU(3)-scheme basis. This allows for both the
evaluation of the Hamiltonian matrix elements, and the use of the resulting eigenvec-
tors to evaluate other experimental observables. The underlying principle behind the
SA-NCSM computational kernel is the SU(3) Wigner-Eckhart theorem, which allows
the problem to be factorized into SU(3) reduced matrix elements (RMEs) and SU(3)
coupling/recoupling coefficients. The former are calculated from a set of single-shell
RMEs by the repetitive application of the SU(3) reduction formula for RMEs of op-
erators acting on two independent proton and neutron subsystems, while the latter
are computed using a publicly available library [17].

3 Structure of nuclear wave functions

Here we use the SA-NCSM with the bare JISP16 NN interaction [1] to calculate
binding energies and determine low-lying eigenstates of 6Li, 8Be, 12C, and 16O nuclei.
The resulting wave functions are used to determine values or physical observables
such as point-particle root-mean-square (rms) matter radii, electric quadrupole mo-
ments, magnetic dipole moments, reduced electromagnetic B(E2) and B(M1) tran-
sition strengths.

The expansion of calculated wave functions in a physically relevant SU(3)-scheme
basis is illuminating salient features that emerge from the complex dynamics of
strongly interacting many-particle systems. To explore the nature of the most im-
portant correlations, the probability distribution of intrinsic spins (Sp Sn S) and
deformation-related (λµ) quantum numbers of SU(3) for the lowest-lying T = 0
states of 6Li were analyzed. Figure 1a shows the probability distribution of intrinsic
spins across their Pauli-allowed deformations in the ground state of 6Li. This figure
illustrates a facet common to low-energy solutions considered: a highly structured and
coherent mix of intrinsic spins and SU(3) spatial quantum numbers that has hereto-
fore gone unrecognized in other ab initio studies. These results clearly corroborate
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Figure 1: Probability distribution of proton, neutron, and total intrinsic spins
(Sp Sn S) across their Pauli-allowed (λµ) deformations (horizontal axis) in the ground
1+ state of 6Li (a) and the ground 0+ state of 8Be (b) obtained with JISP16 bare in-
teraction for ~Ω = 20 MeV in Nmax = 10 (a) and Nmax = 8 (b) full model spaces. The
area of each circle is proportional to the total probability of N (λµ)SpSnS states nor-
malized with respect to the total probability of N (2+N 0) 1

2
1
2 1 and N (4+N 0) 0 0 0

stretched states, respectively.

the much earlier phenomenological work carried out within the context of the Elliott
SU(3) model [11].

Specifically, we found that over 99% of the SA-NCSM eigenstates are accounted
for by a small fraction of intrinsic spin combinations. For instance, the lowest-lying
eigenstates in 6Li are almost entirely realized in terms of configurations characterized
by the following intrinsic spin (Sp Sn S) quantum numbers: (32

3
2 3), (12

3
2 2), (32

1
2 2),

and (12
1
2 1), with the last one carrying over 90% of each eigenstate. Likewise, the same

spin components as in the case of 6Li are found to dominate the ground state and the
lowest 1+, 3+, and 0+ excited states of 8B (Table 1). Similarly, the ground state band
of 8Be and 12C along with the ground state of 16O are found to be dominated by many-
particle configurations carrying total intrinsic spin of the protons and neutrons equal
to zero and one, with the largest contribution due to (Sp Sn S) = (0 0 0) configurations.
This is illustrated in Figure 1b for the ground state of 8Be.

The mixing of (λµ) spatial quantum numbers induced by the SU(3) symmetry
breaking terms of realistic interactions, exhibits a remarkably simple coherent pat-
tern. One of its key features is the preponderance of a single 0~Ω SU(3) irrep, the
so-called leading irrep, that is, the one characterized by the largest value of the sec-
ond order SU(3) Casimir invariant, Ĉ2, and hence corresponding to a large intrinsic
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Table 1: Probability amplitude of the dominant (Sp Sn S) spin configuration and the
dominant nuclear shapes according to Eq. (2) for the ground state of p-shell nuclei.

Nucleus (Sp Sn S) Prob. [%] (λ0 µ0) Prob. [%]
6Li (12

1
2 1) 93.26 (2 0) 98.13

8B (12
1
2 1) 85.17 (2 1) 87.94

8Be (0 0 0) 85.25 (4 0) 90.03
12C (0 0 0) 55.19 (0 4) 48.44
16O (0 0 0) 83.60 (0 0) 89.51

quadrupole deformation [18]. For instance, the low-lying T = 0 states of 6Li project
at 40%-70% level onto the prolate-like 0~Ω SU(3) irrep (2 0). For the considered
states of 8B, 8Be, 12C, and 16O, qualitatively similar dominance of the leading 0~Ω
SU(3) irreps is observed – (2 1), (4 0), (0 4), and (0 0) irreps, associated with triaxial,
prolate, oblate, and spherical shapes, respectively. Such a clear dominance of the
largest 0~Ω deformation within the low-lying states of p-shell nuclei points to the fact
that the effective quadrupole-quadrupole interaction of the Elliott SU(3) model of
nuclear rotations [11] is realized naturally within the framework of modern realistic
interactions.

The analysis reveals that the dominant SU(3)-scheme states at eachN~Ω subspace
are typically those with (λµ) quantum numbers such that

λ+ 2µ = λ0 + 2µ0 +N, N = 0, 2, . . . , (2)

where λ0 and µ0 denote labels of a leading SU(3) irrep at the 0~Ω (N = 0) subspace
(Table 1). We conjecture that this coherent pattern of SU(3) quantum numbers
reflects the presence of an underlying symplectic Sp(3,R) symmetry of microscopic
nuclear collective motion [12] that governs the low-energy structure of both even-even
and odd-odd p-shell nuclei. This can be seen from the fact that configurations with a
(λµ) shape that satisfies condition (2) can be determined from the leading SU(3) irrep
(λ0 µ0) through a successive application of a specific subset of the Sp(3,R) symplec-
tic 2~Ω raising operators. This subset is composed of the three operators, Âzz , Âzx,
and Âxx, that distribute two oscillator quanta in z and x directions, but none in
y direction, thereby inducing SU(3)-scheme configurations with ever-increasing val-
ues of the Casimir invariant Ĉ2. These three operators are the generators of the
Sp(2,R) ⊂ Sp(3,R) subgroup [19], and give rise to a hierarchy of deformed shapes
that are energetically favored by an attractive quadrupole-quadrupole interaction [13].
Furthermore, there is an apparent hierarchy among states that fulfill condition (2).
In particular, the N~Ω configurations with (λ0+N µ0), the so-called stretched states,
carry a noticeably higher intensity than the others. For instance, the (2 +N 0)
stretched states contribute at the 85% level to the ground state of 6Li. The sequence
of the stretched-states, that is, the states with the highest possible deformations, can
be formed from many-nucleon correlations of a leading SU(3) irrep by application of
the Âzz operator, which is the generator of Sp(1,R) ⊂ Sp(2,R) ⊂ Sp(3,R) subgroup.

The revealed pattern of intrinsic spin and deformation mixing supports a sym-
metry guided truncation of the Nmax model space. Clearly, one can take advantage
of the physical relevance of the SU(3)-scheme basis to winnow the full space down
to the most relevant configurations that support the strongest many-nucleon corre-
lations of the system using the underlying Sp(1,R) ⊂ Sp(2,R) ⊂ Sp(3,R) symmetry
considerations. As noted previously, this truncation, while significantly reducing the
size of the model space, also preserves the ability to factor out exactly the spurious
center-of-mass degrees of freedom.
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Figure 2: Pauli-allowed (λµ) deformations and their proton, neutron, and total intrinsic spins (Sp Sn S) for the positive-parity J = 1 states of 6Li
spanning the full Nmax = 12 model space. Each circle represents basis states carrying the same N (λµ)SpSnS quantum numbers, with the radius
being proportional to log10 of the number of such states. Configurations symbolized by the filled circles constitute the symmetry-truncated model
space 12[6].
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4 Efficacy of the SU(3) basis

To probe the adequacy of the symmetry-adapted approach for the ab initio modelling
of nuclear structure, we used the calculated eigenstates to determine spectroscopic
properties of low-lying T = 0 states of 6Li using a model space winnowed through
symmetry considerations, and compared the outcomes with the corresponding results
obtained in the full Nmax = 12 space. In the study, Coulomb and bare JISP16 NN
interactions were used for ~Ω oscillator strengths ranging from 17.5 up to 25 MeV.
The selected model space, depicted in Fig. 2 and denoted by 12[6], incorporates all
configurations carrying excitations up to 6 oscillator quanta (labeled by [6]) and only
a subset of the shapes and a few intrinsic spin components to realize the leading
modes of nuclear collective motion for the higher 8~Ω, 10~Ω and 12~Ω configurations.
The model space 12[6] constitutes a small percentage of the full space. For example,
the full Nmax = 12 model space dimension is 4.9× 107 whereas the dimensions of the
12[6] subspaces with total angular momenta J = 1, J = 2, and J = 3, are 4.3 × 105

(0.87%), 6.5× 105 (1.32%), and 8.3× 105 (1.70%), respectively.

The ground state binding energies calculated in 12[6] for oscillator energy ~Ω rang-
ing from 17.5 to 25 MeV represent from 98% up to 98.7% of the full-space binding
energy. Furthermore, the excitation energies of 3+1 , 2+1 , and 1+2 states calculated in
12[6] model space differ only by 20 keV to a few hundreds of keV from the corre-
sponding full-space results, see Fig. 3.

As illustrated in Table 2 for ~Ω = 17.5 MeV, the magnetic dipole moments agree
to within less than about 0.3%, or 5% for the µ(2+1 0). As the dipole moment is a
short-range operator, the results suggest that it may suffice to include all low-lying ~Ω
states up to a fixed limit, e. g. Nmax = 6 for 6Li, to account for the most important
short-range correlations.

To explore how closely one comes to reproducing the important long-range corre-
lations of the full Nmax = 12 space in terms of nuclear collective excitations within the
more restricted 12[6] space, we compared observables that are sensitive to the tails
of the wave functions; specifically, the point-particle rms matter radii, the electric
quadrupole moments and the reduced electromagnetic B(E2) transition strengths.
The results for the rms matter radii, listed in Table 2 for ~Ω = 17.5 MeV, agree to
within 1%. Similarly, the 12[6] eigensolutions yield results for these quantities that
track very closely with their full [12] space counterparts for all values of ~Ω, as can be
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Figure 3: Experimental and theoretical excitation energies of T = 0 states of 6Li.
Theoretical estimates were obtained at ~Ω = 22.5 MeV in the full Nmax = 12 (middle)
and the symmetry-truncated 12[6] (right) model spaces.
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Table 2: Magnetic dipole moments µ [µN ] and point-particle rms matter radii [fm]
of T = 0 states of 6Li calculated in the full Nmax = 12 and 12[6] model spaces for
~Ω = 17.5 MeV. The experimental value for the 1+ ground state is known to be
µ = +0.822 µN .

1+1 0 3+1 0 2+1 0 1+2 0
µ

Full Nmax = 12 0.838 1.866 0.960 0.336
12[6] SU(3) 0.840 1.866 1.015 0.337

rms
Full Nmax = 12 2.146 2.092 2.257 2.373
12[6] SU(3) 2.139 2.079 2.236 2.355

seen in Fig. 4. Also, as the B(E2) strengths almost doubles upon increasing the basis
space from Nmax = 6 to Nmax = 12 — a result that suggests that further expansion of
the basis space may be needed to reach the experimental value of 21.8(4.8) e2fm4, the
close correlation between the Nmax = 12 and 12[6] results is even more impressive.

5 Conclusion

We have developed a novel approach that capitalizes on advances being made in ab
initio methods while exploiting exact and partial symmetries of nuclear many-body
system. Using this approach we have demonstrated that the low-lying eigenstates of
6Li, 8Be, 12C, and 16O, which were obtained using the JISP16NN interaction, exhibit
a strong dominance of few intrinsic spin components and carry an intriguingly simple
pattern of dominant deformations. The results very clearly underscore the significance
of the SU(3) scheme, LS-coupling, and underlying symplectic symmetry in enabling
an extension, through symmetry-guided model space reductions, of ab initio methods
to heavier nuclei beyond 16O.
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red line) and symmetry-truncated 12[6] (dashed black line) model spaces.
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Abstract

General properties of nuclear vertex constants and asymptotic normalization
coefficients as well as the methods of their determination are discussed. Selected
problems of nuclear astrophysics are outlined. A relation between asymptotic
normalization coefficients (ANCs) and astrophysical nuclear reactions is eluci-
dated. An analytic continuation of the effective range expansion is applied to
the α+ d system which is of interest for nuclear astrophysics.

Keywords: Analytic continuation; vertex constants; lithium; nuclear astro-
physics

1 Introduction

Asymptotic normalization coefficients (ANCs) determine the asymptotics of nuclear
wave functions in binary channels. ANCs are proportional to nuclear vertex constants
(NVC) which determine the virtual processes a→ b+c and are related directly to the
residue in energy of the elastic bc scattering amplitude at the pole corresponding to
the bound state a [1]. NVCs and ANCs are fundamental nuclear characteristics. They
are used actively in analyses of nuclear reactions within various approaches. NVCs
and ANCs extracted from one process can be used for the prediction of characteristics
of other processes. Comparing empirical values of NVCs and ANCs with theoretical
ones enables one to evaluate the quality of a model.

The ANC for the channel a → b + c determines a probability of the configura-
tion b + c in nucleus a at distances greater than the radius of nuclear interaction.
Thus ANCs arise naturally in the expressions for cross sections of nuclear reactions
between charged particles at low energies, in particular, of astrophysical nuclear reac-
tions. Nuclear reactions in stars and stellar explosions are responsible for the synthesis
of chemical elements. Note that due to the Coulomb barrier cross sections at astro-
physical energies are so small that their direct measurement in laboratories is very
difficult, or even impossible. Hence knowing ANCs allows one to obtain additional
and important information on astrophysical nuclear reactions.

ANC values could be determined from microscopic calculations, however such
calculations are rather tedious. The theoretical results should be matched to the
empirical ones obtained from data on scattering and reactions. One of the promising
methods to extract ANCs is the analytic continuation of bc-scattering data to a pole
of a scattering amplitude corresponding to a bound state a lying in the unphysical
region of negative energies. The most effective way of realization of that procedure is
the analytic continuation of the effective range function.

The present paper deals with various problems related to the methods of analytic
continuation of scattering data and to utilization of these methods for obtaining an in-
formation on astrophysical nuclear reactions. The plan of the paper is as follows. We
discuss the general properties of NVCs and ANCs and methods of their determination
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in Section 2. Section 3 is dedicated to selected problems of nuclear astrophysics in-
cluding indirect methods of obtaining information on astrophysical nuclear reactions.
The analytic continuation of the effective range expansion is applied in Section 4 to
the α+ d system which is of interest for nuclear astrophysics.

The system of units with ~ = c = 1 is used throughout the paper.

2 ANCs and NVCs

2.1 Definition and properties of ANCs and NVCs

ANC Cabc(LS) for the a→ b+ c channel is defined as a coefficient in the asymptotics
of the radial overlap integral of the wave functions of a, b, and c nuclei [1]

Iabc(LS; r)|r→∞ → Cabc(LS)W−ηb,L+1/2(2κr)/r. (1)

Here r is the distance between b and c, L and S are the channel orbital angular
momentum and the channel spin, κ2 = 2µǫ, ǫ = mb + mc − ma, mi is the mass
of particle i, µ = mbmc/ma, ηb = ZbZce

2µ/κ is the Sommerfeld parameter for the
bound state and Wm,n(z) is the Whittaker function.

Note that the asymptotical form (1) has been rigorously proved only for the sim-
plest case when the composite system a consists of two elementary constituents. In
that case the form (1) follows directly from the Schrödinger equation. For three-
and more particle systems the asymptotics of overlap integrals may differ from (1)
(‘anomalous asymptotics’) [2, 3].

NVC Gabc(LS) is the on-shell matrix element of the virtual a → b + c process in
the given partial-wave state LS. It is related to the amplitude of elastic bc scattering

res 〈LS|MJa |LS〉 = (−1)LG2
abc(LS). (2)

Gabc and Cabc are interrelated:

Gabc(LS) = −(πNbc/µ
2)1/2L!/Γ(L+ 1 + ηb)Cabc(LS). (3)

Nbc arises due to the identity of nucleons. Its value depends on the way of antisym-
metrization of wave functions: 1 ≤ Nbc ≤ (Ab + Ac)!/(Ab!Ac!), Ai being the mass
number of the nucleus i. Nbc is often included into Cabc.

2.2 Methods of determination of ANCs and NVCs

1) Microscopic calculations of ANCs and NVCs are very tedious. Working in the
configuration representation, one should make calculations in the asymptotical region
where wave functions decrease exponentially entailing a low accuracy of the results.
Using the momentum representation needs analytic continuation to imaginary values
of momenta that is non-trivial. To author’s knowledge, there are only two ab initio
calculations of ANCs for nuclei with A > 3 [4, 5].

2) Theoretical results should be matched to the empirical ones obtained from analyses
of scattering and reactions. There are various methods of extracting ANCs and NVCs
from experimental data.

2a) Analysis of data on transfer reactions. If the pole diagram corresponding to
the transfer of particle c contributes to the amplitude of the a(x, y)b reaction, the
differential cross section σ(z) of this reaction possesses the 2nd order pole at z = z0
(z = cos θ, θ is the c.m. scattering angle, |z0| > 1) (Fig. 1). If one extrapolates the
experimental values of (z − z0)2 σ(z) to the pole position, one immediately obtains
the value of |GabcGyxc|2.2

2Account of the Coulomb interaction in the vertices of the pole diagram turns a pole to a branch
point.
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a b

c

x y

Figure 1: A pole diagram for a transfer reaction.

2b) Extrapolation in energy E of the partial-wave amplitude of elastic bc scattering
(obtained by the phase-shift analysis) to the pole corresponding to the bound state a.

Note that the problem of using continuum-state data to obtain information on
bound-state characteristics is non-trivial. It is written in the well-known monograph
[6]: “It is impossible to obtain information on bound states from characteristics of
scattering processes, as a matter of principle”.

This assertion is based on the inverse scattering theory which states that to restore
a local potential one needs to know: i) phase shifts δL(E) for some arbitrary L in the
whole region 0 ≤ E <∞ and ii) 2NL parameters characterizing NL bound states for
a given L [7]. One can use NL binding energies and NL ANCs as those parameters.
Thus, if the system possesses bound states, knowing δL(E) is not sufficient to restore
unambiguously a potential describing the system. Instead one gets an infinite set of
so-called phase equivalent potentials (PEP) which lead to identical scattering phase
shifts δL(E) but to different properties of the bound states for a given L.

There are various methods of constructing PEPs, e. g., Bargmann potentials [6]
or the supersymmetric transformation [8]. In particular, the supersymmetric trans-
formation can be used to construct a PEP which differs from the initial potential by
any modification of the bound spectrum. A bound state can be added or suppressed;
its binding energy and/or the ANC can be modified.

Hence within the formal potential approach with arbitrary potentials and without
any additional conditions, it is impossible to determine unambiguously characteris-
tics of bound states knowing only δL(E). A way to resolve this ambiguity problem
is to use a natural requirement that amplitudes of processes are analytic functions
of their kinematic variables. The analyticity property follows from a fundamental
microcausality principle.

Using the analyticity and knowing the partial wave bc scattering amplitude fL(E)
on some segment of the real positive semiaxis, one can continue analytically fL(E)
to the unphysical region E < 0 and obtain both the position of the pole E = −ǫ < 0
and the residue of fL(E) at that pole, that is, the NVC and ANC. (Note that we
discuss here a principal side of the problem and not a practical realization of analytic
continuation.)

Thus, in the case of potential scattering, knowing ǫ, ANC Cabc, and fL(E) at
0 ≤ E < ∞, one can construct unambiguously a local potential V (r) using methods
of the inverse scattering theory [7]. As a result, a unique ‘analytic’ potential would
be selected out of the set of PEPs, which leads to the needed analytic properties of
the scattering amplitude. This potential describes all bound and continuum states of
the given system.

Now let us discuss why the characteristics of a bound state obtained by the direct
analytic continuation of fL(E) from E ≥ 0 to E < 0 may differ from the characteristics
found by solving the bound state problem with the potential which describes correctly
fL(E) at E ≥ 0. To be specific, we will consider the case L = 0 (the index 0 will be
omitted). According to [6, Chapter 12], one can continue analytically the amplitude
f(k) to the band |Im k| < α in the k plane if the potential V (r) satisfies the condition

∫ ∞

0

|V (r)|e2αrrdr <∞, α > 0. (4)
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In the potential scattering theory the procedure of analytic continuation is based
on the expression for the partial-wave amplitude in the form

fL(k) = − µ

2π

∫ ∞

0

ϕL(kr)V (r)ψL(kr)dr, (5)

where ϕL and ψL are the plane wave and the exact wave function for given L, respec-
tively. Upon the continuation of k from the positive semiaxis to the complex plane,
the integrand in the r.h.s. of (5) develops terms proportional to e2|Im k|V (r) causing a
divergence of the integral in (5) at the upper limit if V (r) decreases insufficiently fast
for r→∞. In this case, the condition (4) ceases to hold and the analytic continuation
of the amplitude with the aid of expression (5) becomes impossible. However, there
is a possibility to perform an analytic continuation by a different method. This can
be done, for example, if an expression for fL(E) in the region E ≥ 0 is known or if
fL(E) for E ≥ 0 can be approximated quite accurately by some analytic expression.

Consider a trivial example

f(z) =

∫ ∞

0

e(a−z)tdt. (6)

f(z) is defined initially only for Re z > Re a since the integral diverges if this inequality
is violated. On the other hand, the integration can be performed explicitly: f(z) =
1/(z − a). This expression defines a function analytic on the entire complex z plane
with a pole at z = a.

Let us consider an instructive example of the Bargmann-type potential specified
in [6, Chapter 14] as

Vd(r) = −κ
µ

d

dr

[
sinh(br)

gd(κ, r)

gd(κ+ b, r)− gd(κ− b, r)

]
, (7)

where gd(x, r) = x−1[e−κr + d sinh(xr)].
In the S wave, this potential has one bound state, its binding energy ǫ = κ2/2µ.

The respective normalized radial wave function has the form:

ϕd = 2

√
κd

b2 − κ2
sinh(br)

gd(κ+ b, r)− gd(κ− b, r) , b > κ. (8)

For the potential (7), the effective-range approximation coincides with the exact so-
lution. In this case, the S wave phase shift is determined by the equation

k cot δ = −κb/(b+ κ) + k2/(b+ κ). (9)

The S wave scattering amplitude has the form:

f(k) =
e2iδ − 1

2ik
=

1

k cot δ − ik =
b+ κ

−bκ+ k2 − i(b+ κ)k
. (10)

As follows from (10), f(k) is independent of the parameter d; that is, expression (7)
determines a family of phase-equivalent potentials differing by the value of d. The
amplitude f(k) in (10) can be analytically continued to the region of imaginary k
where it has a pole at k = iκ. Expressing the vertex constant G and the asymptotic
normalization coefficient C in terms of the residue of f(k) at this pole, one obtains:

G =

[
2πκ(b+ κ)

µ2(b− κ)

]1/2
, C =

[
2κ(b+ κ)

b− κ

]1/2
. (11)

On the other hand, a d-dependent expression for the asymptotic normalization coef-
ficient can be obtained directly from (8). Specifically, one has:

Cd =

[
4κ(b+ κ)

d(b − κ)

]1/2
. (12)
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One can see that only at d = 2 does Cd given by (12) coincide with C given by (11).
The fact that the value of d = 2 stands out becomes understandable upon examining
the asymptotic behavior of the potential Vd(r) for r→∞. It can be shown that this
asymptotic behavior is given by

Vd(r) =

{
−V1e−2κr, d 6= 2
−V2e−2br, d = 2.

(13)

Since b > κ, the analyticity condition (4) for Vd(r) is satisfied at d = 2 but is violated
for all d 6= 2. Thus, an analytic continuation of the amplitude f(k) to the region of
imaginary values of k makes it possible to select among the set of phase-equivalent
potentials Vd(r), the only ‘analytic’ potential which corresponds to d = 2, and to
find the relevant correct values of the ANC C. As for phase-equivalent potentials
that are obtained by means of supersymmetry transformations, they develop at the
origin a singularity of the 1/r2 type (see [8]) and, hence, do not satisfy the analyticity
condition (4) just in the same way as the potential (7) does not satisfy it for d 6= 2.

So far, we have addressed a problem of a pure potential scattering of structureless
particles. For practical purposes, including applications in astrophysics, the case of
composite particles, first of all, nuclei, is of greater importance. Complex nuclei are
the subject of many-body theory. An attempt at describing elastic nucleon-nucleus
or nucleus-nucleus scattering within a two-body potential problem would lead to a
complex-valued optical potential that is in general nonlocal and energy and angular-
momentum dependent. Nevertheless, both the bound-state energy (which is usually
known from experimental data) and the respective NVC and ANC can in principle be
found as before by performing an analytic continuation of the partial-wave amplitude
fL(E) to the region of negative values of E (imaginary values of k). This continuation
may be realized in various ways. For example, G6Liαd and C6Liαd for the S wave
state of the α + d system were found by two methods in Ref. [9]. Within the first
method, an analytic Padé approximation of the scattering function k cot δ obtained
for E > 0 from the experimental phase shifts for the d 4He scattering was analytically
continued to the region E < 0, the parameters of the respective Padé approximants
being determined by means of the χ2 minimization. Within the second method, an
effective two-body dα potential Vdα(r) describing the same d 4He phase shifts was
constructed using the harmonic oscillator basis and the χ2 minimization. The next
step of this method involved deriving the two-body (d+α) wave function for the 6Li
bound state in the potential Vdα(r) and determining the respective ANC C6Liαd. The
two methods yielded rather close values of C6Liαd. Since the potential Vdα(r) was a
finite sum of harmonic-oscillator wave functions, it obviously satisfied the necessary
analyticity condition (4).

It should be noted that, in a general case, when b or c (or both) are composite
systems, the ANC Cabc refers to the overlap integral Iabc(r) which is normalized to
the spectroscopic factor Sabc rather than to unity. If, however, the ANC is found by
solving the bound-state problem for nucleus A on the basis of two-body potential Vbc
fitted to the bc phase shifts, the respective two-body wave function should be normal-
ized to unity. It would be incorrect to normalize this function to the independently
determined spectroscopic factor as was done, for example, in Ref. [10] for the 3He+α
system.

2.3 Inference

1. Using the fundamental analyticity property of scattering amplitudes and analytic
continuation methods allows one to obtain information on characteristics of nuclear
bound states (including ANCs) from the phase shift data. Thus the ambiguity related
to the existence of phase-equivalent potentials is removed.
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2. The most efficient method of analytic continuation is the analytic approximation
of the experimental values of k cot δ.

3. If the continuation is performed by fitting a two-body potential, one should use a
potential which decreases rapidly enough at r →∞. One should set the spectroscopic
factor equal to 1.

3 Selected problems of nuclear astrophysics

3.1 Introduction

Nuclear reactions in stars and stellar explosions are responsible for ongoing synthesis
of chemical elements. Nuclear physics plays an important role as it determines the
signatures of isotopic and elemental abundances found in spectra of stars, novae,
supernovae, and X-ray bursts.

The rapid neutron capture process (r-process) is responsible for existence of about
a half of stable nuclei heavier than iron. Capture cross sections for most of nuclei
involved are hard if just impossible to measure in the laboratory and indirect ex-
perimental approaches have to be employed to gather the relevant nuclear structure
information. The same concerns (p, γ) and (p, α) reactions.

Quantities used in nucleosynthesis calculations are reaction rates. A thermonu-
clear reaction rate is a function of density of interacting nuclei, their relative velocity
and the reaction cross section. Extrapolation procedures are often needed to derive
cross sections in the energy or temperature region of astrophysical relevance. While
non-resonant cross sections can be extrapolated rather well to the low-energy region,
the presence of continuum or sub-threshold resonances can complicate these extrap-
olations.

As an example of an important astrophysical reaction one may mention 7Be(p, γ)8B
which plays a major role for the production of high energy neutrinos from the β-decay
of 8B. These neutrinos come directly from the center of the Sun and are ideal probes
of the Sun structure. The reaction 12C(α, γ)16O is extremely relevant for the fate of
massive stars. It determines if the remnant of a supernova explosion becomes a black
hole or a neutron star. These two reactions are two examples only of a large number
of reactions not known yet with an accuracy needed for astrophysics.

3.2 Thermonuclear cross sections and reaction rates

The number r of reactions between a target j and a projectile k per unit volume and
time can be expressed as r = σvnjnk or, more generally, as

rjk =

∫
σvd3njd

3nk. (14)

Here σ is the cross section, v is the relative velocity, nj and nk are number densi-
ties. For nuclei j and k in an astrophysical plasma obeying a Maxwell–Boltzmann
distribution,

d3nj = nj

( mj

2πkT

)3/2
exp

(
mjv

2
j

2kT

)
d3vj , (15)

k is the Boltzmann constant and T is the absolute temperature. Using (15), one can
rewrite (14) as

rjk = 〈σv〉jk , 〈σv〉jk =

(
8

πµjk

)1/2

(kT )−3/2

∫ ∞

0

Eσ(E) exp

(
− E

kT

)
dE, (16)

where 〈σv〉jk is an average over the temperature distribution.
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3.3 Charged particles

Experimentally, it is more convenient to work with an astrophysical S factor:

S(E) = Eσ(E)e2πη , η = ZjZke
2/v. (17)

Eq. (16) can be written as

〈σv〉jk =

(
8

πµjk

)1/2

(kT )−3/2

∫ ∞

0

S(E) exp

(
− E

kT
− b

E1/2

)
dE, b = 2πηE1/2.

(18)
If one assumes that S(E) is a constant, the integrand in (18) is maximal at the Gamow
energy E0 = (bkT/2)2/3.

Measurements of cross sections at low energies are difficult and their extrapolation
from higher energies can be complicated by presence of unknown resonances.

3.4 Nuclear reactions at the Sun

The Sun belongs to the main-sequence stars which energy is governed by the pp- and
CNO-cycles (Figs. 2, 3).

According to the Standard Sun model, 99% of the Sun energy is generated by the
pp-cycle (see Fig. 4), an ultimate result of this cycle is the transmutation of 4 protons
into helium

4p→ 4He + 2e+ + 2νe. (19)

The explosive nuclear burning in astrophysical environments produces short-lived
exotic nuclei which in turn can play a role of targets in subsequent reactions. In
addition, it involves a very large number of stable nuclei still not fully explored in
experiments. Thus, it is necessary to be able to predict reaction cross sections and
thermonuclear rates with the aid of theoretical models, moreover, a direct cross section
measurement is often not possible with existing experimental techniques. For getting
a reliable result obtained by extrapolation down to the stellar energies of the cross
sections measured at the lowest possible energies in the laboratory, such extrapolations
should have as strong theoretical foundation as possible. The theory is even more
mandatory when excited or unstable nuclei are involved in the entrance channel.

99.76% 0.24%

83.30% 16.70%
~2·10 %

-5

99.88% 0.12%

ppI ppII ppIII

p + p →
2H + e+ + νe p + e− + p →

2H + νe

2H + p →
3H + γ

3He +3He →
4He + 2p 3He +4He →

7Be + γ 3He + p →
4He + e+ + νe

7Be + e−→
7Li + νe

7Be + p →
8B + γ

7Li + p → 2 4He 8B →
8Be∗ + e+ + νe

Figure 2: The pp-cycle.
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Figure 3: The CNO-cycle.

3.5 Nuclear reaction models

1. Potential models assume that physically important degrees of freedom are the rel-
ative motions between structureless nuclei in the entrance and exit channels. Interac-
tion between them is described by an optical potential (usually of the Woods–Saxon
form). DWBA is used practically for all astrophysical nuclear reactions. The only mi-
croscopic information is introduced in terms of spectroscopic factors and parameters
of the optical potential. A deficiency of these models is that the optical parameters
cannot be determined unambiguously.

2. In microscopic models, nucleons are grouped into clusters and completely an-
tisymmetrized relative wave functions between various clusters are determined by
solving the Schrödinger equation for a many-body Hamiltonian with an effective
nucleon-nucleon interaction. Typical cluster models are based on the Resonating
Group Method (RGM) or the Generator Coordinate Method (GCM). They result in
a complicate set of coupled integro-differential equations. Modern nuclear shell-model
calculations, such as the Monte Carlo shell model, or the no-core shell model, are able
to provide the wave functions for light nuclei. However so far they cannot describe
scattering wave functions with a sufficient accuracy.

Theoretical results for the astrophysical S-factor for the 7Be(p, γ)8B reaction are
shown in Fig. 5. The dashed line corresponds to the no-core shell model and the dotted
line to RGM. Experimental data are taken from 8 different papers. It is evident that
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Figure 4: Relative energy release in stars as a function of temperature. The dotted
line corresponds to the Sun.



66 L. D. Blokhintsev

7Be(p, γ)8B

32

28

24

20

16

12
0 0.5 1.0 1.5

Erel (MeV)

S
(e
V
·
b
)

Figure 5: Comparison of theoretical and experimental results for the 7Be(p, γ)8B
reaction. Dashed line — no-core shell model, dotted line — RGM. See Ref. [11] for
details.

both theory and experiment need improvement for this important reaction.

3. Field theories adopt a completely independent approach to nuclear physics
calculations which does not use the concept of nuclear potentials. The basic method
of field theories is to start with a Lagrangian for the fields which is used to con-
struct Feynman diagrams that are utilized for practical calculations. Effective field
theory (EFT) bypasses complications of quantum chromodynamics (QCD) using an
expansion over a small parameter determined as a ratio of short-range and long-range
(or ‘light’ and ‘heavy’) scales. Practically, for the NN interaction, this parameter is
conventionally defined as

p =
(1/a,B, k)

Λ
, (20)

where for the ‘light’ scale one uses either 1/a (a is the NN scattering length), or a
typical binding energy B, or a typical nucleon momentum k. The ‘heavy’ scale is
determined by the pion mass: Λ ∼ mπ ∼ 140 MeV.

The reaction rates dominated by the contributions from a few resonant or bound
states, are often extrapolated to energies of astrophysical interest in terms of R-
matrix fits. The appeal of these methods rests on the fact that analytical expressions
can be derived from underlying formal reaction theories allowing for a rather simple
parameterization of the data. However, the relation between the parameters of the
R-matrix model and the experimental data is quite indirect.

A large fraction of the reactions of interest proceed through compound systems
that exhibit high enough level densities to provide a reliable description of the reaction
mechanism by means of statistical methods. A theoretical treatment of nuclear reac-
tions leading to formation and decay of compound nuclei was developed by Ewing and
Weisskopf based on two ideas: (a) the compound nucleus formation independence hy-
pothesis as proposed by Niels Bohr, and (b) the reciprocity theorem, or time-reversal
properties of the underlying Hamiltonian. This allows one to relate capture and decay
cross sections.

3.6 Effects of electron screening

The form of the astrophysical S factor given in Eq. (17) assumes that the electric
charges of nuclei are ‘bare’ charges. However, this is the case neither at very low lab-
oratory energies, nor in stellar environments. In stars, the bare Coulomb interaction
between nuclei is screened by the electrons in the plasma surrounding them. If one
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measures reaction rates in the laboratory using atomic targets (always), the atomic
electrons provide screening as well.

1. Stellar electron screening

Coulomb interaction between two charges in a neutral plasma can be written as

V (r) =
Z1Z2e

2

r
exp

(
− r

RD

)
, (21)

where RD is the Debye radius, i. e., the scale over which mobile charge carriers in the
neutral medium screen out electric fields. In the weak screening approximation

V (r) ≈ Z1Z2e
2

r

(
1− r

RD

)
= Vb(r) + U0, U0 = −Z1Z2e

2

RD
. (22)

As a result, the reaction velocity increases:

〈σv〉screened = f〈σv〉bare, f = exp(|U0|/kT ). (23)

2. Atomic electron screening

The laboratory screening can be evaluated in the adiabatic approximation assum-
ing that the electron velocities in the target are much larger than the velocity of
the relative motion between the projectile and the target nucleus. In this case, the
electronic cloud at each instant time t adjusts to the ground state of a ‘molecule’
consisting of two nuclei separated by a time-dependent distance R(t). Since the clos-
est approach distance between the nuclei is much smaller than typical atomic cloud
sizes, the binding energy of the electrons will be given by the ground-state energy B
of the Zp + Zt atom. Energy conservation implies that the relative energy between
the nuclei increases by

Ue = B(Zp + Zt)−B(Zt). (24)

Ue is the screening potential. This energy increment enhances the fusion (tunneling)
probability. Supposing that Ue/E is small and using (17) one gets

σ(E + Ue) = exp

[
πη(E)

Ue

E

]
σ(E). (25)

The values of Ue needed to reproduce the experimental data are systematically larger
than the theoretical ones by a factor of 2 (see Fig. 6).

3.7 Indirect methods of obtaining information
on astrophysical nuclear reactions

1. Trojan horse method

The Trojan horse (TH) method [12, 13] is an efficient indirect method of deter-
mining cross sections of astrophysical binary reactions by measuring cross sections
of reactions with three particles in the final state. Suppose we are interested in the
A+ x→ B + y reaction at low (astrophysical) energies, and direct measurements are
not possible due to the Coulomb barrier. Consider the reaction 1 + A → 3 + B + y
where 1 = 3 + x. The particle 1 is the Trojan horse which includes the particle x.

Consider the quasifree mechanism (Fig. 7). At low momentum transferred from
1 to 3, this mechanism may provide a dominant contribution (or at least determine
angular and energy dependencies). The respective differential cross section is of the
form:

σ3diff(A+ 1→ B + y + 3) = KFψ2(1→ 3 + x)σ̃2diff(A+ x→ B + y). (26)
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Figure 6: S factor of the 3He(d, p)4He reaction. Dashed curve — bare nuclei, solid
curve — screened nuclei with Ue = 219 eV (theory gives Ue = 119 eV). See Ref. [11]
for details.

Here KF is a known kinematical factor, ψ is the wave function of particle 1 in the
3 + x channel, and σ̃2diff is a modified differential cross section of the binary reaction
of interest. If KF and ψ are known, σ̃2diff can be extracted from σ3diff .

As a typical example, one sets 1 = d, x = p, and 3 = n.

σ̃2 differs from the free cross section σ2 by particle x being virtual (off-shell), that
is σ̃2 describes the A+ x→ B + y process half-off-shell.

Using the energy and momentum conservation laws at the vertices of the diagram
of Fig. 7, one can show that the relative momentum k of particles A and x in the
initial state of the reaction A + x → B + y remains non-zero as the relative kinetic
energy EAx → 0. Hence the Coulomb barrier factor e−2πηi does not appear in the
expression for σ̃2, and it remains finite at EAx → 0. A qualitative explanation is that
at the moment of interaction with particle A, the particle x has already penetrated
through the Coulomb barrier in the initial state as a part of particle 1.

Note that the initial energy EA1 should be chosen large enough so that the reaction
can be measured. A proper choice of EBy and the use of Eq. (26) and energy
conservation in the A+x→ B+ y vertex makes it possible to find σ̃2 at EAx ≈ 0 and
to obtain finally the desired σ2(E) and S(E) at EAx ≈ 0 by multiplying σ̃2 by the
Coulomb penetration factor. Practically, the absolute value of S(E) is found by the
normalization to direct measurements at higher energies when the penetration factor
e−2πηi ≈ 1.

By comparing the cross section thus obtained with the laboratory one at lower
energies one can obtain an information on the electron screening effects. These effects
which are essential at very low energies, are accounted by multiplication of the reaction
cross section on the ‘bare’ nucleus by a factor exp(πηUe/E) that results in the increase
of the cross section. The TH cross section is free from the screening effects, and its

1 3

A

B

x
y

Figure 7: Quasifree mechanism of the A+ 1→ B + y + 3 reaction.
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Figure 8: S factor for the 15N(p, α)12C reaction obtained by the TH method using
the 15N(d, nα)12C reaction at Ed = 60 MeV (filled dots). Open dots are the direct
data. The line corresponds to the Breit–Wigner fit. See Ref. [11] for details.

comparison with the directly measured cross section allows one to obtain information
on Ue.

An example of using the TH method is shown in Fig. 8. Other examples of
astrophysical reactions for which S(0) has been found by the TH method (C.Spitaleri,
A.M.Mukhamedzhanov et al., INFN-LNS, Catania, Italy) are

7Li + p→ α+ α (from d+ 7Li→ α+ α+ n) (x = p, 1 = d).
6Li + d→ α+ α (from 6Li + 6Li→ α+ α+ α) (x = d, 1 = 6Li).
6Li + p→ α+ 3He (from d+ 6Li→ α+ 3He + n) (x = p, 1 = d).
11B + p→ 8Be + α (from d+ 11B→ 8Be + α+ n) (x = p, 1 = d).

2. Coulomb dissociation method

In this method, the use is made of experimental data on a dissociation of a fast
nucleus a in the Coulomb field of a heavy nucleus A (e. g. lead): a+A→ b+c+A. The
cross section of this process induced by a high energy virtual photon could be related
to the photoeffect cross section (γ+a→ b+c), which by the time reversal is related to
the sought-for cross section of the inverse process of the radiative capture b+c→ γ+a.
The strong interaction effects could be reduced if one performs the measurements at
low scattering angles when the electromagnetic interaction dominates over the nuclear
one.

3. Method of asymptotical normalization coefficients (ANC)

The ANC method [14] allows one to determine S(E ≈ 0) for radiative capture
reactions using their peripheral character due to the Coulomb (or centrifugal) barrier.
The cross section for a non-resonant radiative-capture reaction b(c, γ)a at zero relative
energy depends only on the long-distance behavior of the b+ c wave function (and on
the overlap of that extended wave function with that of a). The detailed short-range
behavior of the scattering state b + c or the bound state a is not relevant to the
reaction mechanism. At large distances the overlap integral of the wave functions of
b, c, and a is determined by the corresponding ANC (see (1)).

The ANC needed for the b(c, γ)a reaction may be found from another nuclear
reaction which mechanism includes the b+c→ a vertex. Usually ANCs are determined
from peripheral transfer reactions using the DWBA. The particle energies in the initial
and final states can be large enough.

The test of the method has been performed by comparing the experimental data for
the 16O(3He, d)17F and 16O(p, γ)17F reactions. The ANC method was used for many
radiative capture reactions. In particular, the 10B(7Be,8B)9Be and 14N(7Be,8B)13C
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Table 1: Summary of updates to S values and derivatives for CNO reactions. The
table is taken from review [15].

Reaction Cycle S(0) S′(0) S′′(0)
keV b b keV−1 b

12C(p, γ)13N I 1.34± 0.21 2.6× 10−3 8.3× 10−5

13C(p, γ)14N I 7.6± 1.0 −7.83× 10−3 7.29× 10−4

7.0± 1.5
14N(p, γ)15O I 1.66± 0.12 −3.3× 10−3 4.4× 10−5

15N(p, α0)12C I (7.3± 0.5)× 104 351 11
15N(p, γ)16O II 36± 6

64± 6
29.8± 5.4

16O(p, γ)17F II 10.6± 0.8 −0.054
17O(p, α)14N II Resonances
17O(p, γ)18F III 6.2± 3.1 1.6× 10−3 −3.4× 10−7

18O(p, α)15N III Resonances
18O(p, γ)19F IV 15.7± 2.1 3.4× 10−4 −2.4× 10−6

reactions were used to obtain the S factor S(0) for an important process 7Be(p, γ)8B.
Other examples of using the ANC method to calculate the S(E = 0) for radiative
capture processes are

4He(d, γ)6Li, 4He(3He, γ)7Be, 7,9Be(p, γ)8,10B, 8B(p, γ)9C, 11,13C(p, γ)12,14N,
12−14N(p, γ)13−15O, 17F(p, γ)18Ne, 20Ne(p, γ)21Na.

The sensitivity of the extracted cross section to the parameters of the optical
potential used in the DWBA, has been also tested.

Nowadays astrophysical factors S(E ≈ 0) for numerous astrophysical reactions
and their derivatives with respect to energy are determined by various methods (see
Table 1). However such data are not available for many important processes, and the
accuracy of available data should be improved.

3.8 Nuclear experiments using beams of rare (unstable)
isotopes

Unstable nuclei take part in many astrophysical nuclear processes (r-process, rp-
process). Experiments using beams of such nuclei are performed actively nowadays.
Two main mechanisms of formation and separation of exotic nuclei are:

1. Beams of short-lived nuclei are formed in a thin target and are separated
in-flight;

2. Exotic nuclei are formed and stopped in a thick target and then are extracted
and accelerated anew (on-line).

Several examples of important astrophysical processes with unstable nuclei mea-
sured recently are (T1/2 is shown in brackets):

7Be(53 d)(p, γ)8B; 13N(10 m)(p, γ)14O; 19Ne(17 s)(p, γ)20Na; 15O(122 s)(α, γ)19Ne;
18F(110 m)(p, α)15O; 14O(71 s)(α, p)17F.

Along with cross section measurements, measuring of unstable nucleus masses is an
important goal when dealing with radioactive beams. There are two main methods
of mass determination: by energy release in reaction and by deflection of ions in
electromagnetic fields.
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Recently a considerable progress has been achieved in experimental nuclear astro-
physics and in developing theoretical methods of describing astrophysical processes.
The further progress in this field is related both with creation of the next generation of
installations (GSI/FAIR in Germany and FRIB in the USA) and with modernization
of existing installations (GANIL in France and TRIUMF in Canada).

4 Analytic continuation of effective range
expansion for α + d system

One of the most widespread methods of obtaining information on bound states from
scattering data is an analytic continuation in energy of data on the partial wave
amplitude of elastic bc scattering to the pole corresponding to the bound state a.
The most efficient way of realization of this procedure is the analytic continuation
of the effective range (ER) function KL(k2). This method was used successfully in
several works (see Refs. [9,16–19]). In these works, NVCs and ANCs were determined
for the processes 6Li → α + d [9], 2He → p + p, 3He → p + d, 8Be → α + α
[16], 5He(5Li) → n(p) + α [17], 17O(17F) → n(p) + 16O, 16O → 12C + α [18] and
7Li(7Be)→ α+ t(3He) [19].

All cited works treated a one-channel elastic scattering. However, a description of
scattering of particles with nonzero spins usually demands accounting for the channel
coupling even in the absence of inelastic channels. The most typical situation induced
by tensor forces is the case of two coupled channels, 1 and 2, with the same Jπ but
different L (L1 and L2 = L1 + 2). A generalization of the ER expansion to the case
of two coupled channels and its utilization for determination of ANCs and NVCs was
considered in Refs. [20, 21] using the np scattering as an example. The formalism
developed in Refs. [20, 21] can be applied to any two-channel nuclear system for which
the results of the phase-shift analysis are known. One of similar important systems is
6Li in the α+ d channel. The ANC values for this system determine the cross section
of the radiative capture 4He(d, γ)6Li which is the main source of 6Li formation in
the Big Bang model. Direct measurement of this process at astrophysical energies is
impossible due to the smallness of the cross section. Available data on the values of
NVCs and ANCs for the 6Li→ α+ d channel (L = 0; 2) are characterized by a large
spread, especially by the spread of the D state constants G2 and C2.

In the work [22], the NVCs and ANCs for 6Li → α + d are obtained by analytic
continuation of the two-channel ER expansion. Several sets of dα scattering phase
shifts are used as an input.

1. The energy-dependent phase-shift analysis of Ref. [23] neglecting the coupling
of L = 0 and L = 2 channels (set 1).

2. The energy-independent phase-shift analysis of Ref. [24] accounting for the
channel coupling (set 2).

3. Faddeev calculations neglecting the Coulomb interaction [9] (set 3).

Combining sets 1 and 2 results in C0 = 2.3–2.4 fm−1/2. Set 3 gives C0 =
2.0 fm−1/2. A low accuracy of phase-shift analysis at low energies and simplicity
of Faddeev equations used make it impossible to obtain an accurate value of the ANC
for L = 2: C2 = 0.02–0.07 fm−1/2. The sign of C2 (relative to C0) appears to be
positive.

The method developed in Refs. [20, 21] and utilized in Ref. [22] considers elastic
channels only. On the other hand, low-lying inelastic thresholds may modify the
ER expansion. The simplest way to allow for an inelastic channel at E = E0, is
to include in the ER expansion an additional term which is complex at E > E0.
The form of this term should provide the correct analytic behavior of scattering
amplitudes at the threshold E = E0. According to the general theory of singularities
of Feynman diagrams, a singular part of a scattering amplitude near a threshold
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behaves as (E − E0)(3n−5)/2 for even n and as (E − E0)(3n−5)/2 ln(E − E0) for odd
n, where n = 2, 3, 4, ... is a number of intermediate particles at the threshold.

The work on accounting for inelastic channels in the ER expansion for αd scatter-
ing is in progress.
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On Nature of Bound and Resonance States in 12C
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Abstract

We investigate both bound and resonance states in 12C embedded in a three-
α-cluster continuum using a three-cluster microscopic model. The model relies
on the Hyperspherical Harmonic basis to enumerate channels describing the
three-cluster discrete and continuous spectrum states. It yields the most prob-
able distribution of three α-clusters in space, and the dominant decay modes of
the three-cluster resonances.

Keywords: Cluster model; resonance state; Hoyle state; hyperspherical har-
monics

1 Introduction

The 12C nucleus is an interesting example of the so-called Borromean nuclei as it has
no bound states in any two-cluster subsystem of its three-cluster configuration. The
lowest dissociation threshold (7.276 MeV above the ground state) is that of a three
α particles disintegration. This three-cluster configuration is thus responsible to a
great extent for the formation of a few bound and many resonance states. The next
threshold is of a two-cluster nature: 11B + p [1]. It opens when the excitation energy
of 12C exceeds 15.96 MeV. One therefore expects only a negligible influence of the
latter channel on bound and resonance states of 12C in the vicinity of the α+ α+ α
threshold.

The 12C nucleus is unique because of its excited “Hoyle state”. This state is
important in the context of nucleosynthesis of carbon in helium-burning red giant
stars. It is a 0+ state with an energy of 7.65 MeV above the ground state, or 0.4 MeV
above the three-cluster α + α + α threshold. Its width is only 8.5 eV indicating
a long lifetime. One immediately relates this to the 0+ state in 8Be described by
two α particles with an energy of 0.092 MeV above the α+ α threshold and a width
of 5.57 eV.

Many efforts have been made to reproduce the experimentally observed structure
of 12C and to explore and understand the nature of the ground, excited and resonance
states. This was, for example, done within so-called semi-microscopic models (con-
sidering structureless α-particles) [2–8] and within fully microscopic models [9–24].

A somewhat general feature of the calculations is that, with potentials which
adequately reproduce the α-α interaction (this includes the phase shifts for 0+, 2+

and 4+ states and the position of the corresponding resonance states), one obtains a
noticeably overbound ground state for 12C.

To determine the energies and widths of resonance states created by a three-cluster
continuum, only a few methods can be used. A popular method for obtaining the
resonance properties in many-cluster, many channel systems is the Complex Scaling
Method (see reviews [25, 26] and references therein). Other methods start from a
calculated form of the S-matrix in a wide energy range and determine the resonance
states as the pole(s) of the S-matrix. The advantage of these methods is that they
provide the scattering quantities (such as phase-shifts, cross-sections, etc.) and the
resonance properties (energies and widths), as well as the wave functions of scattering
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and resonance states. The latter then allow one to obtain more information about
the nature of the resonance states.

12C is known from theory and experiment (see, e. g., [27] and [28]) to have very
narrow resonances above the three α threshold. One may wonder why a system with
several open channels does not decay instantly but manifests these narrow resonance
states. There are two possible answers to this question. First, a resonance state
appears in one single channel of the multi-channel system. Such particular channel
is usually weakly coupled to a number, or all, of the other open channels. It is well-
known that this weak coupling of channels predetermines the existence of long-lived
resonance states. Second, a resonance can be more or less uniformly distributed over
all open channels, and the compound system needs (some) time for the resonance to
be accumulated by one or a few open channels to decay into. Such a distribution over
many open channels leads to very narrow resonances, as was predicted by A. Baz’ [29].
It is referred to as diffusion-like processes in scattering. This type of resonance is
attributed to the effect that “the system spends most of its time wandering from one
channel to another” [29].

In this paper we wish to calculate and analyze the bound and continuum structure
of 12C, and gain some insight in the nature of these states. Indeed, in some publi-
cations (e. g., [30–33]) the suggestion for a dominant linear, chain-like, three-cluster
structure appears for some of the 12C resonances. We will look for a confirmation of
this structure. To this end, we determine the most probable configuration of three α
particles both in coordinate and momentum space. We also qualify the channels
through which the resonance states of 12C preferentially decay.

The main results of this paper are obtained by applying the “Algebraic Model in a
Hyperspherical Harmonic Basis” (AMHHB) [34, 35, 36] to a configuration of three α
particles. In this model, the three clusters are treated equally and their relative motion
is described by Hyperspherical Harmonics. The latter enumerate the channels of the
three-cluster continuum and allow one to implement the correct boundary conditions
for the three-cluster exit channels. The AMHHB has been applied successfully to a
study of resonances in nuclei with a large excess of protons or neutrons such as 6He,
6Be, 5H. The method provides energies and widths of resonances and their total and
partial widths, as well as the corresponding wave functions. The latter allow one to
analyze the nature of the resonance states. The results of this model are compared to
those obtained in other, more or less comparable, microscopic descriptions from the
literature and to experiment.

In the next section we elaborate the method used to calculate the spectrum of
12C. Section three focuses on the results obtained using this method. We also present
correlation functions and density functions to characterize more precisely the spatial
configuration of the three α particles for specific resonance states. We also compare
the results to those of other microscopic calculations as well as to experiment.

2 Microscopic cluster model

In this section we describe the microscopic model used to determine the structure
of 12C in the present paper. As it has been already introduced and used in several
publications, we will limit ourselves to the most important notations and aspects of
importance to the current calculations.

2.1 Three-cluster AMHHB model

The three-cluster “Algebraic Model in a Hyperspherical Harmonic Basis” (AMHHB)
[34–36] will be applied to a single 12C = α+ α+ α three-cluster configuration.

This model takes a Hyperspherical Harmonic basis (HH) to characterize and enu-
merate different three-cluster channels. In each of these channels, an oscillator basis
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describes the radial behavior and is used to expand the many-particle wave func-
tion. A matrix version of the Schrödinger equation is obtained after substitution
of this wave function. It is solved by the Algebraic Method (also called the Mod-
ified J-Matrix method [36]) for both bound and scattering states using the correct
asymptotics.

A similar approach utilizing the Hyperspherical Harmonics, was proposed in
[38, 39] in the coordinate representation using the generator coordinate technique
to solve the corresponding Schrödinger equation.

The AMHHB wave function for 12C is written as

Ψ = Â {Φ (α1) Φ (α2) Φ (α3) f (x,y)}
= Â {Φ (α1) Φ (α2) Φ (α3) f (ρ, θ; x̂, ŷ)}

=
∑

nρ,K,l1,l2

Cnρ,K,l1,l2 |nρ,K, l1, l2;LM ; (ρ, θ; x̂, ŷ)〉, (1)

where |nρ,K, l1, l2;LM〉 is a cluster oscillator function [34]:

|nρ,K, l1, l2;LM〉=Â
{

Φ (α1) Φ (α2) Φ (α3)Rnρ,K (ρ)χK,l1,l2 (θ) {Yl1 (ŷ)Yl2 (x̂)}LM

}
.

(2)
These functions are labelled by the number of hyperradial excitations nρ, hyperspher-
ical momentum K and two partial orbital momenta l1, l2. The vectors x and y form
a set of Jacobi coordinates, and ρ and θ are hyperspherical coordinates related to the
Jacobi vectors by:

ρ =
√
x2 + y2, |x| = ρ cos θ, |y| = ρ sin θ. (3)

The notation x̂ and ŷ refers to the unit length vectors. The vector x corresponds
to the distance between two selected α particles with the associated partial orbital
angular momentum l2. The vector y is the displacement of the third α particle with
respect to the center of mass of two others with the associated angular momentum l1.
The three quantum numbers c = {K, l1, l2} determine channels of the three-cluster
system in the AMHHB.

The fact that all three clusters are identical leads to some specific issues. The
wave function (1) for 12C is antisymmetric with respect to the permutation of any
pair of nucleons. Because the three clusters are identical, this function should be
symmetric with respect to the permutation of any pair of alpha particles. This imposes
constraints on the allowed quantum numbers of the wave function. Because of this
symmetry, for instance, the partial orbital momentum l2 of a two-cluster subsystem
can only have even values. As the parity of 12C states is defined as π = (−1)l1+l2, it
is fully determined by the partial orbital angular momentum l1 of the relative motion
of the remaining cluster with respect to the two-cluster subsystem.

It was suggested in Refs. [40] and [12] to use a symmetrization operator to con-
struct the proper basis states. For a discussion on the symmetry of a system with
three identical clusters we refer to [41].

The symmetrical Hyperspherical Harmonic basis for a three-particle system was
realized many years ago (see, e. g., [42, 43]). An explicit form of a few basis functions
for small values of the total orbital momentum (L = 0, 1 and 2) can be derived.
However it is extremely intricate to use for explicit calculation of matrix elements.

An alternative approach to obtain such matrix elements without an explicit real-
ization of the basis functions consists in using the generating function technique. One
can indeed construct a generating function for the overlap and Hamiltonian kernels of
12C using the procedure explained in [34] that satisfies all required symmetry condi-
tions including the cluster symmetric permutation behavior. Explicit matrix elements
of the operators can then be obtained by using recurrence relations. The standard
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Figure 1: Matrix elements of the antisymmetrization operator in the nonsymmetrized
hyperspherical basis (K = 6, l = 0 and K = 6, l = 2 coincide).

approach in the AMHHB is to extract matrix elements characterized by explicit l1, l2
quantum numbers. These, however, do not yet correspond to the desired symmetrical
Harmonics. Indeed, the states |nρ,K, l1, l2;LM〉 for fixed nρ and K do not belong to
the desired symmetrical irreducible representation of S(3), the permutation group of
the three α clusters, with the Young tableau [3]. They are, in fact, linear combinations
of the Young tableau [3] and the non-symmetrical Young tableaus [2,1] and [111].

The antisymmetrization operator in the standard AMHHB basis has non-zero
matrix elements 〈

nρ,K, l1, l2;LM
∣∣∣Â
∣∣∣ ñρ, K̃, l̃1, l̃2;LM

〉
(4)

for fixed oscillator shells with Nsh = 2nρ + K = 2ñρ + K̃. By selecting only matrix

elements with hyperradial quantum number nρ = ñρ and hypermomentum K = K̃,
one obtains relatively small matrices whose eigenfunctions |nρ,K, ν;LM〉 with non-
zero eigenvalues are of the correct symmetrical hyperspherical type due to the sym-
metry properties of the generating function. Index ν = 1, 2, ... enumerates the
symmetrical Hyperspherical Harmonics for a given value of the hypermomentum K.
This procedure is similar to the procedure of obtaining Pauli allowed states in three-
cluster systems (see Ref. [44] for details).

This is demonstrated in Fig. 1 where the diagonal matrix elements of the antisym-
metrization operator between the original Hyperspherical Harmonics are displayed for
total orbital momentum L = 0 for all channels up to K = 8. One notices that matrix
elements 〈

nρ,K, l1 = l2;L = 0
∣∣∣Â
∣∣∣nρ,K, l1 = l2;L = 0

〉
(5)

do not tend to unity, as one could expect, but to some fixed values. Analysis shows
that these asymptotic values of (5) correspond to the weights of the symmetrized
Hyperspherical Harmonics with Young tableau [3], within the original Harmonic.

The eigenvalues obtained after diagonalization which are matrix elements of sym-
metrized Harmonics, however, do display the correct asymptotic behavior, i. e. they
all tend to unity as can be seen in Fig. 2.

In Table 1, we display both the total number of (original) nonsymmetrized and of
symmetrized channels for different values of the total orbital momentum. The sym-
metrization significantly reduces the number of channels compatible with the maximal
value of hypermomentum Kmax. Only even values of the partial orbital momentum l2
are considered because of the symmetry rules for two-cluster subsystems.
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Figure 2: Matrix elements of the antisymmetrizator in the symmetrized hyperspher-
ical basis.

Table 1: Number of channels for nonsymmetrized and symmetrized Hyperspherical
Harmonics (enumerated by ν for given K).

Jπ 0+ 2+ 4+ 1− 3−

Kmax 14 14 14 13 13

Nch({K, l1, l2}) 20 44 54 28 42

Nch({K, ν}) 8 16 19 9 14

Effective charges Zc,c̃ were defined in Refs. [34] and [35] in the context of the
AMHHB and their importance and meaning were explicitly discussed for the 6Be nu-
cleus in the three-cluster configuration 4He + p+ p. The effective charge determines
the asymptotic form of the three-cluster potential originating from the Coulomb in-
teraction, which has the form

V
(C)
c,c̃ =

Zc,c̃

ρ
. (6)

It was shown that it is of a crucial importance for implementing the correct boundary
conditions for the three-cluster continuum states.

The symmetrization influences the behavior of the effective charges. In Table 2,
we display the effective charges for the 0+ state of 12C calculated in the original

Table 2: Effective charges for the Jπ = 0+ state of 12C.

(K, l1, l2) (0,0,0) (4,0,0) (4,2,2) (6,0,0) (6,2,2) (8,0,0) (8,2,2) (8,4,4)
(0,0,0) 28.81 2.47 3.49 2.74 -2.74 0.87 0.00 1.04
(4,0,0) 2.47 32.157 -1.13 3.95 -0.31 4.67 0.00 1.95
(4,2,2) 3.49 -1.13 31.35 1.72 -4.30 0.00 0.66 0.00
(6,0,0) 2.74 3.95 1.72 33.48 -2.51 4.63 0.00 0.45
(6,2,2) -2.74 -0.31 -4.30 -2.51 34.29 0.00 0.62 0.00
(8,0,0) 0.87 4.67 0.00 4.63 0.00 34.29 0.00 -2.38
(8,2,2) 0.00 0.00 0.66 0.00 0.62 0.00 33.08 0.00
(8,4,4) 1.04 1.95 0.00 0.45 0.00 -2.38 0.00 32.41
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Table 3: Effective charges for the Jπ = 0+ state of 12C for symmetrized channels.

(K, ν) (0,1) (4,1) (6,1) (8,1)
(0,1) 28.810 4.277 3.880 1.139
(4,1) 4.277 30.556 5.217 2.301
(6,1) 3.880 5.217 35.990 1.457
(8,1) 1.139 2.301 1.457 31.450

nonsymmetrized basis of the Hyperspherical Harmonics for Kmax = 8. One easily
verifies that they coincide with those calculated in [23].

We display the effective charges in the symmetrized basis in Table 3. Only four
channels remain after symmetrization. In particular, no K = 2 channel remains, so,
we omitted these also in Table 2 even though they have a non-zero contribution.

It goes without saying that the asymptotic form of the effective three-cluster po-
tential which originates from the nucleon-nucleon interaction [34],

V
(NN)
c,c̃ =

Vc,c̃
ρ3

, (7)

is also influenced by the symmetrization. This asymptotic component is very impor-
tant for obtaining the correct values of the S-matrix. We do not dwell on its explicit
form here but apply a procedure similar to that for the effective charges.

2.2 Phases, eigenphases and resonances

After solving the system of linear equation of the AMHHB model, we obtain the wave
functions of continuous spectrum states and the scattering S-matrix. We consider two
different representations of the S-matrix.

In the first representation, the elements of the S-matrix are described through the
phase shifts δij and inelastic parameters ηij ,

Sij = ηij exp (2iδij), (8)

of which one usually analyzes only the diagonal matrix elements by displaying the δii
and ηii quantities. In the second representation, the S-matrix is reduced to the diago-
nal form leading to the so-called eigenphases which now represent the elastic scattering
of the many-channel system in terms of independent (uncoupled) eigenchannels:

‖S‖ = ‖U‖−1 ‖D‖ ‖U‖. (9)

Here ‖U‖ is an orthogonal matrix relating both representations, and ‖D‖ is a diagonal
matrix with nonzero elements

Dαα = exp (2iδα) (10)

defining the eigenphases δα.
The phases shifts δii, inelastic parameters ηii and eigenphases δα provide a suf-

ficiently detailed information about the channels that are involved in production of
resonance states. The eigenphases are used to extract resonance positions and total
widths in a traditional way:

d2δα
dE2

∣∣∣∣
E=Er

= 0, Γ = 2

(
dδα
dE

∣∣∣∣
Er

)−1

; (11)

whereas the orthogonal matrix ‖U‖ leads to the partial decay widths of the resonance
(see, e. g., Ref. [36] for details).
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2.3 Correlation functions and density distributions.

As we have pointed out, the AMHHB model allows one not only to calculate the
scattering observables but also to obtain the wave function at any energy, in particular,
at the resonance. The latter is of the utmost importance for the analysis of the nature
of the system at these energies.

Within the AMHHB model, the solution is fully expressed by the expansion co-
efficients

{
Cnρ,c

}
and the S-matrix. The expansion coefficients

{
Cnρ,c

}
determine

both the total three-cluster wave function of a compound system Ψ as well as the
wave function of the relative motion of three clusters f (x,y) (see eq. (1)).

The latter contains all information on the dynamic behavior of the three-cluster
system in bound states and continuum as well. It is interesting to note that these
coefficients are identical in representations of the wave function both in coordinate
and momentum space because of the Fourier transform properties of the oscillator
states. The wave function f (k,q) in momentum space has arguments that are directly
related to the coordinate representation: k is the momentum of relative motion of two
clusters, whereas q is the momentum of the third cluster with respect to the center
of mass of the two-cluster subsystem.

We obtain the density distribution in the coordinate space as

D (x, y) = D (ρ, θ) =

∫
|f (x,y)|2 dx̂ dŷ, (12)

and the corresponding correlation function as

C (x, y) = C (ρ, θ) = x2y2
∫
|f (x,y)|2 dx̂ dŷ (13)

directly from the wave function of relative motion f (x,y). Both the density distribu-
tion and correlation function in the momentum space are obtained in the same way
using the wave function of relative motion in momentum space f (k,q).

In a calculation with Nch open channels, one obtains Nch independent wave func-
tions describing elastic and inelastic processes in the many-channel system. It is quite
impossible to analyze all of these wave functions when many channels are open. Some
principles have to be set up on how to select the most important wave functions. We
have formulated some criteria for selecting the dominant wave function of a resonance
in Ref. [36]. We will use the same criteria in this paper to select the “resonance wave
functions”.

3 Calculations and results

In the present calculations for 12C, we consider the Minnesota potential [45] for the
nucleon-nucleon interaction. The oscillator basis is characterized by the oscillator
length b = 1.2846 fm to minimize the ground state energy of the α particle using the
above potential.

The parameter u of the Minnesota potential is taken to be u = 0.94 to reproduce
the phase shifts of α + α scattering and the 0+, 2+ and 4+ resonances in 8Be. The
same parameters were used by Arai [17].

The 8Be = α+α two-cluster substructure is of a key importance in the description
of 12C. We present α+ α resonance properties in Table 4. The AMOB model (Alge-
braic Model using an Oscillator Basis) takes a set of oscillator functions to describe
the intercluster behavior and the Algebraic Model to obtain the phase shifts for α+α
scattering (see, e. g., Ref. [46]). We include a comparison to the results of Arai from
his paper on 12C [17] where he uses the “analytical continuation of the S-matrix to
the complex plane” method to obtain the resonance characteristics.
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Table 4: Resonance properties of 8Be obtained with different methods.

AMOB Arai [17]
Jπ E, MeV Γ, keV E, MeV Γ, MeV

0+ 0.022 6.30 10−10 0.03 <10−6

2+ 2.93 1.51 2.9 1.4
4+ 12.55 5.01 12.5 4.8

These results form a first test of the consistency of the different expansion methods
applied to the two-cluster subsystem. Although quite similar, one still notices that
the resonance properties of the two-cluster α−α system have a slight dependence on
the method.

3.1 Potential and Coulomb interaction in AMHHB

Diagonal matrix elements of the nucleon-nucleon and Coulomb interactions within
the AMHHB model are displayed in Figs. 3 and 4 for the channels up to K = 8.
One observes that the nucleon-nucleon interaction creates a deep potential well with
a long tail in the hyperspherical coordinate. This tail reflects the asymptotic form of
the potential indicated in Eq. (7). The matrix elements of the Coulomb interaction
indicate the magnitude of the Coulomb barrier which is the main factor for generating
resonance states in 12C.

3.2 Phase shifts and eigenphases

We show in Fig. 5 the results of the AMHHB calculations for the 2+ state in terms
of the symmetrical Hyperspherical Harmonic channels through the (diagonal) phase
shifts δii and inelastic parameters ηii.

The scattering parameters are obtained from a calculation with maximal hyper-
momentum Kmax = 14. One observes from Fig. 5 that for small energies the channels
are completely uncoupled (ηii ≈ 1). The first 2+ resonance appears at E = 2.731 MeV
and is mainly produced in the first channel with the hypermomentum K = 2, whereas
the second resonance at energy E = 3.113 MeV is dominated by the hypermomen-
tum K = 4. The inelastic parameters for the first two channels have pronounced

Figure 3: Diagonal matrix elements of V̂NN between symmetrized Hyperspherical
Harmonics for the Jπ = 0+ state.
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Figure 4: Diagonal matrix elements of V̂C between symmetrized Hyperspherical
Harmonics for the Jπ = 0+ state.

minima at the energy of the first resonance and shallow minima at the second reso-
nance energy. Besides, the first resonance displays a “shadow resonance” behavior in
the second channel. This is typical for resonances in a many-channel system (see, for
instance, a detailed analysis of two-channel resonances in 5He in Ref. [47]). The min-
ima of inelastic parameters indicate that the compound system is being reconstructed
at this energy and transits from one channel to the other.

Figure 5: Diagonal phase shifts and inelastic parameters for the Jπ = 2+ state.
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Figure 6: Eigenphase shifts for Jπ = 2+ for the first three eigenchannels.

We display in Fig. 6 the respective eigenphase shifts δα for the first three eigen-
channels. One observes now that both resonance states are mainly associated with
the first eigenchannel while the second eigenchannel contributes only marginally.

3.3 Convergence properties

A convergence study of energies (and widths) of bound and resonance states should
indicate whether the Hilbert space is sufficiently large for obtaining stable and re-
liable results. The AMHHB model space is characterized by two parameters: the
maximal value of the hypermomentum Kmax and the maximal value of the hyper-
radial excitation nρmax . Usually the choice of parameters is a compromise between
the convergence of the results and the computational burden. A set of Hyperspheri-
cal Harmonics with Kmax = 14 for even parity states and Kmax = 13 for odd parity
states, seems sufficient and remains computationally feasible. This choice accounts
for a large number of three-cluster configurations or, in other words, for a sufficient
number of inherent (triangular) shapes for three clusters. We refer to Ref. [48] for
examples of the most probable triangular shapes associated with the Hyperspherical
Harmonics with hypermomentum ranging from K = 0 to K = 10.

The first convergence test considers the energies of 0+, 2+ and 4+ bound states of
12C shown in Fig. 7 as functions of Kmax. One observes that the deeply bound states
(Jπ = 0+, 2+) require significantly less Hyperspherical Harmonics for a converged
energy than the shallow, or weakly bound, state with Jπ = 4+. At least all Hyper-
spherical Harmonics with Kmax ≥ 6 are required to bind the latter state, whereas
the Jπ = 0+ one already obtains binding with a single Hyperspherical Harmonic
with K = 0. Figure 7 demonstrates also that the above choice of Kmax is amply
sufficient for bound states.

We turn to the energies and widths of the 0+ and 2+ resonances obtained with
increasing number of Hyperspherical Harmonics in Table 5. One observes that a
sufficient convergence of the resonances occurs at Kmax = 12. It is furthermore
interesting to note that these resonances already appear with reasonable energy and
width values when only the lowest channel (K = 0 for the 0+ and K = 2 for the 2+

state) is considered. This is a remarkable result for 12C as, e. g., for 6Be it was
impossible to generate a 0+ resonance with a single K = 0 channel (see Ref. [35]).

In all calculations we considered states with hyperradial excitation up to nρmax=70
which cover a wide range of intercluster distances and go far enough into the asymp-
totic region.
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Figure 7: Convergence of bound states in AMHHB.

Table 5: Energy (MeV) and width (keV) of the low-lying resonances obtained with
various Kmax truncations.

Jπ Kmax 0 4 6 8 10 12 14

0+
E 0.40 0.75 0.74 0.72 0.70 0.68 0.68
Γ 205.08 13.40 11.79 7.10 4.35 2.71 2.78

0+
E 1.15 7.34 6.09 5.55 5.54 5.16 5.14
Γ 510.16 897.64 422.50 539.21 586.08 534.33 523.46

2+
E − 3.28 2.89 2.83 2.78 2.74 2.73
Γ − 30.19 13.07 11.85 9.95 8.84 8.75

2+
E − 3.50 3.27 3.22 3.17 3.14 3.11
Γ − 274.51 351.57 308.29 280.23 263.80 246.78

3.4 Partial widths

We display the energy E, total width Γ and partial widths Γi, i = 1, 2, ... in the
corresponding decay channels of the even parity resonances in Table 6 and of the odd
parity resonances in Table 7.

One observes that in most cases only one or two channels are responsible for the
decay of resonance states. The remaining channels contribute negligibly, and the
corresponding partial widths do not exceed 10−5 keV. A significant distribution over
multiple channels is apparent only in the case of the 4+ resonance.

One should note that although the resonances are created by only a few channels,
the role of other very weakly coupled channels is still important. This can be seen from

Table 6: Partial widths of even parity resonances in 12C. Energy is in MeV, widths
are in keV.

Jπ 0+ 2+ 2+ 4+

E 0.68 2.78 3.17 5.60
Γ 2.78 9.95 280.24 0.55
Γ1 K = 0 2.78 K = 2 6.11 K = 2 13.46 K = 4 0.23
Γ2 K = 4 0 K = 4 3.84 K = 4 278.89 K = 6 0.15
Γ3 K = 6 0 K = 6 <10−5 K = 6 <10−5 K = 8 0.16
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Table 7: Partial widths of odd parity resonances in 12C. Energy is in MeV, widths
are in keV.

Jπ 1− 3−

E 3.52 0.67
Γ 0.21 8.34
Γ1 K = 3 0.206 K = 3 8.34
Γ2 K = 5 0.002 K = 5 0
Γ3 K = 7 <10−5 K = 7 0

Table 5 for the first 0+ resonance: it is indeed generated mainly by the channel with
the minimal hypermomentum K = 0 but is modified substantially with increasing
number of hypermomenta. The same applies to other resonance states.

3.5 Correlation functions and density distributions.

We show the correlation function for the 12C ground state in Fig. 8 and observe that
this state displays a compact spatial configuration, as it is expected for such a deeply
bound state. The most probable shape of the three α-cluster system is an almost
equilateral triangle with a distance between any two α-particles of approximately
3 fm.

The correlation function for the first 0+ resonance state shown in Fig. 9, on the
other hand, shows a more deformed system with two α-particles relatively close to each
other (about 3.5 fm) and the third alpha-particle located further away (approximately
at a distance of 5 fm). So, 12C features a prolate triangle as a dominant configuration
in this state.

One also observes in Fig. 9 a small maximum of the correlation function corre-
sponding to an almost linear configuration of three α-particles, two of them being
approximately 4 fm apart, and the third one is located 0.2 fm away from their center
of mass. However, the weight of this linear configuration is approximately 6 times less

Figure 8: Correlation function for the 12C ground state in the coordinate space.
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Figure 9: Correlation function for the first 0+ resonance state of 12C in the coordinate
space.

than the weight of the prolate triangular configuration. Our calculations therefore do
not agree with other authors advancing a dominant linear structure [30–33].

We display in Fig. 10 the correlation function of the first resonance state in the
momentum space. One observes a huge maximum corresponding to relatively slowly
moving α-particles. A small maximum corresponding to faster moving alpha-particles
is also present.

Figure 10: Correlation function for the first 0+ resonance state of 12C in the momen-
tum space.
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Table 8: Bound and resonance states in 12C obtained with the AMHHB model,
compared to CSM results from the literature.

Method AMHHB CSM CSM

Reference Present paper Arai [17] Pichler et al. [9]

Jπ E, MeV Γ, keV E, MeV Γ, keV E, MeV Γ, keV
−11.372 −11.37 −10.43

0+ 0.684 2.78 0.4 < 1 0.64 14
5.156 534.00 4.7 1000 5.43 920
−8.931 −8.93 −7.63

2+ 2.775 9.95 2.1 800 6.39 1100
3.170 280.24 4.9 900

4+
−3.208 −3.21

5.603 0.55 5.1 2000
1− 3.516 0.21 3.4 200 3.71 360

0.672 8.34 0.6 < 50 1.16 25
3− 4.348 2.89 7.1 5400 11.91 1690

5.433 334.90 9.6 400

3.6 Comparison to the literature

We now compare the AMHHB results to the existing literature. We display in Ta-
ble 8 the AMHHB results together with those of Arai [17] and Pichler et al. [9], both
obtained by the Complex Scaling Method (CSM). The authors of Ref. [9] use a some-
what different value for the parameter u of the Minnesota potential and a different
oscillator length b; because of this, different results are obtained for the bound states.

Comparison with the results of Arai [17] indicates that the AMHHB model leads
to resonance states with higher energies and smaller widths than those obtained with
the CSM. This can be attributed to the difference of methods and to the different
Hilbert spaces. Formally, the Hilbert space of basis functions used by Arai [17] is quite
close to the one considered in the AMHHB. Actually, in the present calculations the
partial orbital momenta l1 and l2 are restricted by the condition

L ≤ l1 + l2 ≤ Kmax

so that, for instance, for the total orbital momentum L = 0, they run from l1 = l2 = 0
to l1 = l2 = 6 with Kmax = 14. Arai, on the other hand, restricted himself with l1, l2 ≤
4. In [35, 36, 37] we observed the tendency that the more Hyperspherical Harmonics
(thus the more channels) are involved in the calculation, the smaller becomes the
resonance energy and width. This tendency is again confirmed by the present AMHHB
calculations. Thus some reduction of the width of the resonances observed in our
calculations with respect to Arai [17], can be attributed to a larger number of channels
in our model.

Comparing the AMHHB results with the Complex Scaling Model calculations
of Pichler et al. [9], one observes that both yield close results for the first and the
second 0+ resonance states.

On the whole one can conclude that there is consistency in the results for resonance
properties in all three microscopic models.

3.7 Comparison to experiment

We compare the theoretical AMHHB results for 12C with available experimental data
in Table 9.
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Table 9: Bound and resonance states in 12C obtained with the AMHHB model,
compared to experiment.

Method AMHHB Experiment
Reference Present paper [1]

Jπ E, MeV Γ, keV E, MeV Γ, keV
−11.372 −7.2746

0+ 0.684 2.78 0.3796± 0.0002 (8.5± 1.0)× 10−3

5.156 534.00 3.0± 0.3 3000± 700
−8.931 −2.8357± 0.0003

2+ 2.775 9.95 3.89± 0.05 430± 80
3.170 280.24 8.17± 0.04 1500± 200

4+
−3.208

5.603 0.55 6.808± 0.015 258± 15
1− 3.516 0.21 3.569± 0.016 315± 25

0.672 8.34 2.366± 0.005 34± 5
3− 4.348 2.89

5.433 334.90

One notices that the first 0+ resonance state (the Hoyle state) appears in the
current calculations as a narrow resonance with the energy of 0.684 MeV and the
width of 2.7 keV, which is considerably wider than the experimental Hoyle state
(about 8.5·10−3 keV). This contrasts with a generally observed feature of the AMHHB
calculations that the calculated widths are significantly less than the respective ex-
perimental widths of 12C resonances. The discrepancies between the theoretical and
experimental data have essentially two origins. The first one relates to the choice of
the nucleon-nucleon interaction: it was tuned to reproduce the phase shifts and reso-
nance properties for alpha-alpha scattering. As a result, it leads to the overbound 0+

and 2+ states in 12C and binds the 4+ state. The second one relates to the specific
choice of the three-cluster model and corresponding model space, as well as to the
method by which energies and widths of resonance states are obtained.

3.8 Optimizing the nucleon-nucleon potential

In this paper, we used a Minnesota nucleon-nucleon potential tuned to reproduce
phase shifts of α−α scattering as well as 8Be resonances. This however leads to over-
bound 0+ and 2+ states and a bound 4+ state in 12C. Moreover, the obtained reso-
nance structure of the 12C three-cluster continuum deviates from the experimentally
observed one which can be also attributed to the specific choice of the semi-realistic
nucleon-nucleon potential.

We therefore wish to discuss the dependence of the results on the choice of param-
eter u of the potential. To do so, we use different criteria to optimize this parameter.
First, we determine a value reproducing the ground state energy of 12C, followed by
an attempt to reproduce the energy and width of the 0+ Hoyle state.

We display in Fig. 11 the ground state energy as a function of the parameter u,
compared to the experiment (dashed line). One observes that the ground state is
reproduced with u = 0.910. One observes a monotonously decreasing linear depen-
dence of the ground state energy on u within the selected range. For the Hoyle state
position and width, the dependency is less trivial as is shown in Fig. 12. One however
observes that the value u = 0.948 reproduces the position of the Hoyle state and leads
to a close match for its width too.

The correlation functions for the ground state and the Hoyle state obtained with
their respective optimal values are very close to those obtained with the value u = 0.94
displayed in Figs. 8 and 9; so, our conclusions remain unaltered.
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Figure 11: Energy of the ground state as a function of parameter u of the Minnesota
potential.

4 Conclusions

In this paper we described the 12C nucleus with a three-cluster microscopic model.

The model correctly handles the three-cluster continuum, i. e., correctly imple-
ments the suitable boundary conditions by using the Hyperspherical Harmonic basis.
It leads to the scattering matrix S in many-channel space, and energies, total and
partial widths of resonance states and their corresponding wave functions can be
obtained.

It was shown that the obtained resonances of 12C agree well with those obtained
by other methods, and that the lowest resonances are generated by only a few weakly
coupled channels leading to narrow resonance states. Partial widths determine the

Figure 12: Position and total width of the first 0+ resonance state as a function of
parameter u.
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most probable channels for resonance decay. Correlation functions and density dis-
tributions reveal the dominant shape of the three-cluster triangle configuration for
the lowest bound and resonance states of 12C. There is no indication of a prominent
linear three-cluster structure for resonance states.

It was also shown that it is impossible to fix a unique value for the u parameter of
the Minnesota nucleon-nucleon potential to fit all desired physical properties of 12C
and of the disintegrating α-particles. However, the qualitative conclusions remained
unaltered under a slight adaptation of u.

As a final conclusion, we can state that the model is consistent with other mi-
croscopic models using the Complex Scaling methodology to determine energies and
total widths of three-cluster resonance states.
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Abstract

A theoretical technique for description of composite nuclear particle interac-
tion, in particular, the resonating group model and the orthogonality conditions
model, is demonstrated. The discussion is focused on an algebraic version of
the orthogonality conditions model proposed by the authors. In the framework
of the developed formalism, it is possible to take into account among others the
exchange terms of the kinetic energy operator precisely. Thus an approximation
which is close to the original resonating group model, is built. Both a direct
algebraic approach and a method based on the solution of integro-differential
Schrödinger equation containing nonlocal terms related to forbidden and semi-
forbidden states, are proposed as computational schemes. This equation turns
out to be preferable in studies of narrow resonances. It is demonstrated that a
decay width of a system to two-heavy-fragment channel is strongly affected by
the nonlocal terms.

Keywords: Clustering; Pauli principle; nucleus-nucleus interaction; resonance
states

1 Introduction

Properties of interaction of composite nuclear particles, i. e. the particles consisting
of some identical fermion constituents, contrast dramatically with the properties of
interaction of structureless ones. The principal origin of this contrast is the Pauli
exclusion principle. As a consequence of the identity of the fermions composing two
(or more) fragments in a realistic approach to the interaction of composite particles, it
is necessary to take into account an antisymmetry of the wave function of the system
as a whole and thus to consider internal multi-nucleon structures of the fragments.
As a result, some eigenfunctions of the Hamiltonian describing the composite-particle
interaction may vanish after the action of the antisymmetrization operator (forbidden
states) or be renormalized by this operator (antisymmetrizer).

If the internal states of the interacting composite particles are fixed, the resonat-
ing group model (RGM) proposed in Refs. [1, 2] allows one to reduce the problem of
description of their interaction to a two-body one (we do not consider systems of three
or more fragments below). However the resulting two-body equation turns out to be
not a Schrödinger-type one because it contains exchange integral kernels in all its
terms. Methods of reduction of the RGM equation to the Schrödinger-type equation
with a Hermitian Hamiltonian, are known (see, for example, Ref. [3]). However, even
after these rearrangements, the RGM is an overcomplicated approach which looks still
far from a habituated scheme of description of two-body interactions. Any pair of
the composite particles should be described individually. In fact, the RGM remains a
many-nucleon but not a two-body technique. Another problem of RGM is its inflex-
ibility. As a consequence of incompleteness of the space of solutions inherent for the
model, experimental observables are not well-reproduced within the RGM sometimes.

A goal of a lot of papers published after the original ones is to construct a method
which, on the one hand, allows one to account for the property of fermion identity in
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a system of two composite particles (and thus for the Pauli exclusion principle and
various exchange effects caused by this identity) and, on the other hand, is relatively
simple and flexible. The basic step on this way was made in the paper [4]. An
approximation of the RGM which makes it more or less similar to an ordinary two-
body approach is proposed there. Various alternatives of this approach have been
developed up to now. These alternatives differ by methods of manipulation with the
exchange terms. They are known under a unified name of orthogonality conditions
model (OCM).

An algebraic version (AV) of OCM was proposed in Ref. [5]. It was built by
analogy with the AV RGM proposed in Refs. [6, 7, 8]. Due to a unique potentiality
of the algebraic formalism, it was possible to express precisely the exchange terms
originated by the kinetic energy operator through eigenvalues of the so-called “norm”
kernel of RGM and thus to construct a simple approximation which is very close to
the original RGM.

In the present paper we demonstrate the lines of development of the method
presented in Ref. [5]. In particular, an integro-differential equation of the Schrödinger
type with a Hermitian Hamiltonian containing nonlocal terms related to the forbidden
by the Pauli principle and semi-forbidden states, is obtained. This “comeback” to
the methods of continuous mathematics turns out to be convenient in description of
widths of narrow resonances decaying through cluster-cluster channels.

A number of characteristic examples including an interaction of light clusters, a
nucleon-nucleus interaction, and an interaction of heavy ions, are considered. It is
demonstrated by means of AV OCM that the values of the decay widths are strongly
affected by the exchange effects in case of heavy-ion interactions. A pair of heavy
magic fragments 16O + 16O is considered as an example.

2 Composite-particle interaction in the framework

of RGM and OCM. One-channel problem

2.1 RGM and OCM. Conventional formalism

Let as consider a traditional method of the description of composite particle interac-
tion in the framework of RGM and its approximations used in OCM. Here we restrict
this consideration to a one-channel problem for the sake of brevity.

The wave function of RGM [1, 2] is chosen in the form:

ΨA1+A2 = Â {ΨA1ΨA2Φ (ρ)}, (1)

Â =

(
A
A1

)−1/2
(

1 +
∑

p

(−1)
p
P̂

)
, (2)

where the sum is over all permutations P̂ of A (A = A1 + A2) nucleons, p is the
parity of the permutation and Φ (ρ) is a probe wave function. Inserting (1) into the
A-fermion equation

ĤAΨA = EΨA, (3)

ĤA = T̂ + V̂ , T̂ =

A∑

i=1

p̂2
i

2m
, (4)

V̂ =

A∑

i<j=1

V (ri − rj), (5)

one can obtain a two-body equation:
(
T̂ρ + V̂ρ − E′N̂ρ

)
Φ (ρ) = 0, (6)
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where
E′ = E − E1 − E2, (7)

and the normalization condition
〈
N̂1/2

ρ Φ (ρ)
∣∣∣ N̂1/2

ρ Φ (ρ)
〉

= (1, δ (E − E′) , δ (k − k′) , etc.) (8)

for bound and continuous states respectively. For a fixed value of the angular mo-
mentum of the relative motion l, the integral operators can be presented as




N̂ρ,l

T̂ρ,l
V̂ρ,l


ϕl (ρ) ≡

∫ 


Nl (ρ′, ρ)
Tl (ρ′, ρ)
Vl (ρ′, ρ)


ϕl (ρ′) ρ′2dρ′, (9)




Nl (ρ′, ρ′′)
Tl (ρ′, ρ′′)
Vl (ρ′, ρ′′)




=

〈
Â

{
ΨA1ΨA2

1

ρ2
δ (ρ− ρ′) Ylm (Ωρ)

}∣∣∣∣




1̂

T̂

V̂



∣∣∣∣Â
{

ΨA1ΨA2

1

ρ2
δ (ρ− ρ′′)Ylm (Ωρ)

}〉
.

(10)

Thus the discussed two-body equation turns out to be an integro-differential equation
of the form which differs from the Schrödinger one.

The equation (6) can be transformed to a Schrödinger-like form by action of the
operator N̂−1

ρ,l : (
N̂−1

ρ,l T̂ρ,l + N̂−1
ρ,l V̂ρ,l − E′

)
ϕl(ρ) = 0, (11)

but the resulting Hamiltonian turns out to be a non-Hermitian one. Introducing a
new wave function

φl(ρ) = N̂
1/2
ρ,l ϕl(ρ), (12)

one can obtain a Schrödinger-like equation with a Hermitian Hamiltonian
(
N̂

−1/2
ρ,l T̂ρN̂

−1/2
ρ,l + N̂

−1/2
ρ,l V̂ρ,lN̂

−1/2
ρ,l − E′

)
φl(ρ) = 0 (13)

and usual normalization conditions:

〈φE,l(ρ) |φE′,l(ρ)〉 = 1 (14)

for states of discrete spectrum, and

〈φE,l(ρ) |φE′,l(ρ)〉 = δ(E − E′) (15)

(or similar) for states in continuum.
The basic approximation of the original OCM [4] is

V (ρ′, ρ′′) = V (ρ′) δ(ρ′ − ρ′′). (16)

If the forbidden components are extracted from the function sought, then the initial
equation becomes (

T̂ρ + V̂ (ρ)− E′
)

Φ̃ (ρ) = 0, (17)

where V̂ (ρ) is a direct (double folding) potential. Usually the exchange terms are
neglected in the kinetic energy operator. In this approximation,

T̂ρ =
p̂2
ρ

2µ
. (18)
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In some cases, a quality of description of data is not high enough in the initial
version of OCM. Other versions of OCM (presented, e. g., in Refs. [9, 10]) utilize
a phenomenological local potential in contrast to the direct one and explore two
alternative ways to take into account the Pauli exclusion principle:

1. A two-body model with forbidden states which are eigenstates of the Hamil-
tonian. This version is rather simple because the redundant states are easily
excluded due to their orthogonality to the others in this case.

2. A two-body model with forbidden states which are eigenstates of the norm
kernel N̂ρ.

A possibility of adjusting the two-body local potential makes the approaches more
flexible and improves the quality of the results. At the same time, the resulting OCM
(notably with the forbidden eigenstates of the Hamiltonian) occurs to be an approx-
imation of the RGM falling far from the original model. Therefore more accurate
approximations are of interest for the theory of composite-particle interaction.

2.2 Algebraic version of RGM and the developed version
of OCM.

Within RGM, the functions ΨA1 and ΨA2 are most often considered as the ground
state (i. e. the lowest compatible with the Pauli exclusion principle) oscillator wave
functions with the same parameter ~ω. In the algebraic version of RGM, the relative
motion function is sought in the form of expansion

ϕl (ρ) =
∑

n

Cnl φnl(ρ) (19)

in oscillator basis functions φnl(ρ) (also characterized by the same parameter ~ω).
Under these conditions, the wave functions φnl(ρ) are eigenfunctions of the norm
kernel:

N̂ρ,l φnl(ρ) = εn φnl(ρ). (20)

The eigenvalues εn are equal to zero for the forbidden states and tend to unity as
n → ∞. Semi-forbidden states are defined as states with εn considerably lower then
the unity. There are rare cases for which the eigenvalues are higher than the unity.
A mathematical formalism described below also allows one to include these states in
a similar way as semi-forbidden states, thus we do not discuss this case separately.

A fundamental advantage of AV OCM is a possibility to apply the following rela-
tion presented in Ref. [11]:

〈
φnl

∣∣∣N̂−1/2
ρ,l T̂ρN̂

−1/2
ρ,l

∣∣∣φn′l

〉
=

√
εn<

εn>

Tnn′ , (21)

where n< = min (n, n′), n> = max (n, n′) and Tnn′ is the matrix element of the
ordinary two-body kinetic energy operator between the oscillator functions. Due to
this, the set of the AV RGM equations looks as follows:

∑

n′

[√
εn<

εn>

Tnn′ +
(
N̂

−1/2
ρ,l V̂ρ,lN̂

−1/2
ρ,l

)
nn′

− E′δnn′

]
Cn′l = 0; n ≥ nmin. (22)

So, the A-fermion exchange properties of the kinetic energy operator are precisely
determined by the eigenvalues of the norm kernel.

The approach present here allows one, first, to take into consideration the ex-
change terms of the kinetic energy completely and, second, to use an alternative
(well-grounded microscopically) way of exclusion of the forbidden states.
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It should be noted that due to the equality (21), the potential energy term V̂ρ,l
contained in Eqs. (13) and (22) remains the only term of the Hamiltonian in AV RGM
equations that includes the fermion exchange operators in the explicit form. It is just
the term which is responsible for turning out RGM into a non-universal and overcom-

plicated model. The idea is to consider the term N̂
−1/2
ρ,l V̂ρ,lN̂

−1/2
ρ,l phenomenologically,

approximating it by a local potential V̂cl(ρ). As a result, we obtain the equation

(
ˆ̃Tρ + V̂cl (ρ)− E′

)
Φ̃ (ρ) = 0. (23)

It should be noted that the choice of another scheme considering as a local potential

the term V̂ρ,l instead of N̂
−1/2
ρ,l V̂ρ,lN̂

−1/2
ρ,l , is also possible and does not present any

additional problem. The latter choice looks less reasonable because the semi-forbidden
states with small values of εn (if such values exist in a particular example) may cause
an instability in the fitting procedure of the parameters of the local potential in this
case.

The approach is called AV OCM independently of methods (which may be alge-
braic or that of “continuous” mathematics) applied to solve it.

In the algebraic versions of the canonic two-body problem, RGM as well as OCM
presented here, the expansion coefficients Cnl of Eq. (19) satisfy an infinite set of
linear equations

∞∑

n=0

(
〈φn′lm| Ĥ |φnlm〉 − Eδn′n

)
Cnl = 0, n′ = 0, 1, ... , (24)

which follows from the respective Schrödinger equation. For ordinary bound states,
the eigenvalue problem,

det
∥∥∥Ĥ − EÎ

∥∥∥ = 0, (25)

is solved on the truncated basis with n ≤ nmax. Here truncation means the boundary
condition Cnl = 0, n > nmax in the oscillator representation. For states of con-
tinuous spectrum (including rather broad near-barrier resonances), the convergence
of the functional series (19) is not uniform; therefore the so-called J-matrix method
[12] is applied. The expansion coefficients decrease rather slowly with n, and their
asymptotic behavior should be introduced in the set of equations:

N−1∑

n=0

(
〈φn′lm| Ĥ |φnlm〉 − Eδn′n

)
Cnl = −

∞∑

n=N

〈φn′lm| Ĥ |φnlm〉C(as)
nl , n′ = 0, 1, ...

(26)
The papers [6, 7, 8] were the first works in which the discussed method was applied
to solve the RGM equations.

A high-precision form of the asymptotic coefficients was obtained in Refs. [13,
14, 15]. In particular, for the wave function asymptotically behaving as an outgoing
Coulomb wave, the expansion coefficient has the following form:

C
(as)
nl =

1√
kr0ςn

{
Gl (η, kr0ςn) + iFl (η, kr0ςn)

− k3r30
6ςn

[G′
l (η, kr0ςn) + iF ′

l (η, kr0ςn)]

}
, n→∞, (27)

where r0 =
√
~/µω is the oscillator radius, ςn =

√
2n+ 3, the prime denotes the

derivatives of the Coulomb wave functions with respect to the second argument. The
first term in the figure brackets of Eq. (27) provides a rather good approximation in
most cases.
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A related approach may be also useful for calculations of near-threshold bound
states.

The presence of the forbidden states in Eq. (20) restricts the set of equations (26)
and the sums in the left-hand side of them by the conditions n, n′ ≥ nmin. Semi-
forbidden states are taken into account by means of renormalization of the kinetic
energy matrix. The explicit form of the of the kinetic energy matrix elements (21) is
applied for that. The matrix of the renormalized kinetic energy operator (21) retains
a tridiagonal form in the oscillator basis as the initial one.

The method developed here is applicable to the calculations of phase shifts and
cross-section of composite particle scattering including calculations in the framework
of the optical model, near-threshold bound cluster-nucleus states, resonance states of
various cluster-cluster pairs excluding too narrow resonances, amplitudes of entrance
and exit channels of various reactions.

It should be noted that the one-channel formalism developed here is valid in the
case when both clusters are SU(3)-scalars (it is true for magic and light clusters) and,
in addition, one of them is an SU(4)-scalar. Otherwise a channel coupling appears
due to the antisymmetrization. As a result, some modifications of the technique are
required. The quality of the one-channel approximation in this multi-channel problem
depends on the dynamics of the channel under investigation.

2.3 AV OCM. Equivalent integro-differential equation.

In some cases it is hard to explore the direct algebraic approach presented above
because the asymptotic behavior of the expansion coefficients is achieved at too large
distances, and a huge basis in Eq. (19) is required. It is the case of a narrow resonance
in a system decaying through a two charged composite-particle channel. In this
situation, it occurs more convenient to apply methods of “continuous” mathematics.
To do this, a number of separable terms related to forbidden and semi-forbidden states
are introduced into the Hamiltonian. The idea of this rearrangement is that the initial
cluster Hamiltonian matrix elements Hnn′;l between the states at least one of which
is forbidden, are cancelled by the corresponding matrix elements of separable terms.
The kinetic energy matrix elements in the Hamiltonian are renormalized according to
the formula (21) to account for the presence of semi-forbidden states. The additional
potential term denoted as V̂ sep

l , takes the form:

V̂ sep
l = −

n0∑

n,n′=0

|nl〉Hnn′;l 〈n′l| −
n0∑

n=0

∞∑

n′=n0+1

(|nl〉Hnn′;l 〈n′l|+ |n′l〉Hn′n;l 〈nl|)

+

∞∑

n=n0+1

(√
εn
εn+1

− 1

)
(|nl〉Tn,n+1;l 〈n+ 1, l|+ |n+ 1, l〉Tn+1,n;l 〈nl|), (28)

where

Ĥ = T̂ρ + V̂cl(ρ). (29)

Usually εn/εn+1 tends to unity rather rapidly as n increases (for example, εn=80 =
0.999 for the system 16O + 16O), therefore the sum in Eq. (28) can be truncated by
a relatively small value of n0.

Here we demonstrate an appropriate method to solve the Schrödinger equation

(
d2

dr2
+ k2 − 2Vcl;l(ρ)

)
χl(ρ) = 2V̂ sep

l χl(ρ) (30)

with the additional separable terms. The solution of this equation χl(ρ) must behave
asymptotically as Gl(η, kρ) + iFl(η, kρ) at large distances. Gl(η, kρ) exceeds signif-
icantly Fl(η, kρ) in the under-barrier domain far enough from the external turning
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point. Thus, according to Ref. [16], it is enough to satisfy the matching condition in
this region with the function Gl(η, kρ) only. Consequently, the solution χl(ρ) should
satisfy the following boundary conditions:

(i) it is regular at the origin (ρ = 0);

(ii) it behaves as Gl(η, kρ) under the barrier beyond the radius of the strong inter-
action.

To find the solution of Eq. (30), let us consider the equation

(
d2

dr2
+ k2 − 2Vcl;l(ρ)

)
χl(ρ) = 0 (31)

with a local potential Vcl;l(ρ) including the centrifugal part, and introduce its so-
lutions χ1;l(ρ) which satisfies the condition (i) and χ2;l(ρ) which satisfies (ii). The
corresponding Green’s function takes the form

G(ρ, ρ′) =
χ1;l(ρ<) χ2;l(ρ>)

W
, (32)

where ρ< = min (ρ, ρ′) , ρ> = max (ρ, ρ′), and the Wronskian W is written as follows:

W = χ1;l(ρ)
dχ2;l(ρ)

dρ
− dχ1;l(ρ)

dρ
χ2;l(ρ). (33)

This Green’s function allows one to deduce the homogeneous integral equation

χl(ρ) = −2

∞∫

0

G(ρ, ρ′)
[
V̂ sep
l χl

]
(ρ′) dρ′ (34)

for the resonance solution χl(ρ). Here
[
V̂ sep
l χl

]
(ρ′) means the function of ρ′ which

is the result of action of the operator V̂ sep
l on the function χl(ρ). The homogeneous

equation (34) has solutions only for unique resonance energy values. Substituting V̂ sep
l

in Eq. (34) by its explicit expression (28), we obtain:

χl(ρ) = 2

n0∑

n=0

∞∫

0

G(ρ, ρ′) φnl(ρ
′) 〈φnl|Vcl;l |χl〉 dρ′

+ 2




∞∫

0

dρ′ G(ρ, ρ′) φn0l(ρ
′) Tn0,n0+1;l

+

∞∫

0

dρ′ G(ρ, ρ′) φn0+2,l(ρ
′)

(
1−

√
εn0+1

εn0+2

)
Tn0+1,n0+2;l


 〈φn0+1,l | χl〉

+ 2

nmax−1∑

n=n0+2




∞∫

0

dρ′ G(ρ, ρ′) φn−1,l(ρ
′)

(
1−

√
εn−1

εn

)
Tn−1,n;l

+

∞∫

0

dρ′ G(ρ, ρ′) φn+1,l(ρ
′)

(
1−

√
εn
εn+1

)
Tn,n+1;l


 〈φnl | χl〉

+ 2

∞∫

0

dρ′ G(ρ, ρ′) φnmax−1,l(ρ
′)

(
1−

√
εnmax−1

εnmax

)
Tnmax−1,nmax;l 〈φnmax,l | χl〉, (35)
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where nmax means the maximum value of the radial quantum number of the truncated
oscillator basis. A simple form of the first term is caused by the completeness of the
oscillator basis allowing one to calculate the infinite sum over n′ in the expression (28)
explicitly.

There is an opportunity to treat Eq. (35) in the following way. Multiplying it by
〈φnl| and 〈φnl|Vcl;l one can obtain a set of homogeneous algebraic equations for the
unknown coefficients 〈φnl|χl〉 and 〈φnl|Vcl;l |χl〉. The condition of solvability (zero
value of the determinant) determines the value of Eres, after that the coefficients
〈φnl|χl〉 and 〈φnl|Vcl;l |χl〉 can be calculated. This procedure determines the func-
tion χl(ρ) and thus the width of the resonance.

However such a method of numerical calculations of widths turns out to be unsta-
ble at least for narrow resonances in systems possessing a number of semi-forbidden
states with eigenvalues of the norm kernel essentially different from the unity. In
particular, a very high accuracy (ten significant digits for the 2 MeV resonance in
the 16O + 16O system) of the Eres value is required to calculate the width reliably.

A way to overcome this difficulty looks as follows. Consider the above mentioned
function obtained via the direct algebraic approach:

χ̃l(ρ) =

nmax∑

n=n0+1

Cnl φnl(ρ). (36)

This function is a partial sum of the oscillator expansion of χl(ρ). It reproduces
precisely the behavior of the wave function χl(ρ) in the interior domain. It is just
what is needed to calculate the values of 〈φnl|χl〉 and 〈φnl|Vcl;l |χl〉 due to a rapid
decrease of the functions φnl(ρ), Vcl;l(ρ) and χl(ρ) with ρ. Thus, substituting χl(ρ)
in the right-hand side of the basic equation (35) by χ̃l(ρ), one can obtain the solution
for all values of ρ including the asymptotic region. Numerical calculations by means
of the proposed method occur to be significantly more stable.

The width of a narrow resonance can be obtained from the solution χl(ρ) by means
of the approach presented in the monograph [16]. According to this approach, the
following asymptotic relation

χl(ρ) ≃
√

Γk

2Eres
Gl(η, kρ) (37)

is valid in the case Gl(η, kρ)≫ Fl(η, kρ) in the under-barrier region far enough from
the external turning point. The normalization condition

R∫

0

χ2
l (ρ) dρ = 1 (38)

in the interior region is implied. The described above method of calculation of the
resonance wave function with the aid of Eq. (35), allows one to apply directly the
formula (37) to determining the decay width Γ.

3 AV OCM and exchange effects in decay processes

3.1 Alpha-decay of 91.84 keV 0+ resonance in 8Be

To analyze the interrelation between various approaches based on OCM and RGM
models, a canonical object of the physics of clustering, the 91.84 keV 0+ resonance in
the 8Be nucleus, was studied in Ref. [17].

The width of the ground state of 8Be nucleus which is a low-laying resonance of
the α-α system (the experimental value of the width Γ = 6.8 eV), was calculated
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in various versions of two-body, OCM and RGM dynamics. The proper resonance
energy E = 91.84 keV was achieved, if necessary, by fitting the depth of the potential
well. The following results were obtained.

For an illustration of the results obtained in two-body models with forbidden eigen-
states of the Hamiltonian, we consider the model with the Buck potential proposed
in Ref. [18] which has the form

V (ρ) = V0 exp(−bρ2) + VCoul, (39)

where
VCoul(ρ) =

(
Z1Z2e

2/ρ
)

erf(ρ/d), (40)

and parameters V0 = 122.6 MeV, b = 0.22 fm−2 and d = 1.33 fm. The fitting
is not required in this case. The value of the resonance energy E = 91.10 keV is
reproduced in this dynamics. The value of the width coincides with the experimental
one (Γ = 6.8 eV).

The same two-body model with forbidden states which are eigenstates of the
kernel N̂ρ, is used for an illustration of this type of two-body models. The procedure
of the resonance energy fit by variation of the potential well depth results in the
value V0 = 116.9 MeV. The values deduced for this version are: E = 91.84 keV,
Γ = 5.8 eV. Thus the properties of the discussed channel obtained in these two
versions of the dynamics, are close enough.

The straightforward RGM calculation using the Hasegava–Nagata NN potential
(see, for example, Ref. [19]) with no fitting results in the values E = 91.84 keV,
Γ = 4.9 eV.

At last, the OCM version with the RGM-projected kinetic energy operator (21)
and forbidden states which are eigenstates of the kernel N̂ρ, is analyzed. The Gaussian
form of the phenomenological potential with the width equal to the width of the Buck
potential (b = 0.22 fm−2), results in the values: V0 = 136.1 MeV, E = 91.84 keV,
Γ = 4.7 eV. Thus the direct inclusion of semi-forbidden states changes the local poten-
tial significantly and the results obtained in RGM are well-reproduced by AV OCM.

3.2 Asymptotic normalization coefficient
for loosely bound state of the 17F nucleus

To analyze weakly bound states in the framework of AV OCM, the closed channel
16O + p, Jπ = 1/2+ at the energy Ep = −104.94 keV was studied in Ref. [20]. This
sub-threshold resonance is actively analyzed for astrophysical purposes [21]. The
asymptotic behavior of the radial wave function in the two-body model is expressed
through the Whittaker function:

φl(ρ)→ DlW−η,l+1/2(2kρ)/ρ, (41)

where
η = Z1Z2e

2µ/~2k (42)

is the Coulomb parameter.
The asymptotic normalization coefficient Dl is the factor determining the am-

plitude of of the wave function as ρ → ∞. In the algebraic version of OCM, the
coefficients Cnl obtained as the solution of the set of equations (26) are compared
with the asymptotic ones which, by analogy with the first approximation of the for-
mula (27), take the form:

C(as)
n =

√
r0 [4/(2n+ 3)]

1/4
W−η,l+1/2(2kρn)Dl, (43)

where ρn = r0ςn is the turning point of the oscillator wave function φnl(ρ). The

matching condition Cn = C
(as)
n determines the coefficient Dl.
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Table 1: The eigenvalues of the overlap kernel for 16O +N .

n 0 2 4 6

εn 0 1.128906 1.001022 1.000006

Table 2: Depth of the nucleon-nucleus potential V0 and asymptotic normalization
coefficient Dl for the 16O + p system within TBM and AV OCM.

Alternative V0, MeV Dl, fm−1/2

TBM 49.24 83.33
OCM 47.61 94.18

The nucleon-nucleus potential is chosen in the form:

V (ρ) = −V0 {1 + exp [(ρ−R0) /a]}−1 + Vc(ρ), (44)

Vc(ρ) =

{
(4αe~c/Rc)(3 − ρ2/R2

c),
8αe~c/ρ,

ρ < Rc,
ρ > Rc,

(45)

where αe = e2/~c, and parameters R0 = 3.29 fm, a = 0.65 fm, Rc = 3.48 fm are
used in the model calculations. A numerical solution of the two-body Schrödinger
equation is used to test the accuracy of both two-body and the AV OCM variational
calculations.

For the discussed channel, the eigenvalues of the norm kernel which are involved in
the expression of the renormalized kinetic energy, can be calculated using the formula:

εn = 1 + (−1)n(17n− 1)/16n. (46)

They are presented in Table 1. As is seen, only εn=2 differs significantly from the
unity.

The values of the Dl coefficient are calculated both in the ordinary two-body
model (TBM) and in AV OCM with the RGM-projected kinetic energy operator
and forbidden states which are eigenstates of the kernel N̂ρ. The depth of the local
nuclear potential (44) is varied to fit the proton binding energy of 104.94 keV just in
the same manner as in the examples of the previous subsection. The results of these
calculations are presented in Table 2.

As is seen from Table 2, the inclusion of the exchange terms increases the value
of the asymptotic normalization coefficient by 10 % in comparison with the two-
body one. Microscopic calculations of the asymptotic normalization coefficient in
the framework of RGM using NN potentials from Refs. [22] and [23] result in the
values of 91.15 fm−1/2 and 86.20 fm−1/2 respectively. The value of 85.65 fm−1/2 was
obtained in our RGM calculations with the Hasegava–Nagata NN potential [19].

3.3 Width of the lowest 16O + 16O resonance state

To demonstrate the effect of forbidden and the semi-forbidden states on the decay
widths of nuclear states in the case of emission of heavy clusters, let us consider the
pair 16O + 16O as an example. Three alternatives are studied:

(I) OCM with forbidden states considered as eigenstates of the two-body Hamilto-
nian,

(II) OCM with forbidden states considered as eigenstates of the norm kernel,
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Table 3: Width of the lowest 16O + 16O resonance state for three versions of the
interaction (see the text).

Alternative (I) (II) (III)

V0, MeV 399.2 225.6 422.8
Eres, MeV 2.103 2.103 2.102

Γ, MeV 0.59·10−27 0.53·10−28 0.64·10−35

(III) OCM with forbidden states of the latter type and semi-forbidden states.

The local cluster-cluster potential from Ref. [24]

Vcl (ρ) = VCoul (ρ) +
V0

(1 + exp [(ρ−R) /a])
2 (47)

is considered. The Coulomb part is chosen in the form of interaction potential of two
uniformly charged spherical volumes. According to one of the versions of the model
used in Ref. [24], there are 12 forbidden states (eigenstates of the Hamiltonian with
the interaction (47)) and a narrow resonance state at the energy of E = 2.103 MeV
in the partial wave with l = 0. This result is reproduced in our calculations realiz-
ing the alternative (I). For the alternatives (II) and (III), the depth V0 of the local
potential Vcl (ρ) is varied to restore the resonance energy of the alternative (I). The
values of the decay width for three versions of OCM are presented in Table 3. The
resonance energy is presented to demonstrate the accuracy of its reproduction.

It is clear from the Table that the forbidden and notably the semi-forbidden states
change drastically the decay width. If the forbidden states are considered as eigen-
states of the norm kernel, the value of the width Γ becomes one order of magnitude
smaller than the one obtained assuming these states to be the eigenstates of the two-
body Hamiltonian. If, in addition, the semi-forbidden states are also considered, the
value of the width Γ turns out to be eight orders of magnitude smaller. Thus a very
pronounced exchange effect manifests itself in the properties of a resonance decaying
through a channel with a long list of semi-forbidden states which differ significantly
from the unity.

It should be noted that parameters of the 16O + 16O channel (the penetrability
of the barrier, the eigenvalues of the norm kernel for the semi-forbidden states, the
Γ values) are more or less close to the ones typical for alpha-decays of heavy nuclei.
Therefore one may expect similar exchange effects in the latter process.

4 Summary

In the present paper, results of the study of a new version of the orthogonality condi-
tions model are demonstrated in details. The model allows one to take into account
exchange effects originating from the norm and kinetic energy overlap kernels. Both
continuous and pure algebraic formalisms of the model are developed. The former
one is used for the calculation of decay widths of very narrow resonances. The pairs
of particles α + α, 16O + p and 16O + 16O are given as examples. The results of the
study demonstrate that:

1. Properties of interaction of composite particles are essentially different from the
ones of structureless particles.

2. The basic cause of the differences is the exchange effects manifesting themselves
via forbidden and semi-forbidden states.
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3. Algebraic approaches are convenient tools for considering these effects.

4. The methods developed here for description of composite particle interaction
are applicable to the calculations of:

a) phase shifts and cross-sections of composite particle scattering including
calculations in the framework of the optical model,

b) near-threshold bound cluster-nucleus states,

c) resonance states of various cluster-cluster pairs including very narrow res-
onances,

d) amplitudes of entrance and exit channels of various reactions.

5. The formalism developed is valid in the case of both clusters being SU(3)-scalars
and additionally one of them being an SU(4)-scalar.

6. The effect of semi-forbidden states is drastic in calculations of widths of narrow
resonances in interaction of a heavy nucleus with alpha-particle or in interaction
of two heavy clusters.
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Abstract

Using Hartree-Fock + BCS approach we analyze the behavior of the neutron
drip line and predict the appearance of stability peninsulas. The conditions and
mechanism for appearance of such peninsulas are analyzed and the properties
of newly predicted stable isotopes are investigated.

Keywords: Hartree–Fock method; BCS; stability; neutron drip line

One of the fundamental questions in nuclear physics is what combinations of neu-
trons and protons can build up a stable nucleus. The nuclear landscape called nuclear
chart is shown in Figs. 1, 2, 3. A large number of stable isotopes are still nuclear
“terra incognita”. Moving away from stable nuclei by adding either protons or neu-
trons, one finally reaches the particle drip lines where the nuclear binding ends. Nuclei
beyond the drip lines are unbound with respect to nucleon emission; that is, for those
systems the strong interaction is unable to bind up the constituent nucleons as one
nucleus.

The main objective of my talk is to discuss some interesting new qualitative fea-
tures of the neutron drip line that were predicted in [1, 2, 3, 4], namely, the formation
of stability peninsulas. A relatively recent experiment [5] revealed new squares on the
nuclear chart, which correspond to stable isotopes 40Mg and 42Al. Fig. 1 shows also
comparison with existing theoretical predictions. Interestingly, the Nature chooses
the most optimistic theoretical scenario regarding stability of isotopes at the drip
line. So far the experiment is not capable to detect the entire neutron drip line and,
as can be seen in Fig. 2, it is, probably, very far from that. It is, of course, important
to foresee the experimental setup that would be able to confirm or invalidate present
theoretical predictions.

In our discussion we shall focus on even-even nuclei. A reliable microscopic descrip-
tion of nuclei is obtained with the so-called effective forces between nucleons called
Skyrme forces. Their use has become popular since the seminal papers of Vautherin
and Brink [6], where these forces were successfully used for systematic description of
spherical and deformed nuclei. These forces generally predict very well deformations,
sizes, nuclear densities, nucleon separation energies, etc. Their advantage is a rela-
tively small number of parameters and delta-functions in the interaction terms, which
facilitate the calculation of integrals considerably.

Let us write out an explicit expression of the Skyrme interaction:

Vij = t0(1 + x0Pσ)δ(r) +
1

2
t1(1 + x1Pσ)[k′2δ(r) + δ(r)k2] + t2(1 + x2Pσ)k′δ(r)k

+
1

6
t3(1 + x3Pσ)ρα(R)δ(r) + iW0[k′ × δ(r)k](σi + σj), (1)

105
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Figure 1: Fragment of the nuclear chart. The proton number increases vertically and
the neutron number horizontally. Light squares denote previously observed nuclei.
The neutron drip lines predicted by the FRDM and HFB-8 models are shown by the
solid and dashed lines, respectively. Recently observed drip-line nuclei are indicated
by circles with their year of discovery. The latest discovery also includes 40Mg, 42Al
and 43Al which are highlighted with dark fill, see [5].
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Figure 2: Nuclear chart. Filled area shows experimentally observed nuclei. Black
squares correspond to the neutron drip line calculated with the Hartree–Fock–
Bogoliubov method [7-8]. The arrow indicates typical direction of the calculations,
when one tries to detect the drip line, namely, one increases the neutron number until
the saturation point is reached.
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Figure 3: Formation of peninsulas at the neutron drip line. Black squares indicate
the drip line obtained within HFB approach using SkM* forces. Filled area shows
experimentally known nuclei. Grey squares are nuclei that are predicted stable against
one neutron emission in our calculations using Ska and SkM* forces. One can see
formation of peninsulas at “magic” numbers and “quenched magic” numbers (see
text for details).

where r = ri − rj , R = (ri + rj)/2, k = −i(−→∇i −
−→∇j)/2, k′ = −i(←−∇i −

←−∇j)/2,
Pσ = (1 + σiσj)/2.

One can see that the force is density dependent. The parameters entering the
expression are usually fixed so as to reproduce various bulk nuclear properties as
well as selected properties of certain doubly magic nuclei. Some Skyrme forces are
presented in Table 1. There is no unique set of parameters and this leads to various
versions of the Skyrme force, each of which has its advantages and disadvantages.

After fixing the parameters, the Skyrme forces are used as ingredient in Hartree–
Fock calculations, where the ground state wave function is written in the form of a
Slater determinant. One also has to introduce a pairing force, which in our case is

Table 1: Parameters of Skyrme forces.

Force t0 t1 t2 t3 W0

MeV fm3 MeV fm5 MeV fm5 MeV fm3+3α MeV fm5

Sly4 -2488.91 486.82 -546.39 13777.0 123.0
Ska -1602.78 570.88 -67.70 8000.0 125.0

SkM* -2645.00 410.00 -135.00 15595.0 130.0

Force x0 x1 x2 x3 α

Sly4 0.834 -0.344 -1.0 1.354 1/6
Ska -.020 0.0 0.0 -0.286 1/3

SkM* 0.090 0.0 0.0 0.0 1/6
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Figure 4: One and two neutron separation energies for the isotones with N=184
calculated with Ska, SkM* forces. Circles correspond to HFB calculations [7, 8]. The
last element, which is stable against one and two neutrons emission, is 244Nd.

treated in the BCS framework with a pairing constant. We use two procedures to
solve Hartree–Fock equations. In the DHF method, which is always used in the case
of deformed nuclei, the Hartree–Fock equations are solved using basis functions of the
deformed harmonic oscillator. Since we focus our attention on the neutron drip line,
one encounters wave functions which correspond to small neutron separation energies,
and therefore are very spatially extended. Clearly, one needs basis functions that
match such exotic behavior. This is done by adjusting the parameters of the harmonic
oscillator on each iteration step. The parameters of the oscillator are chosen in order
to minimize the resulting total energy. This helpful procedure of readjusting basis
functions reduces substantially the required basis dimension as well as the required
number of iterations. In the case of nuclei with spherical symmetry we also employ
the SPH procedure, where the equations after reductions due to symmetry are solved
on a grid.

In the BCS pairing scheme of DHF calculations, we include only bound one particle
states. In spite of ignoring the continuum states this method still provides a good
agreement with the HFB (Hartree–Fock–Bogoliubov) calculations [7, 8], see Fig. 4 for
comparison. In the BCS scheme of the spherical code, we implement the inclusion
of quasibound continuum states which are confined under the centrifugal barrier. To
spot such states one introduces a fictitious “wall” forcing the wave functions to vanish
beyond it. States remaining localized when the wall is being moved at a large distance,
are regarded quasistable and taken into account in the pairing scheme.

The standard theoretical approach in locating the neutron drip line is to take a
stable nucleus with a fixed proton charge Z and increase the number of neutrons N
until the resulting nucleus would be “overloaded” in the sense that it gets rid of extra
neutrons through decay, see Fig. 2. This method, however, implies a simple structure
of the drip line, namely, that every line corresponding to a fixed number of protons on
the nuclear chart crosses the neutron drip line only once. Yet, it might happen that
the drip line has a more complicated structure [1, 2, 3, 4]. In the vicinity of “magic”
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numbers or “quenched magic” numbers the following scenario can take place. At some
point being filled with neutrons the nucleus loses its stability but then after adding
more neutrons the stability is restored. This leads to formation of stability peninsulas
on the nuclear chart, see Fig. 3.

The analysis of the phenomenon of stability restoration through adding neutrons
has been undertaken in [1, 2, 3, 4]. We have considered long isotope rows of the
elements Pb, Zr, Ar, Kr, Rn, Gd, Ba, S, as well as many other elements. Thereby, the
phenomenon of stability restoration through adding neutrons was in focus. Having
found such new isotopes we also investigated their properties like masses, deformation,
root mean square radii, etc.

An important point is also that nuclei forming stability peninsulas are spectrally
bound in the sense that there exists a well-defined ground state wave function which
minimizes the energy functional for such nuclei. At this point they become well-
defined objects and the question about their lifetime is correctly formulated. Even
though for some nuclei it may be energetically favorable to get rid of two or more
neutrons, a large centrifugal barrier of the last filled levels may serve as an indication
that this lifetime would be large. For some nuclei the energetically favorable decay
would be into four or more neutrons that enhances the lifetime considerably (such
decays were not experimentally observed so far).

In searching for extensions of the neutron drip line limits we proceeded in the
standard way adding as many neutrons to the nucleus as possible. Having found
an unstable nucleus we did not stop and added more neutrons to see whether the
stability can be restored. Gradually, the general picture became clear. One can see in
Fig. 3 that stability peninsulas are formed at neutron “magic” numbers or “quenched
magic” numbers like in the case of 40O (N = 32) or 74S (N = 58), which correspond
to the filled subshells 1f7/2 and 2d5/2 respectively. The stability peninsulas extend
vertically along the Z axis in the direction of diminishing Z. Fig. 4 shows how the
stability peninsula corresponding to N = 184 (a closed shell) extends in Z. This
can be seen from one and two neutron separation energies of the isotones. Let us
also remark that recent calculations confirm the existence of stability peninsula at
N = 258, see [9].

In our approach we try different versions of the Skyrme force. Let us stress that
just by definition for nuclei at the neutron drip line one expects small one and two
neutron separation energies. So it would be rather naive to expect that the drip line
calculated with effective forces would exactly match the real one. Even for different
forces the difference between separation energies is of order of 0.1 MeV. This is why
it is important to check the results with various versions of the Skyrme force. It turns
out that the neutron numbers where the stability peninsulas appear, are the same for
all forces, only the edges of these peninsulas and the degree to which they are extended
depend on the specific version of the force. In view of this striking invariance with
respect to the choice of the Skyrme force, we claim that such peninsulas constitute
a general qualitative feature of the neutron drip line! Again, let us stress that the
nucleon distributions are spherical for nuclei lying on stability peninsulas. This results
from the fact that the shells are completely filled at magic numbers. Fig. 5 (top)
shows the first isotope 40O that was predicted to form a stability peninsula [1]. It
also has a spherically symmetric distribution of nucleons.

The mechanism working behind the formation of stability peninsulas, is usually
the same in all cases. When one adds neutrons to an unstable nucleus the totally
filled subshell immerses from the continuum to the states with negative energy. For
example, in Fig. 5 (bottom) we show how this happens in the case of Radon isotopes.
The shell effects are the key to the understanding of these phenomena. Below we list
some of the isotopes from the stability peninsulas and the subshells responsible for
the stability enhancement:

• 1f7/2
40O;
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Figure 5: Top: One neutron separation energies of Oxygen isotopes and a fragment of
the neutron drip line near 40O. The exotic isotope 40O is stable against one neutron
emission and forms a peninsula at the drip line. It has a spherical density distribution.
Bottom: the mechanism of stability restoration. In the case of Rn isotopes adding
neutrons affects the effective HF potential in such a way that one particle states with
high angular momentum are immersed from continuum into the bound spectrum. In
the case of magic numbers this leads to stability enhancement. Dashed line show
unfilled levels in HF+BCS calculations with Ska forces.

• 2d5/2
76Ar, 74S;

• 1h11/2
110Ni, 108Fe;

• 1i13/2
174Cd, 172Pd, 170Ru, 168Mo, 166Zr;

• 1k15/2
256Hf, 254Yb, 252Er, 250Dy, 248Gd, 246Sm, 244Nd, 242Ce, 240Ba.
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Figure 6: Proton and neutron density distributions for the isotones with N = 184
(top) and N = 258 (bottom). The calculations are performed with SkM* forces.
These are closed shells and the distributions possess spherical symmetry. One can see
the enormous spatial extension (halo formation) for a large number of neutrons.

Let us also mention that the wave functions near the drip line produce very spa-
tially extended neutron densities, see Fig. 6. Here one can speak of a large halo
formation. To illustrate this we shall compare proton and neutron root mean square
radii, which we denote Rp and Rn respectively. For nuclei in the stability valley one
has normally Rn − Rp ≃ 0.1−0.2 fm. For 40O we obtain Rn − Rp ≃ 1.29 fm and
Rn/Rp ≃ 1.44. For 248Gd we get Rn − Rp ≃ 0.77 fm and Rn/Rp ≃ 1.14. For 240Ba
we obtain Rn −Rp ≃ 0.94 fm and Rn/Rp ≃ 1.17.
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Abstract

We demonstrate that the harmonic oscillator basis can be generated by the
Lanczos algorithm. We use this remarkable feature to formulate a formalism in
quantum scattering theory utilizing an expansion of scattering wave functions in
infinite series of oscillator functions. The continuum spectrum solutions of the
Schrödinger equation are found by means of Lanczos iterations. This formalism
provides a possibility to extend a nuclear shell model, in particular, an ab initio
no-core shell model, on a scattering domain.

Keywords: Non-relativistic quantum scattering theory; nuclear structure; os-
cillator basis

An impressive progress in ab initio description of nuclear structure has been
achieved during the last decade. In addition, research projects aimed at an ab initio
description of nuclear reactions have advanced. First should be mentioned a combined
no-core shell model/resonating group method (NCSM/RGM) approach developed by
Navrátil, Quaglioni et al. [1]. Various reactions with light nuclei were successfully
calculated by means of the NCSM/RGM method. Unfortunately, the RGM approach
involves some model assumptions regarding the reaction mechanism which limit the
predictive power usually associated with ab initio methods. The first attempt to cal-
culate nucleon-nucleus scattering based on quantum Monte Carlo calculations was
performed in Ref. [2]. The Gamow shell model [3] provides a possibility to calculate
widths of nuclear resonant states. A Lorentz Integral Transform method [4] makes
it possible to calculate observables in photonuclear and electroweak reactions within
various ab initio approaches. This method was successfully used in calculations of
cross sections of various photodisintegration, electrodisintegration and electroweak
reactions on light nuclei within the hyperspherical harmonics approach [5]. A gen-
eralized Lanczos technique was suggested in Ref. [6] for calculations of nuclear re-
sponse for any multipole operator and general electroweak response functions and
electromagnetic responses in particular within theoretical approaches utilizing Slater
determinants built on harmonic oscillator basis functions.

A harmonic oscillator provides a natural basis for many-body nuclear structure
studies. It is widely used in various shell model applications, in particular, in ab
initio NCSM [7, 8]. A diagonalization of the shell model Hamiltonian matrix in the
many-body oscillator basis is conventionally performed using the Lanczos algorithm.

We demonstrate below that the complete infinite harmonic oscillator basis can be
generated by the Lanczos algorithm. The Lanczos technique of generating the oscil-
lator basis can be naturally reformulated as a formalism of non-relativistic quantum
scattering theory where scattering wave functions are expanded in infinite series of os-
cillator functions. We note that this scattering theory formalism is formally equivalent
to the J-matrix formalism with oscillator basis [9–12]. An advantage of our formalism
is that it utilizes the Lanczos iterations and oscillator basis, the basic tools of various
conventional approaches to nuclear structure. Therefore this scattering formalism can
be naturally integrated into modern ab initio methods for nuclear structure studies
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generalizing them to the scattering domain. As a result, one can hope to obtain a
unified ab initio theory of nuclear structure and reactions.

We start the discussion of the proposed formalism from the case of a two-body
scattering problem. Within the quantum scattering theory, one compares the asymp-
totics of the wave functions ΨE fitting the Schrödinger equation with the Hamiltonian
H describing the relative motion in the system of interest,

HΨE = EΨE , (1)

with the asymptotics of the wave function Ψ0
E of the reference Hamiltonian H0,

H0Ψ0
E = EΨ0

E . (2)

We discuss here the case of H0 being a free Hamiltonian, i. e., it includes the operator
of kinetic energy of relative motion of colliding particles T only,

H0 = T. (3)

We are studying the states of a given angular momentum J and denote by φi the
oscillator state with i excitation quanta, i. e. the state with i oscillator excitations as
compared with the lowest oscillator state with the particular value of J . The kinetic
energy operator is known to have a tridiagonal matrix in the basis of states φi, i. e.,
matrix elements Tij = 〈φi|T |φj〉 differ from zero only if i = j or i = j ± 2. Therefore
applying the operator T to the state φi, we obtain

Tφi = Ti,i−2 φi−2 + Tii φi + Ti,i+2 φi+2. (4)

We note that the Lanczos algorithm with kinetic energy operator T generates the
oscillator basis of states with any given angular momentum. φ0 is the lowest oscillator
state with the angular momentum J . Let us use φ0 as a pivot vector in the Lanczos
procedure. By applying T to φ0, we get

Tφ0 = T00 φ0 + T02 φ2. (5)

Orthogonalizing Tφ0 to φ0 and normalizing the resulting function, we obtain φ2 as
the first Lanczos vector. The second Lanczos vector is obtained by applying T to φ2,

Tφ2 = T20φ0 + T22φ2 + T24φ4, (6)

by orthogonalizing the result to φ0 and φ2 and normalization. Clearly, φ4 appears to
be the second Lanczos vector. In the same manner we obtain φ6 as the third Lanczos
vector, etc. Thus the oscillator basis appears to be a Lanczos basis generated by the
kinetic energy operator with φ0 as a pivot vector.

We can construct the oscillator basis by Lanczos procedure not only from below,
i. e. starting from the lowest oscillator state, but also from above starting from
oscillator states with arbitrary large oscillator quanta. Suppose we have oscillator
functions φN and φN+2. Applying T to φN , orthogonalizing the result to φN and
φN+2 and normalizing, we obtain φN−2 as the next Lanczos basis state. At the next
step we obtain φN−4, etc.

Expanding the wave function ΨE in series of oscillator functions,

ΨE =
∞∑

n=0

a2n(E)φ2n, (7)

we reduce the free Schrödinger equation (2) to an infinite set of three-term recurrent
relations (TRR)

TN,N−2 aN−2(E) +
(
TNN − E

)
aN (E) + TN,N+2 aN+2(E) = 0. (8)
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For positive energies E, these TRR have two linearly-independent solutions, SN (E)
and CN (E), which analytical expressions are well-known [9, 11, 12]. Only SN(E) fits
the physical TRR boundary condition,

T00 S0(E) +
(
T02 − E

)
S2(E) = 0, (9)

while CN (E) does not,

T00C0(E) +
(
T02 − E

)
C2(E) 6= 0. (10)

The solution SN (E) ≡ S2n(E) is related to the physical solution Ψ0
E of the free

Schrödinger equation (2) with sine-like asymptotics:

∞∑

n=0

S2n(E)φ2n = Ψ0
E =

√
2

π
kr jl(kr) −→

r→∞

√
2

π
sin

(
kr − πl

2

)
, (11)

where k =
√

2mE/~ is the momentum, m is the reduced mass, and l is the orbital
angular momentum. The solution CN (E) ≡ C2n(E) defines the function

ΨC
E =

∞∑

n=0

C2n(E)φ2n (12)

which is regular at the origin and asymptotically coincides with the irregular solution

Ψ0irreg
E = −

√
2

π
kr nl(kr) (13)

of the free Schrödinger equation (2):

ΨC
E −→r→∞

Ψ0irreg
E −→

r→∞

√
2

π
cos

(
kr − πl

2

)
. (14)

An arbitrary solution of the TRR (8) is a linear combination of the solutions
SN (E) and CN (E). Properly normalized solutions can be expressed as

aN (E) = cos δ SN (E) + sin δ CN (E), N = 0, 2, 4, ... (15)

The respective wave function defined through Eq. (7) behaves asymptotically as

ΨE −→
r→∞

√
2

π
sin

(
kr − πl

2
+ δ

)
, (16)

where δ is a scattering phase shift.
Instead of the TRR solutions SN (E) and CN (E), one can use another pair of

linearly independent solutions, C+
N (E) and C−

N (E):

C±
N (E) = CN (E)± iSN(E). (17)

With the help of C+
N (E) and C−

N (E) we can define wave functions Ψ+
E and Ψ−

E,

Ψ±
E =

∞∑

N=0

C±
N (E)φN , (18)

with asymptotic behavior

Ψ±
E −→r→∞

√
2

π
(∓i)l e±ikr. (19)
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The functions Ψ+
E are of a particular importance in the case of negative energies

E when k = i
√

2m|E|/~ since they decrease asymptotically as bound state wave
functions.

We suppose that the Hamiltonian H can be accurately enough approximated by

H = T + V Nmax , (20)

where T is a kinetic energy operator and V Nmax is a potential energy in the P space
spanned by oscillator states with excitation quanta N ≤ Nmax, i. e. an infinite poten-
tial energy matrix in the oscillator basis is well-approximated by a truncated finite
matrix which involves only oscillator states with excitation quanta N ≤ Nmax:

V Nmax =

Nmax/2∑

n,m=0

|φ2n〉〈φ2n|V |φ2m〉〈φ2m|. (21)

The kinetic energy operator T is not truncated in Eq. (20). We note that in conven-
tional shell model applications not only the potential energy V but the kinetic energy
operator T is also truncated to the P space. Therefore the suggested approach can
be used to extend the nuclear shell model Hamiltonian which is expected to improve
the results obtained in conventional nuclear structure calculations. Note also that
the potential energy matrix elements 〈φN |V |φM 〉 decrease with N and M when ex-
citation quanta N and M are large enough. On the other hand, the diagonal TNN

and off-diagonal TN,N±2 kinetic energy matrix elements increase linearly with N for
large excitation quanta N . This different behavior of T and V matrix elements with
excitation quanta justifies the approximation (20).

We use H to produce the Lanczos basis from above. When applied to the oscillator
states φN and φN+2 with large enough quanta N and N + 2, N > Nmax, H has the
same effect as the pure kinetic energy operator T . Therefore we reproduce with H
the oscillator basis states φN−2, φN−4, ..., φNmax+2 in the Q space and the highest
oscillator state in the P space φNmax . The matrix elements of H in our Lanczos basis
in the Q space and the only off-diagonal matrix element HNmax,Nmax+2 relating the
P and Q spaces are equivalent to the kinetic energy matrix elements in the oscillator
basis:

HNN = TNN , (22)

HN,N−2 = HN−2,N = TN,N−2, (23)

HN,N−m = HN−m,N = 0, (24)

where N > Nmax and m > 2.
Starting from φNmax , the potential energy enters the Lanczos procedure. The

Lanczos procedure mixes the oscillator states in the P space. The obtained matrix
elements in the Lanczos basis HNN and HN,N−2 = HN−2,N with N ≤ Nmax differ
from TNN and TN,N+2 respectively, all matrix elements HN,N−m = HN−m,N with
any N and m > 2 vanish. As a result, for the set of coefficients aN (E) of the
expansion (7) of the wave function ΨE in the Lanczos basis, we obtain a TRR

HN,N−2 aN−2(E) +
(
HNN − E

)
aN(E) +HN,N+2 aN+2(E) = 0. (25)

This TRR should be supplemented by the boundary condition at N = 0:

H00 a0(E) +
(
H02 − E

)
a2(E) = 0. (26)

The TRR (25) is infinite, i. e. N can take any even positive value.
To find the solutions of TRR (25), we assign any non-zero value to a0(E) and

obtain a2(E) using the boundary condition (26), with known a0(E) and a2(E) we
calculate a4(E) using TRR (25), next we calculate a6(E) by means of TRR (25), etc.
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In the case of scattering states (E > 0), the expansion coefficients aN (E) with
N ≥ Nmax should be proportional to the r.h.s. of Eq. (15). Knowing the values
of two expansion coefficients in the Q space, say, aN (E) and aM (E) with M 6= N ,
M ≥ Nmax, N ≥ Nmax, we obtain the scattering phase shift as

tan δ = − aM (E)SN (E)− aN(E)SM (E)

aM (E)CN (E)− aN(E)CM (E)
. (27)

Expression (27) can be easily derived from Eq. (15).
In the case of bound states (E < 0), the coefficients aN(E) in the Q space are linear

combinations of C+
N (E) and C−

N (E). The solution C−
N (E) exponentially increases

with N while C+
N (E) exponentially decreases with N in the limit of N → ∞. We

need to find numerically a negative energy E which provides the decreasing behavior
of aN (E) with N . This is the bound state energy associated with the S-matrix pole
which improves the pure variational calculation in the finite oscillator basis.

We use the neutron-nucleus elastic scattering as an example to demonstrate how
this Lanczos formalism can be used for a description of nuclear reactions. In this
case, we construct a conventional shell model Hamiltonian HA+1 of the (A+ 1)-body
system which includes all oscillator states with excitation quanta N ≤ NA+1

max . The
Hamiltonian HA+1 acts in the P space and describes the relative kinetic energy of
all A+ 1 particles and interactions between them.

We need to define also a channel Hamiltonian

hch = T n−A +HA (28)

describing scattering of the neutron on the A-body nucleus. The Hamiltonian hch

includes a kinetic energy operator of the relative n−A motion T n−A and a truncated
Hamiltonian of the A-body subsystem

HA = TA + V A. (29)

The operator TA describes the relative kinetic energy of A particles and interac-
tion V A between them. The operator HA is defined in the A-body relative motion
oscillator states with excitation quanta N ≤ NA

max. The wave function ΨA describes
the internal motion of the A-body subsystem in the ground state,

HAΨA = EAΨA. (30)

The A-body nucleus is supposed to be bound, and hence EA < 0.
We need the channel Hamiltonian to extend the action of the (A+1)-body Hamil-

tonian HA+1 on the subspace of the (A+1)-body Q space associated with the motion
in our channel. We note that the channel Hamiltonian hch acts not only in the Q
space but has also some terms acting in the P space already included in HA+1. There-
fore we cannot add hch to HA+1, we should first project out P -space terms in hch

to avoid double counting. However we should preserve the terms of hch providing
a coupling between the P and Q spaces. Therefore we define the projected channel
Hamiltonian as

Hch = PhchQ+QhchP +QhchQ, (31)

where P is a projector on the P space, Q is a projector on the Q space and

Q+ P = 1. (32)

Now we can define the Hamiltonian describing our system as

H = HA+1 +Hch. (33)

We construct the Lanczos basis from above starting from channel states φNΨA

and φN+2ΨA. Here φN and φN+2 are oscillator functions of relative n−A motion



118 A. M. Shirokov

with N and N + 2 quanta respectively. It is supposed that N > N
A+1
max where

N
A+1
max = NA+1

max +NA+1
tot −NA

tot and NA
tot and NA+1

tot are the total oscillator quanta
in the lowest configuration of the A-body and (A + 1)-body systems respectively.
Clearly our states belong to the Q space, and applying the Hamiltonian H to them is
equivalent to the application of the channel Hamiltonian Hch to them. Applying Hch

to φNΨA we obtain successively Lanczos states φN−2ΨA, φN−4ΨA, ..., φ
N

A+1
max

ΨA. The
respective TRR is

T n−A
N,N−2 aN−2(E) +

(
T n−A
NN − EA+1 + EA

)
aN (E) + T n−A

N,N+2 aN+2(E) = 0,

N > N
A+1
max . (34)

Here EA+1 is the total energy of the (A+ 1)-body system, and

En−A = EA+1 − EA (35)

is a kinetic energy of the relative n−A motion.
Up to this point all Lanczos states φN−2ΨA, φN−4ΨA, ..., φ

N
A+1
max

ΨA were obtained

analytically. Starting from the Lanczos vector φ
N

A+1
max

ΨA, the complete (A+1)-particle

P -space Hamiltonian HA+1 is involved in the Lanczos procedure. All the remaining
Lanczos iterations look like the conventional Lanczos procedure used in standard shell
model codes with a specific pivot vector φ

N
A+1
max

ΨA. Note however that the Hamilto-

nian (33) involves an additional term Hch [see Eq. (31)] and the pivot vector φ
N

A+1
max

ΨA

generally includes a few terms with excitation quanta N > NA+1
max when the A-body

wave function ΨA is a mixture of A-body components ΨA
M with excitation oscillator

quanta M = 0, 2, 4, ..., NA
max:

ΨA = α0ΨA
0 + α2ΨA

2 + α4ΨA
4 + ...+ αNA

max
ΨA

NA
max

. (36)

By means of the Lanczos algorithm we obtain TRR

HA+1
N,N−2 aN−2(E) +

(
HA+1

NN − EA+1
)
aN (E) +HA+1

N,N+2 aN+2(E) = 0,

N ≤ N
A+1
max , (37)

where
HA+1

N
A+1
max ,NA+1

max +2
= T n−A

N
A+1
max ,NA+1

max +2
. (38)

The Lanczos iterations will mix all many-body states in the (A+ 1)-body system.
Generally the number of Lanczos iterations can be as large as the dimensionality of
the (A+ 1)-body P space. N in the TRR (37) does not have a meaning of oscillator
quanta, it is used only to distinguish various Lanczos basis states and can take negative
values. After some reasonable number of Lanczos iterations we should stop and solve
the combined set of TRR (34) and (37) for bound or scattering states by the methods
discussed above.

The proposed approach can be extended to describe the scattering of charged
particles. The Coulomb interaction between all protons should be, of course, included
in HA+1. The problem is how to account for the long-range Coulomb interaction
between two colliding clusters V Coulomb in the channel Hamiltonian Hch. This can
be done by two different ways.

One of the respective techniques has been suggested in Ref. [13] and was widely
used in various applications within Resonating Group Method by Kiev group (see,
e. g., Ref. [14]). In this case, we explicitly include the Coulomb interaction between
two colliding clusters V Coulomb in the channel Hamiltonian Hch. At large excitation
quanta, the operator T n−A +V Coulomb can be accurately approximated by a tridiag-
onal matrix [13]. Therefore at large excitation quanta we can still use TRR (34) with
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matrix elements T n−A
NN corrected by the Coulomb interaction. However the Coulomb

interaction starts mixing P and Q space states at larger values of excitation quanta
than the strong nucleon-nucleon interaction. Therefore Lanczos iterations will involve
the P space states at larger values of excitation quanta than in the case of neutron-
nucleus scattering. This is equivalent to adding a few additional vectors from the Q
space to a huge number of basis states in the P space in the conventional diagonal-
ization of the shell model Hamiltonian by means of Lanczos iterations.

Another method for calculating of Coulomb-distorted scattering phase shifts was
suggested in Ref. [12] and further verified in Ref. [15]. The idea of this method is that
we can cut the Coulomb interaction at some distance rb from the origin and to use
the above technique to calculate the scattering phase shifts in this system which does
not have a long-range interaction any more. The Coulomb-distorted scattering phase
shifts should be recalculated from the obtained phase shifts by means of a simple
analytical formula (see Refs. [12, 15] for details). If the cutoff distance rb coincides
with the classical turning point of the highest single-particle oscillator state involved
in the P space, the matrix elements of the Hamiltonian HA+1, the most complicated
part of the total Hamiltonian (33), are unaffected (or only very slightly affected) by
the Coulomb potential cutoff due to the fast decrease of oscillator functions beyond
the classical turning point. The Coulomb interaction can be omitted in the Q-space
part of the channel Hamiltonian Hch; however it may be needed to account for the
Coulomb interaction in calculation of some of the Hch matrix elements coupling the P
and Q spaces.

We hope that the suggested Lanczos approach will be efficient in the ab initio
description of various nuclear reactions with light nuclei and for improving results for
bound state energies obtained in shell model calculations.

This work was supported in part by the US Department of Energy Grants Nos
DE-FG02-ER40371 and DESC0008485 (SciDAC-3/NUCLEI), by the Ministry of Ed-
ucation and Science of the Russian Federation Grant 14.V37.21.1297, by the Russian
Foundation of Basic Research and by the American Physical Society through the
International Travel Grant Award Program.
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Abstract

Two approaches for computing binary and breakup amplitudes for three-
body scattering above the breakup threshold are presented. The asymptotic
approach provides a way to take into account the orthogonality of the binary
and breakup channels. It reduces the problem to a boundary value problem
with known inhomogeneous boundary conditions. The scattering amplitudes
are calculated without reconstruction of the solution over the entire configura-
tion space. The complex-scaling method reduces the scattering problem to a
boundary value problem with homogeneous zero boundary conditions. It allows
calculating the amplitudes via an integral representations. Both methods are
applied to neutron-deuteron scattering. The binary and breakup amplitudes are
calculated using a developed parallel algorithm.

Keywords: Three-body systems; Faddeev equations; binary amplitude; breakup
amplitude; asymptotic approach; complex-scaling method; domain decomposition
method

1 Introduction

Study of three-body scattering problems includes developing reliable analytical ap-
proaches as well as effective computational techniques. One of the approaches for
treating neutron-deuteron (nd) scattering above the breakup threshold is based on
the three-body configuration space Faddeev formalism [1]. The differential Faddeev
equations are reduced to a boundary value problem by implementing appropriate
boundary conditions. The existing boundary conditions have been introduced by
S. P. Merkuriev [2]. In this paper we continue developing the boundary value problem
approach for Faddeev equations. We introduce a new representation for Merkuriev
boundary conditions and apply the complex-scaling method for obtaining the zero
boundary value problem for Faddeev equations.

In the first approach [3], the asymptotic boundary conditions are represented in
the form of the hyperspherical adiabatic expansion. This expansion is constructed
in such a way that the binary and breakup channels are orthogonal at any value of
the hyper-radius. This property allows using the asymptotic value of the Faddeev
component as the boundary value [4] for the Faddeev equation. This approach makes
it possible to calculate scattering parameters at the asymptotic region through the
solution of the boundary value problem with the inhomogeneous boundary conditions
in the asymptotic region, i. e. without reconstruction of the solution in the entire
configuration space.

The second approach is to take advantage of the exterior complex-scaling method [5]
for the inhomogeneous Faddeev equations. The method allows us to reduce the asymp-
totic boundary conditions to the homogeneous zero conditions at large separation of
particles by the rotation of the hyper-radius into the upper complex half-plane. This
approach demands calculation of the integral representation [1, 6] for scattering am-
plitudes. Therefore, it needs the reconstruction of the full solution over the entire
configurational space.
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The numerical solution of the problem includes solving the linear systems of equa-
tions with block tridiagonal matrices of large orders. The matrix sweeping algo-
rithm [7] is a traditional computational scheme for such problems. Despite the fact
that the algorithm is well defined and robust for matrices with diagonal dominance
its recursive nature leads to a negative effect for taking advantage of parallel com-
puters for large matrices. For our first approach, we use a technically simple scheme
of matrix sweeping algorithm for forward elimination step which produces the so-
lution only at the asymptotic region. For the second approach which requires the
complete solution, we have to take advantage of parallel algorithms and to perform
calculations using supercomputing facilities. In this case, the sweeping algorithm is
applicable only as a brute-force algorithm due to its hard parallelization. For this
case we have developed a new domain decomposition method (DDM). Using DDM
on the supercomputer cluster allows us to reduce the computation time by an order
of magnitude comparing to the brute-force algorithm.

The developed algorithms include conventional linear algebra packages as LAPACK
and principal implementations of parallel programming concepts. The scattering am-
plitudes obtained by both approaches have been compared against each other and
with results in [8].

The plan of the paper is as follows. In the second section a brief formulation of
the three-body scattering problem is presented. The third section describes methods
of solving the stated problem. The equations and the corresponding boundary con-
ditions for each of approaches are given here. The computational methods as well
as its parallelization are discussed in the fourth section. The obtained results are
summarised and compared in the last fifth section before the conclusion.

The authors are thankful to E. A. Yarevsky for valuable suggestions concerning
the application of the complex-scaling method. All calculations presented in the
paper have been performed using the supercomputing facilities of the Computational
Resources Center of SPbSU.

2 Formulation of the problem

The nd system under consideration is described by differential Faddeev equation of
the form [1]

(−∆ + V (x)− E)U(X) = −V (x)
(
P+ + P−

)
U(X) (1)

for the Faddeev component U of the wave function Ψ. The center-of-mass frame of
standard Jacobi coordinates {x,y} = X [1] is used throughout. The expansion of the
wave function into components is written as

Ψ(X) =
(
I + P+ + P−

)
U(X),

where P± is the cycling and anti-cycling permutation operators of three particles and
I is the unit operator. The s-wave equations for the radial part of the Faddeev wave
function component appear from the equation (1) after projection onto the states with
zero orbital momentum in all pairs of the three-body system. These s-wave Faddeev
equations are given by [9]

(
− ∂2

∂x2
− ∂2

∂y2
+ V J(x) − E

)
UJ(x, y) = −V J (x)

1∫

−1

dµ
xy

x′y′
BJUJ(x′, y′), (2)

where

x′ =

(
x2

4
−
√

3

2
xyµ+

3y2

4

)1/2

,
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y′ =

(
3x2

4
+

√
3

2
xyµ+

y2

4

)1/2

,

µ = cos (x̂, ŷ).

The superscript J labels states with a given total momentum that coincides with the
total spin of the system in our case. For J = 1/2 (doublet), U1/2 is a three-component

function
(
U

1/2
1 , U

1/2
2 , U

1/2
3

)T
, whereas U3/2 is a scalar (quartet). The potentials are

defined as follows: V 1/2 = diag{V t, V s, V s}, V 3/2 = V t, where V t and V s are triplet
and singlet potentials of NN -interaction [8]. Numerical matrices BJ are given as

B1/2 =




1/4 −3/4 0
−3/4 1/4 0

0 0 −1/2


, B3/2 = −1/2.

The energy E in the center-of-mass system and the relative neutron momentum q are
associated with the deuteron ground state energy ε < 0 by the equation q2 = E − ε.
The deuteron ground state wave function satisfies the equation

(
− d2

dx2
+ V 3/2(x)

)
ϕ(x) = εϕ(x) (3)

with the zero boundary conditions at zero and infinity.
The solution of the s-wave Faddeev equations (2) for nd scattering above the

breakup threshold (E > 0) should satisfy the boundary conditions [2]

U
1/2
1 (x, y) ∼ ϕ(x)

(
sin qy + a

1/2
0 (q) exp iqy

)
+A

1/2
1 (θ, E)

exp i
√
Eρ√
ρ

, (4)

U
1/2
i (x, y) ∼ A1/2

i (θ, E)
exp i

√
Eρ√
ρ

, i = 2, 3, (5)

U3/2(x, y) ∼ ϕ(x)
(

sin qy + a
3/2
0 (q) exp iqy

)
+A3/2(θ, E)

exp i
√
Eρ√
ρ

, (6)

where ρ =
√
x2 + y2, tan θ = y/x, as ρ→∞, and the conditions U(x, 0) = U(0, y) =

0 guarantee the regularity of the solution at zero. The structure of the numerical
matrix B1/2 makes it possible to reject the third uncoupled equation in (2) and thus
to simplify the problem. The functions aJ0 (q) and AJ

i (θ, E) are the binary amplitude
and the Faddeev component of the breakup amplitude, respectively. The integral
representations for these functions in the simplest case J = 3/2 are of the form [1]

a
3/2
0 (q) =

1

q

∫ ∞

0

dy sin qy

∫ ∞

0

dx ϕ(x) K(x, y) (7)

and

A3/2(θ̃, E) =

√
2

π
√
E
eiπ/4

∫ ∞

0

dy sin qy

∫ ∞

0

dx φ(
√
E cos θ̃, x) K(x, y), (8)

where φ(k, x) is the scattering two-body wave function

φ(k, x) →
x→∞

eiδ(k) sin (kx+ δ(k))

and

K(x, y) =
1

2
V 3/2(x)

1∫

−1

dµ
xy

x′y′
U3/2(x′, y′).
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Taking into account the change of the unknown function UJ (ρ, θ) ≡ √ρUJ (x, y),
the transformation to the hyperspherical coordinates {ρ, θ} leads to the following
equations:

(
− ∂2

∂ρ2
− 1

4ρ2
− 1

ρ2
∂2

∂θ2
+ V 3/2(ρ cos θ)− E

)
U3/2(ρ, θ)

=
2√
3
V 3/2(ρ cos θ)

θ+(θ)∫

θ−(θ)

U(ρ, θ′) dθ′ (9)

for J = 3/2 and

(
− ∂2

∂ρ2
− 1

4ρ2
− 1

ρ2
∂2

∂θ2
+ V t(ρ cos θ)− E

)
U1/2
1 (ρ, θ)

= − 1√
3
V t(ρ cos θ)

θ+(θ)∫

θ−(θ)

(
U1/2
1 (ρ, θ′)− 3U1/2

2 (ρ, θ′)
)
dθ′, (10a)

(
− ∂2

∂ρ2
− 1

4ρ2
− 1

ρ2
∂2

∂θ2
+ V s(ρ cos θ)− E

)
U1/2
2 (ρ, θ)

= − 1√
3
V s(ρ cos θ)

θ+(θ)∫

θ−(θ)

(
−3U1/2

1 (ρ, θ′) + U1/2
2 (ρ, θ′)

)
dθ′ (10b)

for J = 1/2. The integration limits are defined, in turn, as θ−(θ) = |π/3 − θ|,
θ+(θ) = π/2 − |π/6 − θ| and the boundary conditions (4)–(6) should be multiplied
by
√
ρ.

3 The solution methods

3.1 The asymptotic approach

The equations (9)–(10) are solved via expansion of the unknown function in basis
functions associated with the eigenvalue problem for the operator h(ρ):

h(ρ)φk(ρ|θ) =

(
− 1

ρ2
∂2

∂θ2
+ V J(ρ cos θ)

)
φk(ρ|θ) = λJk (ρ)φk(ρ|θ), θ ∈ [0, π/2].

(11)
The spectral properties of this operator [3] allow us to orthogonalize the binary and
breakup scattering channels and hence to reformulate [3] the problem in such a way
that the boundary conditions (4)–(6) can be represented as the following equivalent
ones:

U3/2(ρ, θ) ∼ φ0(ρ|θ)
(
Y0(qρ) + a

3/2
0 (q)H0(qρ)

)
+

Nφ∑

k=1

φk(ρ|θ) a3/2k (E)Hk(
√
Eρ) (12)

for J = 3/2, and

U1/2
1 (ρ, θ) ∼ φ0(ρ|θ)

(
Y0(qρ) + a

1/2
0 (q)H0(qρ)

)
+

Nφ∑

k=1

a
1/2
1,k (E)φk(ρ|θ)Hk(

√
Eρ), (13a)

U1/2
2 (ρ, θ) ∼

Nφ∑

k=1

a
1/2
2,k (E)φk(ρ|θ)Hk(

√
Eρ) (13b)
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for J = 1/2. Here Y0(t) and Hk(t) are expressed by

Y0(t) =

√
πt

2

Y0(t) + J0(t)√
2

,

Hk(t) =

√
πt

2
H

(1)
2k (t) exp i

(π
4

+ πk
)

through Bessel functions J0, Y0 and Hankel functions of the first kind H
(1)
k [10]. The

Faddeev component of the breakup amplitude is expressed in this case as a linear
combination

AJ
i (θ, E) = lim

ρ→∞
AJ

i (θ, E, ρ) = lim
ρ→∞

Nφ∑

k=1

aJi,k(E) φk(ρ|θ),

whereas the binary amplitude is given by aJ0 (q).
The extraction of the coefficients aJi,k of the presented linear combination, for

example, in the case J = 3/2 is performed as follows. The boundary value problems
with the boundary conditions given by separate terms of Eq. (12) and taken at some
last knot ρmax +h are solved and the solutions Uk(ρmax) at the next-to-last knot are
obtained. Parameter ρmax is chosen to be large enough in order to use the asymptotic
representation for the solutions in the asymptotic region. Constructing the complete
solution as a linear combination

U = Usin + a
3/2
0 U0 +

Nφ∑

k=1

a
3/2
k Uk, (14)

we assume that in this asymptotic region ρ = ρmax the constructed solution (14) is
equal to the asymptotics (12):

Usin + a
3/2
0 U0 +

Nφ∑

k=1

a
3/2
k Uk = φ0

(
Y0 + a

3/2
0 H0

)
+

Nφ∑

k=1

a
3/2
k φk Hk. (15)

This provides the system of linear equations for calculation of a
3/2
k in the asymptotic

region, i. e. using the orthogonality of the basis and projecting Eqs. (15) on the basis

functions φl, one can obtain the desired system of equations for a
3/2
k :

a
3/2
0 [〈φl| U0〉 − 〈φl|φ0H0〉] +

Nφ∑

k=1

a
3/2
k [〈φl| Uk〉 − 〈φl|φkHk〉] = −〈φl| Usin〉+ 〈φl|φ0Y0〉.

3.2 The exterior complex-scaling method

The exterior complex-scaling method [5] implies a substitution of the variable ρ in
Eqs. (9)–(10) by a complex function R(ρ) according to the formula

R(ρ) =

{
ρ ρ < ρ0
ρ0 + f(ρ, ρ0, ω, {pi}) ρ ≥ ρ0 ,

where the introduced complex function f defines the curve of R(ρ) in the complex
plane and can depend on some number of predefined parameters pi. Then the partial
second derivative in equations (9)–(10) is expressed as

∂2

∂R2
= − R′′

ρ

(R′
ρ)3

∂

∂ρ
+

1

(R′
ρ)2

∂2

∂ρ2
. (16)
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The continuity properties of R(ρ) define the validity of Eq. (16) and the smoothness
of the scaling. The simplest case of the sharp exterior complex-scaling demands to
have f in the form

f(ρ, ρ0, ω, {pi}) = (ρ− ρ0)eiω , (17)

which prescribes the rotation to the upper complex half-plane by the angle ω. The
derivative R′

ρ in this case has the discontinuity at ρ0 and this might affect the applica-
bility of the formula (16). A smooth exterior complex-scaling can be given by a more
complicated function f which provides a continuity of function R(ρ) together with
the first and second derivatives. Nevertheless, the limiting behavior of f as ρ → ∞
should have a form (17). For example, the function f for the smooth scaling can be
given by

f(ρ, ρ0, ω, p) = (ρ− ρ0) eiω (1 − exp[−p(ρ− ρ0)]).

In the present work for this type of scaling we use fifth order polynomial function
with some chosen coefficients.

The impact of the complex rotation on the asymptotics results in an exponential
decrease of the scattered waves. For simplicity, we will consider the quartet asymp-
totics U3/2 and the sharp complex-scaling. In the hyperspherical coordinates the
asymptotics (4) is given by the formula

U3/2(R, θ) ∼
√
R ϕ(R cos θ)

(
sin qy + a

3/2
0 (q) exp iqy

)
+A3/2(θ, E) exp i

√
ER.

The sharp complex rotation of the binary scattered wave exp (iqR cos θ) produces the
term

exp(iq[ρ0 + (ρ− ρ0) cosω] sin θ) exp(−q(ρ− ρ0) sinω sin θ),

which exponentially vanishes as ρ → ∞ and the angle of the rotation determines
the rate of vanishing. The breakup scattered wave shows a similar behaviour. In
contrast, the incoming wave sin (qR cos θ) does not vanish after the complex rotation.
This wave is substracted from the asymptotics and consequently from the unknown
solution. Hence, in the case of J = 3/2, the inhomogeneous equation

(
− ∂2

∂R2
− 1

4R2
− 1

R2

∂2

∂θ2
+ V (R cos θ)− E

)
Ũ3/2(R, θ)

− 2√
3
V (R cos θ)

θ+(θ)∫

θ−(θ)

Ũ3/2(R, θ′) dθ′

=
2√
3
V (R cos θ)

θ+(θ)∫

θ−(θ)

√
R ϕ(R cos θ′) sin (qR sin θ′) dθ′.

for Ũ3/2 = U3/2 −
√
R ϕ(R cos θ′) sin (qR sin θ′) with homogeneous zero boundary

conditions

Ũ3/2(R, θ) =
ρ=0

0, Ũ3/2(R, θ) =
ρ→∞

0

is obtained. The similar equations with vanishing zero boundary conditions can be
obtained for the case J = 1/2.

Within a framework of this method, the binary and breakup amplitudes are cal-
culated using the integral representations (7) and (8), respectively. The complete
solution for all values of hyper-radius ρ ∈ [0, ρmax], where ρmax > ρ0, is reconstructed
and a part of the solution at real values of R(ρ) is then used for calculation.
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Figure 1: The cubic Hermite splines (18) at the unit interval.

4 The computational scheme

The two-dimensional boundary value problem is solved in the hyperspherical coor-
dinates {ρ, θ} due to proper description of the boundary conditions and appropriate
representation of the two-body operator (11). Therefore, the computational scheme
meets the requirements of a good representation of this θ-dependent operator. As
a result, the unknown solution as a function of the coordinate θ is expanded in the
basis of cubic Hermit splines [11]. These four splines are defined at the unit interval
by the formulae

h00(t) = 2t3 − 3t2 + 1,
h10(t) = t3 − 2t2 + t,
h01(t) = −2t3 + 3t2,
h11(t) = t3 − t2,

(18)

and can be transferred by linear transformations to two consecutive intervals of θ-
grid. The splines are shown in Fig. 1. In order to obtain the θ-grid, a specially chosen
nonequidistant x-grid for operator (3) has been used and transformed by the relation

θi(ρ) = arccos
xi
X(ρ)

, θi ∈ [0, π/2].

Here the parameter X(ρ) defines the x-coordinate of the right zero boundary condi-
tion for some ρ. The quality of the x-grid and consequently of the θ-grid has been
estimated by a precision of the ground state eigenvalue of the two-body Hamilto-
nian (3). For the MT I-III potential [8], the achieved value is E2b = −2.23069 MeV.
The obtained nonequidistant θ-grid has the highest density near π/2 and makes it
possible to calculate the precise ground state eigenvalue with about 500 intervals.
The spline-expansion of the solution demands using as many as twice of numbers
of coefficients in the expansion. The orthogonal collocation method with two gauss
knots within one interval is used for discretisation of differential equations. Therefore,
the common size for a matrix of the two-body operator representation is about 1000.
The second partial derivative of the equation (9) is approximated over the equidistant
ρ-grid with the mesh parameter h = ρm − ρm−1 by the finite-difference formula

∂

∂ρ2
U(ρ, θ)→ U(ρm−1, θ)− 2 U(ρm, θ) + U(ρm+1, θ)

h2
.

This approximation generates the block tridiagonal structure for the matrix of the
linear system. The matrix sweeping and the domain decomposition algorithms are
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applied for solving the obtained system.
The matrix sweeping algorithm for the block tridiagonal system

AiXi−1 + CiXi + BiXi+1 = Si, A1 = BNρ
= 0, (19)

where Ai, Bi, Ci, i = 1, . . . , Nρ are the blocks of the left hand side matrix and
blocks Si present the right hand side, includes two sweep procedures: the forward one
and the backward one. The forward sweep consists of a sequential calculation of the
auxiliary blocks

{
α̂1 = C−1

1 B1,

α̂i = (Ci −Aiα̂i−1)−1 Bi, i = 2, ..., Nρ − 1

for the left hand side and similar ones for the right hand side. As a result, the matrix
of the system is reduced using these blocks to the upper diagonal form with C̃i blocks
on the diagonal, unchanged Bi on the upper diagonal and S̃i in the right side. The
backward sweep consists in the reconstruction of the solution of the linear system by
formulae {

XNρ
= C̃−1

Nρ
S̃Nρ

Xi = C̃−1
i

(
S̃i −BiXi+1

)
, i = Nρ − 1, . . . , 1

The solution is also calculated sequentially starting from the last block at the matrix
diagonal. This makes it possible to calculate the solution corresponding to the last
block by performing the complete forward sweep and only the first step of the back-
ward sweep. In spite of its sufficient simplicity and efficiency, the matrix sweeping
algorithm is recursive and parallelized only at the level of matrix operations. This
does not allow us to use the given method on contemporary supercomputing facilities.

Besides the matrix sweeping algorithm, we have developed a new solution method
called the domain decomposition method (DDM). It was designed to perform fast
parallel solving and obtain a complete solution of the linear system. The idea of the
method is presented in Fig. 2. The initial tridiagonal system (19) is rearranged into
an equivalent form which allows the parallel solving. The matrix is logically divided
into independent subsystems and last components of the solution corresponding to
each subsystem are moved to the end of the full solution. The subsystems are shown
in Fig. 2 (middle) by thin squares. This procedure affects the transformation of the
initial matrix and reduces it to the new block “arrow”-form which is shown in Fig. 2
(bottom). The obtained system can be expressed as

(
M11 M12

M21 Mv

)(
u
v

)
=

(
P11

Pv

)
, (20)

where the unknown solution v corresponds to the moved part of the full solution, the
superblock M11 consists of the new independent blocks at the diagonal, Mv is the
bottom right coupling superblock which is the “arrowhead”, and other superblocks
present additional blocks of the matrix. The solution of the system (20) is given by
the relations

{
u = M−1

11 P11 −M−1
11 M12v,

v =
(
Mv −M21M

−1
11 M12

)−1 (
Pv −M21M

−1
11 P11

)
.

Due to the structure of obtained superblocks, the inversion of M11 is reduced to in-
dependent inversions of the diagonal blocks corresponding to each subsystem. Only
two nonzero blocks for each subsystem of M21 and M12 drastically reduce the num-
ber of matrix operations and their sparse allocation allows us to perform multipli-
cations M−1

11 M12 independently for each subsystem. The calculated supermatrix
Mv −M21M

−1
11 M12 has a block tridiagonal form. Although its size equals to the
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Figure 2: A simple graphical scheme of the domain decomposition method: (top)
the initial block tridiagonal system; (middle) a rearrangement of the initial system
to independent subsystems, the moved elements are highlighted by the diagonal lines
and solid filling; (bottom) the obtained system in the “arrow”-form which can be
solved using parallel calculations.

number of subsystems (multiplied by the size of one block) and can be chosen much
smaller than the size of the initial system (19), the matrix sweeping algorithm is used
for computation of the solution v. After obtaining v, the solution u is calculated in
parts independently for each subsystem.

The DDM is successfully integrated in modern parallel programming models and
it allows us to obtain a linear growth of performance with the increase of a number
of computing units for not so large supercomputing systems. Fig. 3 shows obtained
values of the computation acceleration with respect to the number of computing units.
The linear dependence is clearly observed and the acceleration larger than 10 is easily
reached. Nevertheless, further increase of computing hubs leads to violation of the
linear dependence and stagnation of the performance increase because of the growth
of hardly parallelized matrix sweeping part.
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Figure 3: Computation acceleration for the domain decomposition method as a func-
tion of a number of computing units. The linear growth of the performance is ob-
served.

5 Results of calculations

The calculations have been carried out for energies in the laboratory frameElab = 14.1,
42.0 MeV using the MT I-III potential [8] for the description of the two-body sub-
system (3). A number of knots for the nonequidistant θ-grid was chosen to be about
1000 and the mesh step of the uniform ρ-grid was varied from 0.033 fm to 0.01 fm.

Within the asymptotic approach, the boundary value problems consisting of equa-
tions (9), (10) and boundary conditions (12), (13) taken at the hyper-radius ρ = ρmax,
have been solved. The expansion coefficients aJi,k(E, ρmax) as functions of ρmax have
been calculated and used for reconstructing of the Faddeev component of the breakup
amplitude

AJ
i (θ, E, ρmax) = lim

ρ→∞
AJ

i (θ, E, ρmax, ρ) = lim
ρ→∞

Nφ∑

k=1

aJi,k(E, ρmax)φk(ρ|θ).

The prelimiting doublet breakup amplitudes A
1/2
i (θ, E, ρmax, ρ) for Elab = 14.1 MeV

at some finite value of ρmax are shown in Fig. 4. The breakup amplitudes

A
1/2
i (θ, E, ρmax) as ρ → ∞ for the same energy are presented in Fig. 5. A con-

vergence to a limit is explicitly guaranteed by properties of the functions φk(ρ|θ).
The limiting forms of these functions as ρ → ∞ are known and they are smooth for
θ ∈ [0, π/2]:

φk(ρ|θ) ∼
ρ→∞

2√
π

sin 2kθ.

Therefore, in contrast to the prelimiting case, a smooth behavior of the breakup
amplitudes near 90 degrees is observed.

The convergence of the binary amplitude a0(q, ρmax) and breakup amplitude

A
3/2
i (θ, E, ρmax) as ρmax →∞ has been obtained. For example, the ρmax-dependence

of the inelasticity coefficient and the phase shift, defined as

aJ0 =
ηJe2iδ

J − 1

2i
, (21)

for J = 3/2 are presented in Fig. 6. It is shown in the figure that the decrease of the
mesh step h for the ρ-grid to 0.01 fm leads to obtaining of oscillating but significantly
less biased values of the phase shift as ρmax increases. The oscillations are vanishing as



Computing binary scattering and breakup in three-body system 131

−0.3

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 10 20 30 40 50 60 70 80 90

A
(θ

,E
,ρ

m
ax

,ρ
)

θ

Re(A1
1/2)

Im(A1
1/2)

Re(A2
1/2)

Im(A2
1/2)

−0.02

 0

 0.02

89 90

Figure 4: The prelimiting doublet breakup amplitudes A
1/2
i (θ, E, ρmax, ρ) for Elab =

14.1 MeV and ρ = ρmax = 1400 fm. The amplitudes have been obtained using the
asymptotic approach.

ρmax →∞ and the limiting value of the amplitude can be obtained by extrapolation.
Nevertheless, in order to reach relatively small oscillations it is necessary to achieve
values of ρmax > 1000 fm. The obtained values of the binary amplitude for different
laboratory frame energies are summarized in Table 1. The calculated values are in a
good agreement with the binary amplitudes of Ref. [8].
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Figure 5: The breakup doublet amplitudes A
1/2
i (θ, E, ρmax) for Elab = 14.1 MeV and

ρmax = 1400 fm. The amplitudes have been obtained using the asymptotic approach.
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Figure 6: Calculated values of the quartet inelasticity coefficient η and phase shift δ
[see Eq. (21)] for Elab = 14.1 MeV as functions of ρmax. The dashed line represents
the values obtained using the ρ-grid with relatively large mesh h = 0.033 fm, whereas
the solid line shows the values obtained using h = 0.01 fm. The values have been
obtained using the asymptotic approach.

The complex-scaling approach calculations have been carried out using the smooth
rotation by angle ω = 30◦ and mesh step of the ρ-grid h = 0.033 fm. Due to rotation,
the boundary condition values have vanished and become smaller than 10−6. The
full solution was reconstructed and the amplitudes were calculated by the integral
representations (7), (8). The most consistent preliminary values of the binary and
breakup amplitudes have been obtained for the starting rotation at ρmax ∼ 900 fm
and using the solution for ρmax < 900 fm in formulae (7), (8). The achieved value
of binary amplitude is expressed by the inelasticity coefficient η = 0.9789 and phase
shift δ = 68.79◦. The obtained quartet breakup amplitudes A3/2(θ, E, ρmax) were
compared with the results of Ref. [8]. This comparison for Elab = 14.1 MeV is
presented in Fig. 7. The results are in good agreement for values of θ < 80◦, whereas
differences are observed for θ ∼ 90◦.

Table 1: The values of the inelasticity coefficient η and phase shift δ obtained using
the asymptotic approach for different laboratory frame energies.

Elab, MeV 14.1 42.0
J = 3/2, quartet

η3/2 0.9781 0.9031

δ3/2 68.78 37.66

J = 1/2, doublet

η1/2 0.4648 0.5021
δ1/2 105.40 41.21



Computing binary scattering and breakup in three-body system 133

−0.24
−0.23
−0.22
−0.21

−0.2
−0.19
−0.18
−0.17
−0.16
−0.15
−0.14

0 10 20 30 40 50 60 70 80 90

R
e

A
3/

2 (θ
,E

,ρ
m

ax
)

θ

Asymptotic approach
Complex−scaling

[8]

 0.36
 0.38

 0.4
 0.42
 0.44
 0.46
 0.48

 0.5
 0.52
 0.54

0 10 20 30 40 50 60 70 80 90

Im
A

3/
2 (θ

,E
,ρ

m
ax

)

θ

Asymptotic approach
Complex−scaling

[8]

Figure 7: Real and imaginary parts of the breakup quartet amplitude A3/2(θ, E, ρmax)
for Elab = 14.1 MeV. The values have been obtained using the asymptotic approach
and the complex-scaling method. The results of Ref. [8] are also shown for comparison.

6 Conclusion

In the paper we have presented two methods for solving the three-body scattering
problem above the breakup threshold. In the method 1, an orthonormal basis related
to the two-body subsystem Hamiltonian is constructed. The asymptotic boundary
condition is modified in terms of this basis. The breakup amplitude is represented by
a linear combination of basis functions which allows an extrapolation of this amplitude
to infinity exclusively by the properties of the basis functions. The coefficients of the
linear combination together with the binary amplitude are numerically obtained from
the comparison with the asymptotic form of the wave function. In the method 2, the
exterior complex scaling is used for reducing the asymptotic boundary conditions to
zero. The binary and breakup amplitudes are obtained from their integral represen-
tations. Both methods include solving the system of linear algebraic equations. The
domain decomposition method which allows a parallelization of the solution process
has been developed and successfully applied reducing the overall time of calculation
up to 10 times.
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Abstract

The three-body continuum Coulomb problem is treated in terms of gener-
alized parabolic coordinates. Specifically, the original problem is reduced to a
driven equation where the ‘perturbation’ operator contains the non-orthogonal
part of the kinetic energy operator. As a test of this approach, a simple two-
dimensional model problem is solved numerically by using so-called parabolic
quasi-Sturmian basis representation. Convergence of the solution is achieved as
the basis set is enlarged.

Keywords: Three-body Coulomb system; parabolic coordinates; driven equa-
tion; quasi-Sturmians; convergence

1 Introduction

The three-body continuum Coulomb problem is one of fundamental unresolved prob-
lems of theoretical physics. In atomic physics, a prototype example is a two-electron
continuum which arises as a final state in electron-impact ionization and double pho-
toionization of atomic systems. Several discrete-basis-set methods for calculations of
such processes have been developed recently including a convergent close coupling
(CCC) approach [1, 2], a Coulomb–Sturmian separable expansion method [3, 4] and
a J-matrix method [5, 6, 7]. In all these approaches (see also [8, 9]), the continuous
Hamiltonian spectrum is represented in the context of complete square integrable
bases. Despite an enormous progress made so far in discretization and subsequent
numerical solutions of three-body differential and integral equations of Coulomb scat-
tering theory, a number of related mathematical problems remain open. Actually,
the use of a product of two fixed charge Coulomb waves for two outgoing electrons as
an approximation to the three-body continuum state, is typical for these approaches.
As a consequence, a long-range potential appears in the kernel of the corresponding
Lippmann–Schwinger (LS) equation. Since this integral equation is, in principle, non-
compact, its formal solution therefore should be divergent. Note, however, that in the
two-body problem this type of definition of the “free particle solution” is not leading
to divergent solutions [10]. In addition, in the three-body case, approaches like the
exterior complex scaling [11] and generalized Sturmian approaches [8] lead to correct
solutions for the driven equation from which the LS equations are derived. One of
the aims of this paper is to understand the reason of these differences between the
solutions corresponding to the LS type and driven equations.

On the other hand, it is well known [12, 13] that the Schrödinger equation for
a three-body Coulomb system at large particle separations, i. e., in the so-called re-
gion Ω0, is separable in terms of generalized parabolic coordinates {ξj , ηj}, j = 1, 2, 3
[13, 14]. Moreover, a representation of the corresponding Green’s function operator
has been derived in Ref. [15]. Thus, at first glance, one can get an impression that
the three-body Coulomb problem can be recast as a Lippmann–Schwinger type equa-
tion, where the potential energy operator coinciding with the non-orthogonal part of
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the kinetic energy operator, is expressed in terms of second partial mixed derivatives
with respect to the parabolic coordinates. No complete studies of the compactness of
the kernel of this integral equation can be found in the literature (see discussion in
Ref. [16]). Actually, a differential operator of this type seems to be unbounded in the
Hilbert space, and therefore finding formal solutions of the corresponding Lippmann–
Schwinger equation could be difficult. To avoid these problems, an alternative ap-
proach can be used by considering an inhomogeneous Schrödinger equation with a
square integrable driven term. In this paper, we formulate a procedure for solving
the driven equation using so-called quasi-Sturmian (QS) functions. Unlike Sturmian
functions (see, e. g., Refs. [17, 18] and references therein) which are eigensolutions of a
Sturm–Liouville differential or integral equation and form a complete set of basis func-
tions, the QS functions are constructed from square-integrable basis functions with
the help of an appropriate Coulomb Green’s function operator. In order to test practi-
cally the QS approach and the solution of driven type instead of Lippmann–Schwinger
equations, we consider a simple two-dimensional model problem on the plane (ξ1, ξ3).
Here the total wave operator, aside from the one-dimensional Coulomb wave operators

ĥ1 and ĥ3, contains a ‘perturbation’ term ∂2

∂ξ1 ∂ξ3
.

This paper is organized as follows. We introduce notations, recall the generalized
parabolic coordinate definition and convert the three-body Coulomb problem into
a driven equation in Sec. 2. We present in Sec. 3 a simple two-dimensional model
and briefly outline the parabolic QS approach. Calculations of model continuum wave
function are also described in Sec. 3. Our aim is to study the rate of convergence as the
basis set used to describe the ‘perturbation’ operator is enlarged. The calculations
show that the convergence can be achieved on the basis of a reasonable size with
appropriately chosen basis parameters. Sec. 4 contains a brief discussion of the overall
results. Atomic units are used throughout.

2 Coulomb three-body system
in parabolic coordinates

2.1 General considerations

We consider three particles of masses m1, m2, m3, charges Z1, Z2, Z3 and momenta
k1, k2, k3. The Hamiltonian of the system after separating out the center-of-mass
motion is given by

Ĥ = − 1

2µ12
∆R −

1

2µ3
∆r +

Z1Z2

r12
+
Z2Z3

r23
+
Z1Z3

r13
, (1)

where rls denotes relative coordinates,

rls = rl − rs, rls = |rls|, (2)

R and r are Jacobi coordinates,

R = r1 − r2, r = r3 −
m1r1 +m2r2
m1 +m2

. (3)

The reduced masses are defined as

µ12 =
m1m2

m1 +m2
, µ3 =

m3 (m1 +m2)

m1 +m2 +m3
. (4)

In the Schrödinger equation

ĤΦ = EΦ, (5)
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the eigenenergy E > 0 is given by

E =
1

2µ12
K2 +

1

2µ3
k2, (6)

where K and k are the momenta conjugate to variables R and r. By substituting

Φ = ei(K·R+k·r)Ψ (7)

into Eq. (5), we obtain an equation for the reduced wave function Ψ:

[
− 1

2µ12
∆R −

1

2µ3
∆r −

i

µ12
K · ∇R −

i

µ3
k · ∇r +

Z1Z2

r12
+
Z2Z3

r23
+
Z1Z3

r13

]
Ψ = 0.

(8)
Leading-order asymptotic terms of Ψ in the Ω0 domain are expressed in terms of
generalized parabolic coordinates [13]:

ξ1 = r23 + k̂23 · r23, η1 = r23 − k̂23 · r23,
ξ2 = r13 + k̂13 · r13, η2 = r13 − k̂13 · r13,
ξ3 = r12 + k̂12 · r12, η3 = r12 − k̂12 · r12,

(9)

where kls = klms−ksml

ml+ms
is the relative momentum, k̂ls = kls

kls
and kls = |kls|. The

operator in square brackets in Eq. (8) denoted by D̂, can be decomposed into two
terms [13]:

D̂ = D̂0 + D̂1, (10)

where the operator D̂0 contains the leading term of kinetic energy and the total
potential energy:

D̂0 =
3∑

j=1

1
µls(ξj+ηj)

[
ĥξj + ĥηj

+ 2klstls

]

for l < s and j 6= l, s,

(11)

ĥξj = −2

(
∂

∂ξj
ξj

∂

∂ξj
+ iklsξj

∂

∂ξj

)
, (12)

ĥηj
= −2

(
∂

∂ηj
ηj

∂

∂ηj
− iklsηj

∂

∂ηj

)
. (13)

Here tls = ZlZsµls

kls
and µls = mlms

ml+ms
. The operator D̂1 represents the remaining part

of kinetic energy [13] which, in the case of the (e−, e−, He++) = (123) system with
m3 =∞, takes the form [19]:

D̂1 =

2∑

j=1

(−1)j+1

[
u−
j · u−

3

∂2

∂ξj ∂ξ3
+ u−

j · u+
3

∂2

∂ξj ∂η3

+ u+
j · u−

3

∂2

∂ηj ∂ξ3
+ u+

j · u+
3

∂2

∂ηj ∂η3

]
, (14)

where

u±
j = r̂ls ∓ k̂ls. (15)

The asymptotic behavior of Ψ is determined by the operator D̂0. In particular,
there exist solutions of the equation

D̂0ΨC3 = 0 (16)
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such that the total wave functions (7) satisfy Redmond conditions [20] in Ω0. These
solutions are well-known C3 wave functions. ΨC3 are expressed in terms of products
of three Coulomb waves. For example, ΨC3 with pure outgoing behavior is written as

ΨC3 =
3∏

j=1

1F1(itls, 1; −iklsξj). (17)

In turn, D̂1 is regarded as a perturbation which does not violate asymptotic condi-
tions [13, 14].

2.2 Formal solution of the problem

At first glance, given the Green’s function operator Ĝ = D̂−1
0 (see Ref. [15]), one

could take into account the non-orthogonal term D̂1 of the kinetic energy operator
by putting it into the kernel of the Lippmann–Schwinger type equation:

Ψ = ΨC3 − ĜV̂Ψ,

V̂ ≡ D̂1.
(18)

If the kernel ĜV̂ is compact, the integral equation (18) can be solved by an algebraic
method based on the fact that a compact operator may be uniformly approximated
by operators of finite rank. For this purpose, e. g., a set of square-integrable parabolic
Laguerre basis functions [21]

|N〉 ≡BN(ξ, η) =

3∏

j=1

φnjmj
(ξj , ηj), (19)

φnjmj
(ξj , ηj) = ψnj

(ξj) ψmj
(ηj), (20)

ψn(x) =
√

2bj e
−bjxLn(2bjx), (21)

could be used. The index N represents all indexes of the basis function, N

= {n1,m1, n2,m2, n3,m3}, and the argument (ξ, η) of the function BN(ξ, η) represents
in compact form the dependence on all parabolic coordinates. The basis functions
(20), (21) are parametrized by different Coulomb–Sturmian parameters bj for each

pair of {ξj , ηj}, j = 1, 3. Thus, the operator V̂ is represented by its projection V̂N

onto a subspace of basis functions,

V̂N =

N0∑

N,N′=0

|N〉〈N|V̂ |N′〉〈N′|, (22)

and the solution Ψ of the problem is obtained for V̂N . Substituting V̂ by V̂N in
Eq. (18) we obtain a finite matrix equation for the expansion coefficients [a]

N
= 〈N|Ψ〉,

a = a(0) − G V a, (23)

which has a solution
a = (1 + G V)

−1
a(0). (24)

Here [G]
NN′

= 〈N| Ĝ |N′〉 and [V]
NN′ = 〈N| V̂ |N′〉 are the Green’s function operator

and potential operator matrices of the rank of N0+1, and a(0) is the coefficient vector
of ΨC3, i. e.,

[
a(0)

]
N

= 〈N|ΨC3 〉. The wave function Ψ is expressed in terms of the
solution (24):

Ψ = ΨC3 −
N0∑

N=0

[C]
N
Ĝ |N〉, (25)



Quasi-Sturmian approach 139

where C = V a.
We performed various studies of Eq. (18) and found out that its kernel is not

compact when expressed in terms of L2 spaces. Actually, the problem is that any
L2 basis does not possess the appropriate asymptotic behavior. Thus the correct
asymptotic behavior is to be implemented and then the perturbation operator D̂1

[see Eq. (14)] seems to be not bounded. However, if the basis possess already the
asymptotic behavior of the problem, D̂1 turns out to be a short range operator and
becomes compact and manageable.

We explore an alternative approach to the problem based on a study of the driven
equation [

D̂0 + D̂1

]
Ψsc = −D̂1ΨC3, (26)

where the wave function Ψ is splitted into outgoing (ingoing) ΨC3 and scattered Ψsc

parts,

Ψ = Ψsc + ΨC3. (27)

Note, the inhomogeneity in Eq. (26) is a square-integrable function. Equation (25)
gives a hint on how to construct a solution Ψsc of Eq. (26) with the help of the square-
integrable basis (19). Namely, we suppose that the wave function Ψ can be expressed
in the form (25), i. e., we propose to expand Ψsc as

Ψsc =
∑

N=0

[c]
N
|QN〉, (28)

where

|QN〉 ≡ Ĝ |N〉. (29)

We call the function |QN〉 a quasi-Sturmian function. The word ‘quasi’ refers to that
there is no need to solve a Sturm–Liouville equation to obtain these functions.

According to the definition (29), the QS functions satisfy a driven equation

D̂0QN(ξ, η) = BN(ξ, η) (30)

and possess the same asymptotic behavior as the kernelG(E; ξ, η, ξ′, η′) at large values
of ξ, η and finite ξ′, η′. We are using here the Laguerre basis functions BN(ξ, η),
though any basis sets can be used. However, to preserve the asymptotic behavior
of Q functions, the extension on the configuration state of basis functions has to be
finite. A representation of the kernel G(E; ξ, η, ξ′, η′) in the basis (19) was given in
Ref. [22] and this allows for a closed form expression for QS functions. The right-
hand-side of Eq. (30) depends on indexes N, thus for each set of values N we have a
particular function QN. These functions form a complete basis even though they are
not orthogonal.

By solving Eq. (26) with the proposition (28) we enforce the solution (27) to
possess the correct outgoing asymptotic behavior of scattering function. This is sim-
ilar to what is observed when generalized Sturmian functions are used [8, 9]. The
completeness of the QN basis, the short range of both the right-hand-side of Eq. (26)
and D1QN assure convergence of the expansion. To exemplify this affirmation, we
solve in the next section a two-dimensional model problem presented in Ref. [19]. We
use a product of QS functions obtained from one-dimensional Green’s function:

Qn(k, ξ) ≡
∫
dξ′G(+)(k; ξ, ξ′) ψn(ξ′). (31)

This allows us to probe the convergence of expansion of two-dimensional scattering
wave function before considering a very elaborate and cumbersome six-dimensional
case as required for the full three-body problem.
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3 A model problem

3.1 Statement of the problem

A model double continuum electron wave function was presented in 1997 in Ref. [19].
The model used a two-variable hypergeometric function Φ2 to represent two electrons
interacting with a heavy charged nucleus and with each other. An approximate two-
electron Schrödinger equation was also numerically solved in Ref. [19]. This equation
was associated with very particular kinematic conditions. The model equation is

[
ĥ1(k1) + ĥ3(k3)− 8

k3
k1

∂2

∂ξ1∂ξ3

]
Ψ(ξ1, ξ3) = 0, (32)

where a one-dimensional Coulomb wave operator ĥ is defined as

ĥ(k) =
1

µξ

[
−2

∂

∂ξ
ξ
∂

∂ξ
− 2ikξ

∂

∂ξ
+ 2kt

]
, kt = µZ. (33)

We use this model as a starting point of our QS test in this work. This allows us to
deal with an equation which contains most of the difficulties of the full three-body
problem like a non-separability and scattering type asymptotics of solutions.

We start with splitting the wave function Ψ into two parts,

Ψ = Ψsc + ΨC2, (34)

where

ΨC2(ξ1, ξ3) = 1F1

(
i
µ1Z1

k1
, 1, −ik1ξ1

)
1F1

(
i
µ3Z3

k3
, 1, −ik3ξ3

)
. (35)

This transforms Eq. (32) into a driven equation
[
ĥ1(k1) + ĥ3(k3)− 8

k3
k1

∂2

∂ξ1∂ξ3

]
Ψsc(ξ1, ξ3) = 8

k3
k1

∂2

∂ξ1∂ξ3
ΨC2(ξ1, ξ3). (36)

The scattering function Ψsc is assumed to have a purely outgoing behavior and can
be expressed as a finite series in terms of products of QS functions (31):

Ψsc(ξ1, ξ3) =

N−1∑

n1,n3=0

cn1n3 Qn1(p1, ξ1)Qn3(p3, ξ3). (37)

Note, pj is not necessary equal kj . The one-dimensional Green’s function G(+) satisfies
the equation

ĥ(k)G(+)(k; ξ, ξ′) = δ(ξ − ξ′). (38)

A detailed description of QS functions (31) will be presented soon elsewhere.
Due to an obvious relation

ĥ(k) = ĥ(p)− 2i

µ
(k − p) ∂

∂ξ
, (39)

we obtain the following system of linear equations for the unknown coefficients cn1n3

after substituting Ψsc(ξ1, ξ3) in Eq. (36) by its expansion (37) and projecting onto
ψm1(ξ1)ψm3(ξ3):

N−1∑

n1,n3=0

{
δm1n1 G

(3)(+)
m3n3

(p3) +G(1)(+)
m1n1

(p1) δm3n3 −
[

2i

µ1
(k1 − p1)C(1)

m1n1
(p1)G(3)(+)

m3n3
(p3)

+G(1)(+)
m1n1

(p1)
2i

µ3
(k3 − p3)C(3)

m3n3
(p3) + 8

k3
k1
C(1)

m1n1
(p1)C(3)

m3n3
(p3)

]}
cn1n3

= 8
k3
k1
d(1)m1

d(3)m3
, (40)
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where 0 ≤ m1,m3 ≤ N − 1, and C
(j)
m,n and d

(j)
m are respectively the coefficients of

expansion in basis functions ψm of derivatives of QS functions (31) and of derivatives
of confluent hypergeometric functions which arise in Eq. (36) due to Eqs. (37) and (35).

3.2 Results

We follow Ref. [19] and set Z1 = −2, µ1 = 1, k1 = 1, and Z3 = 1, µ3 = 1
2 , k3 = 0.4.

The convergence is intuitively expected if the sum of the first two (‘unperturbed’)
terms in figure brackets in l.h.s. of Eq. (40) is much larger than the (‘perturbation’)
term in square brackets. We hope to affect the ratio of these two contributions to the
matrix elements by varying the values of basis parameters pj .

Our calculations demonstrate that the convergence rate and numerical stability
may be significantly improved by taking appropriate values of p1 and p2. The results
obtained with parameters p1 = 1 and p3 = 0.1 (the Laguerre scale factors bj = pj)
are shown in Figs. 1–6 where we plot real and imaginary parts of the scattering wave
function Ψsc on the diagonal ξ1 = ξ3 and on the axes ξ1 and ξ3. The convergence is
seen from the figures to be achieved; i. e., the proposed approach is reliable.

4 Conclusions

We presented in this contribution a study of three-body scattering problem expressed
in parabolic coordinates. As is well-known, the C3 wave function [14] possesses a
correct asymptotic behavior in the Ω0 region where all particles are far from each
other. This is a good starting point for formulating a Lippmann–Schwinger equation
or driven type equations. This means that if we consider the C3 function as an asymp-
totic solution, the scattering part (the remaining part of the solution) should satisfy
an equation having a compact kernel or a short range driven term. Due to proper-
ties of perturbation corresponding to the C3 function [23], the use of standard L2

bases is not appropriated. Instead it is necessary to use basis functions possessing the
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Figure 1: Convergence of the real part of solution vs the number N of basis quasi-
Sturmians used in calculation on the diagonal ξ1 = ξ3.



142 S. A. Zaytsev and G. Gasaneo

0 10 20 30 40 50

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

p
1
=1; p

3
=0.1:

 N=45
 N=50 
 N=55
 N=60

scIm

Figure 2: Same as Fig. 1 but for the imaginary part of solution.
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Figure 3: Same as Fig. 1 but on the axis ξ1.

asymptotic behavior corresponding to the problem under consideration. Therefore we
introduce a set of basis functions that we name quasi-Sturmian functions. They are
defined as solutions of a driven differential equation which includes the separable part
of the full three-body kinetic energy in generalized parabolic coordinates and also all
Coulomb interactions. Any basis set can be used in the right-hand-side of Eq. (30).
The choice of a convenient basis depends on the type of the driven term appearing
in the full three-body driven equation. The basis in the right-hand-side of Eq. (30)
should provide a fast convergence of the driven term. On the other hand, the QS
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Figure 4: Same as Fig. 2 but on the axis ξ1.
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Figure 5: Same as Fig. 1 but on the axis ξ3.

functions also form a basis set thus allowing to expand the scattering wave function
we are looking for. All QS functions possess the correct asymptotic behavior of the
full three-body problem. This means, in principle, that only the inner region where
the interaction between all particles takes place, should be expanded.

We demonstrate an efficiency of the proposed method in this contribution by
applying it to a two-dimensional problem which possesses most of the full problem
difficulties: the non-separability and the scattering type boundary conditions. We
probe whether we are able to achieve the convergence of the scattering wave function
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Figure 6: Same as Fig. 2 but on the axis ξ3.

by the use of QS functions. A more extensive study of properties of QS functions
associated with a different type of basis used to expand the driven term, will be
presented soon elsewhere. In this study we shall present a six-dimensional function
possessing both incoming and outgoing type boundary conditions.
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Abstract

We suggest a method for calculating scattering phase shifts and energies and
widths of resonances which utilizes only eigenenergies obtained in variational
calculations with oscillator basis and their dependence on oscillator basis spac-
ing ~Ω. The validity of the suggested approach is verified in calculations with
model Woods–Saxon potentials and applied to calculations of resonances in nα

scattering using the no-core shell model.

Keywords: Shell model; J-matrix approach; resonance energy and width; Breit–
Wigner resonance formula; nα scattering

1 Introduction

To calculate energies of nuclear ground states and other bound states within various
shell model approaches, one conventionally starts by calculating the ~Ω-dependence of
the energyEν(~Ω) of the bound state ν in some model space. The minimum of Eν(~Ω)
is correlated with the energy of the state ν. The convergence of calculations and
accuracy of the energy prediction is estimated by comparing with the results obtained
in neighboring model spaces. To improve the accuracy of theoretical predictions,
various extrapolation techniques have been suggested recently [1, 2, 3, 4] which make
it possible to estimate the binding energies in the complete infinite shell-model basis
space.

Is it possible to study nuclear states in the continuum, resonant states in partic-
ular, in the shell model using bound state techniques? A conventional belief is that
the energies of shell-model states in the continuum should be associated with the
resonance energies. It was shown however in Ref. [5] that the energies of shell-model
states may appear well above the energies of resonant states, especially for broad res-
onances. Moreover, the analysis of Ref. [5] clearly demonstrated that the shell model
should also generate some states in a non-resonant nuclear continuum. The nuclear
resonance properties can be studied in the Gamow shell model, including the ab initio
no-core Gamow shell model (NCGSM) [6]. Another option is to combine the shell
model with resonating group method (RGM). An impressive progress in description
of various nuclear reactions was achieved by means of the combined no-core shell
model/RGM (NCSM/RGM) approach [7]. Both NCGSM and NCSM/RGM compli-
cate essentially the shell model calculations. Is it possible to get some information
about the unbound nuclear states directly from the results of calculations in NCSM
or other versions of the nuclear shell model without introducing additional Berggren
basis states as in NCGSM or additional RGM calculations as in the NCSM/RGM
approach?

A complete study of the nuclear continuum can be performed by extending the nu-
clear shell model by J-matrix formalism in scattering theory. The J-matrix formalism

146
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has been suggested in atomic physics [8, 9]. Later it was independently rediscovered
in nuclear physics [10, 11] and was successfully used in shell-model applications [12].
However a direct implementation of the J-matrix formalism in modern large-scale
shell-model calculations is very complicated: the J-matrix requires calculation of a
huge number of eigenstates while modern shell-model codes usually utilize Lanczos
algorithm which provides only few lowest Hamiltonian eigenstates. Furthermore, the
J-matrix needs also the highest component of wave function of each eigenstate which
is usually obtained with a low precision.

On the other hand, the J-matrix formalism can be used for a simple calculation of
the scattering phase shift at a single energy Eν(~Ω) which is an eigenstate of the shell-
model Hamiltonian. In this case, the phase shift calculation requires only the value of
the energyEν(~Ω) and the basis parameters (the ~Ω value and the basis size). Varying
the shell-model parameter ~Ω, we generate a variation of Eν(~Ω) and hence we can
calculate the phase shifts in some energy range. Calculations of scattering phase
shifts at the eigenenergies of the Hamiltonian in the oscillator basis and obtaining
the phase shift energy dependence by variation of basis parameters, was recently
performed in Ref. [4] using another (not the J-matrix) technique. A detailed study
of scattering phase shifts at eigenenergies of the Hamiltonian in arbitrary finite L2
basis was performed in Ref. [13]. This study was based on the theory of spectral shift
functions introduced by I. M. Lifshitz more than 60 years ago [14] and later forgotten
by physicists though used up to now by mathematicians (see Ref. [13] and references
therein).

In this contribution, we study the behavior of scattering phase shifts at the eigenen-
ergies Eν(~Ω) of the Hamiltonian in the oscillator basis. Our aim is to formulate cri-
teria for selecting eigenstates associated with resonances and to develop an approach
to evaluating energies and widths of these resonances. We are using the J-matrix
formalism which provides exact phase shifts in the systems with potential energy de-
scribed by a finite matrix in oscillator basis, i. e., just in the case of the nuclear shell
model.

A brief sketch of the J-matrix theory and examples of phase shift calculations with
model interactions are presented in the next Section. Application of the approach to
calculations of phase shifts at the eigenenergies Eν(~Ω) of the Hamiltonian in the os-
cillator basis, comparison with the spectral shift function theory of I. M. Lifshitz and
criteria for selecting eigenstates associated with resonances are discussed in Section 3.
In Section 4, we discuss the relation between the parameters of the Breit–Wigner
resonance formula and the ~Ω dependence of the eigenenergy Eν(~Ω) and give exam-
ples of calculating Breit–Wigner parameters with model interactions. An analysis of
resonance energies and widths in neutron-α scattering based on NCSM calculations
of 5He nucleus is presented in Section 5.

2 J-matrix formalism

We discuss here the simplest version of the J-matrix formalism — a single-channel
elastic scattering of an uncharged particle. We use notations of Refs. [15, 16] where
one can find more details of the J-matrix theory, the multi-channel version of this
approach, a technique of accounting for the long-range Coulomb interaction, etc.

The radial wave function ul(k, r) describing the relative motion in the partial wave
with orbital momentum l is expanded in the J-matrix formalism in infinite series of
radial oscillator functions Rnl(r),

ul(k, r) =

∞∑

n=0

anl(k)Rnl(r), (1)
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where

Rnl(r) = (−1)n

√
2n!

r0 Γ(n+ l + 3/2)

(
r

r0

)l+1

exp

(
− r2

2r20

)
L
l+ 1

2
n

(
r2

r20

)
. (2)

Here k is the relative motion momentum, Lα
n(z) are Laguerre polynomials and n is

the harmonic oscillator radial quantum number. Using expansion (1) we transform
the radial Schrödinger equation

H l ul(k, r) = E ul(k, r) (3)

into an infinite set of linear algebraic equations

∞∑

n′=0

(H l
nn′ − δnn′E)an′l(k) = 0, (4)

where H l
nn′ = T l

nn′ +V l
nn′ are matrix elements of the Hamiltonian H l in the oscillator

basis, and T l
nn′ and V l

nn′ are kinetic and potential energy matrix elements respectively.
The kinetic energy matrix elements T l

nn′ are known to form a tridiagonal matrix,
i. e., the only non-zero matrix elements are

T l
nn =

1

2
~Ω(2n+ l + 3/2),

T l
n,n+1 = T l

n+1,n = −1

2
~Ω
√

(n+ 1)(n+ l + 3/2).

(5)

These matrix elements are seen to increase linearly with n for large n. On the other
hand, the potential energy matrix elements V l

nn′ decrease as n, n′ → ∞. Hence the
kinetic energy dominates in the Hamiltonian matrix at large enough n and/or n′.
Therefore a reasonable approximation is to truncate the potential energy matrix at
large n and/or n′, i. e., to approximate the interaction V by a nonlocal separable

potential Ṽ with matrix elements

Ṽ l
nn′ =

{
V l
nn′ if n ≤ N and n′ ≤ N ;

0 if n > N or n′ > N.
(6)

The approximation (6) is the only approximation in the J-matrix approach; for sep-
arable interactions of the type (6), the J-matrix formalism suggests exact solutions.
Note, the kinetic energy matrix is not truncated in the J-matrix theory contrary to
conventional variational approaches like the shell model.

The complete infinite harmonic oscillator basis space can be divided into two
subspaces according to truncation (6): an internal subspace spanned by oscillator
functions with n ≤ N where the interaction V is accounted for and an asymptotic
subspace spanned by oscillator functions with n > N associated with the free motion.

Algebraic equations (4) in the asymptotic subspace take the form of a second order
finite-difference equation:

T l
nn−1 a

ass
n−1l(E) + (T l

nn − E) aassnl (E) + T l
nn+1 a

ass
n+1l(E) = 0. (7)

Any solution aassnl (E) of Eq. (7) can be expressed as a superposition of regular Snl(E)
and irregular Cnl(E) solutions,

aassnl (E) = cos δl Snl(E) + sin δl Cnl(E), n ≥ N, (8)

where δl is the scattering phase shift. The solutions Snl(E) and Cnl(E) have simple
analytical expressions [9, 11, 15]:

Snl(E) =

√
πn!

Γ(n+ l + 3/2)
ql+1 exp

(
−q

2

2

)
Ll+1/2
n (q2), (9)
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Cnl(E) = (−1)l

√
πn!

Γ(n+ l + 3/2)

q−l

Γ(−l+ 1/2)

× exp

(
−q

2

2

)
Φ(−n− l − 1/2,−l+ 1/2; q2), (10)

where Φ(a, b; z) is a confluent hypergeometric function and q is a dimensionless mo-
mentum,

q =

√
2E

~Ω
. (11)

The solutions anl(E) of the algebraic set (4) in the internal subspace n ≤ N are
related to the solutions aassnl (E) in the asymptotic subspace n ≥ N :

anl(E) = GnN T l
N,N+1 a

ass
N+1, l(E). (12)

Here matrix elements

Gnn′ = −
N∑

ν=0

〈n|ν〉〈ν|n′〉
Eν − E

(13)

are related to the Green’s function of the Hamiltonian HN which is the Hamil-
tonian H l truncated to the internal subspace, and are expressed through eigen-
energies Eν and eigenvectors 〈n|ν〉 of the Hamiltonian HN :

N∑

n′=0

H l
nn′〈n′|ν〉 = Eν〈n|ν〉, n ≤ N. (14)

A relation for calculation of the scattering phase shifts δl can be obtained through
the matching condition

aNl(E) = aassNl (E). (15)

Using Eqs. (8), (12) and (15) it is easy to obtain [9, 11, 15]

tan δl(E) = −
SNl(E)− GNN T l

N,N+1 SN+1,l(E)

CNl(E)− GNN T l
N,N+1CN+1,l(E)

. (16)

The scattering phase shifts δl(E) can be calculated using Eq. (16). An accept-
able range of J-matrix parameters (ARJP) ~Ω and N where the scattering phase
shifts δl(E) can be calculated with a reasonable precision, depends on the poten-
tial V . The convergence of phase shift calculations can be improved, and hence the
ARJP can be enlarged, by ‘smoothing’ the potential truncation in the oscillator basis
space, i. e., by replacing the matrix elements (6) by [17]

Vnn′ = σn
N Ṽnn′ σn′

N , (17)

where

σn
N =

1− exp{−[α(n−N − 1)/(N + 1)]2}
1− exp(−α2)

. (18)

We employ the smoothing (17)–(18) with the parameter α = 5 in our calculations
with model interactions presented below.

We illustrate the J-matrix calculations of the phase shifts in the vicinity of res-
onances in Fig. 1. We use a model Woods–Saxon potential with surface repulsion
generating a resonance,

V (r) = V0
1

1 + z
+ Vs

b

r

z

(1 + z)2
, (19)
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Figure 1: d wave (left) and s wave (right) phase shifts in the vicinity of resonances
calculated with model interactions (19) in the J-matrix approach with N = 5 and
various ~Ω values. The exact phase shifts generated by these interactions are depicted
by solid lines.

Table 1: Parameters of the model Woods–Saxon potentials (19) in d and s waves and
energies Er and widths Γ of resonances generated by these potentials.

Partial V0 Vs R a b Er Γ
wave L (MeV) (MeV) (fm) (fm) (fm) (MeV) (MeV)
d 2 −48.0 −20.0 3.08 0.53 3.774 0.8319 0.0612
s 0 −50.0 207.0 3.08 0.53 3.774 3.403 0.2250

where

z = exp

(
r −R
a

)
. (20)

The reduced mass m = 4
5mn (mn is a nucleon mass) was used in calculations that

corresponds to the scattering of neutron by α-particle. The parameters of the inter-
action (19) and energies and widths of model resonances generated by it in s and d
waves, are presented in Table 1.

The phase shift calculations are well-converged for N = 5 in the interval of ~Ω
values ranging between 25 and 40 MeV where the J-matrix phase shifts are indis-
tinguishable from the exact results depicted by solid curves in Fig. 1. If ~Ω is taken
outside this interval, the J-matrix phase shifts differ from exact as is seen in Fig. 1.
The interval of ~Ω values providing excellent description of the phase shifts expands
when the truncation boundary N increases. For example, the interval of acceptable
~Ω values starts from approximately 15 MeV in case of N = 10.

3 Phase shift and its derivative at E = Eν

When the energy of relative motion E is equal to one of eigenenergies Eν of the trun-
cated Hamiltonian HN , expression (16) for calculation of the phase shifts transforms
into

tan δl(Eν) = −SN+1,l(Eν)

CN+1,l(Eν)
. (21)

The eigenenergy Eν depends on the size of the internal basis space N and on the
value of the oscillator spacing ~Ω, Eν = Eν(N, ~Ω). Therefore one can use Eq. (21)
to calculate the phase shifts δ(E) in some interval of energies E ranging from Eν(~Ω1)
through Eν(~Ω2) by varying ~Ω within ARJP from ~Ω1 through ~Ω2. The values
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Figure 2: d wave (left) and s wave (right) phase shifts in the vicinity of resonances
calculated with model interactions (19) at the eigenenergies of the truncated Hamil-
tonian HN by means of Eq. (21) with N = 5 and 30 and various ~Ω. The lowest ~Ω
value within ARJP in case of N = 5 truncation is ~Ω1 ≈ 25 MeV, the respective
points on the phase shift curves are indicated.

of the lower ~Ω1 and upper ~Ω2 ARJP bounds depend, of course, on N and gen-
erally speaking are different for different states ν = 0, 1, 2, ... If the ARJP is wide
enough and the energy interval [Eν(~Ω1), Eν(~Ω2)] covers completely the vicinity
of the resonance, the resonance parameters are easily restored from the phase shift
behavior in this energy interval. In this case the resonance parameters can be calcu-
lated through the ~Ω-dependence of eigenenergy Eν = Eν(~Ω) obtained in a standard
variational calculation with oscillator basis. However, in some cases the energy in-
terval [Eν(~Ω1), Eν(~Ω2)] covers only a fraction, sometimes, a small fraction of the
energy range of the resonant behavior of the phase shifts. In those cases, the extrac-
tion of the resonance energy and width is more complicated and less accurate. More,
sometimes the energy interval [Eν(~Ω1), Eν(~Ω2)] corresponds to a non-resonant scat-
tering as was clearly demonstrated in Ref. [5].

We demonstrate in Fig. 2 calculations of phase shifts by means of Eq. (21) in
the vicinity of resonances generated in s and d waves by model interactions (19). In
the case of d wave, calculations with N = 5 and 30 are performed with the lowest
eigenstate (ν = 0) obtained with ~Ω ranging from 2.5 to 50 MeV. In the case of s
wave, varying ~Ω in the same interval from 2.5 to 50 MeV in calculations with N = 5,
we obtain the variation of the lowest eigenstate energy E0 between 0.64 and 3.57 MeV
covering the vicinity of the resonance. However in calculations withN = 30, the lowest
eigenstate energy E0 varies from 0.11 to 3.15 MeV due to variation of ~Ω in the same
interval, i. e., E0 lies below the resonance region. The vicinity of the resonance in this
case is completely covered by variation of the energy E1 of the next state with ν = 1,
and we use E1 for calculations of the phase shifts in the resonance region. We obtain
an excellent description of the phase shifts if the J-matrix parameters are lying within
ARJP. However when ~Ω goes outside ARJP, the obtained phase shifts start deviating
from the exact ones. This deviation can be very large when ~Ω is far enough from
ARJP and the phase shifts may become ambiguous in some energy interval due to
unphysical ‘backbending’ energy dependence (see the left panel of Fig. 2) obtained
by variation of ~Ω far outside ARJP.

It is interesting to compare the J-matrix approach to calculations of phase shifts
at eigenenergies Eν with the approach utilizing the spectral shift functions of I. M. Lif-
shitz [14]. We note that the phase shifts at eigenenergies Eν due to Eq. (21) are equal
to

δl(Eν) = fN+1,l(Eν) +mπ, (22)
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Figure 3: Universal function fN+1,l(E) in case of N = 4 and l = 2 and its approxima-
tion in the Lifshitz spectral shift function method. The vertical solid lines correspond
to eigenenergies E0

ν) of the truncated kinetic energy TN .

where m can be zero or takes some positive or negative integer value, and the function

fnl(E) = − arctan

(
Snl(E)

Cnl(E)

)
. (23)

Due to Eqs. (9), (10) and (23), it is clear that fnl(E) depends on the energy E
and ~Ω only in combination E/~Ω. fnl(E) is a monotonically decreasing function of
a dimensionless energy ε = E/~Ω which goes down by (n+ 1)π as ε increases from 0
to infinity. An example of this function corresponding to the case n = 5 and l = 2
is presented in Fig. 3. The values of the function fN+1,l(Eν) provide the J-matrix
phase shift δl at the eigenenergy Eν for a given ~Ω value as is shown in Fig. 4 where
we present in a larger scale a piece of the function fN+1,l(E) shifted to the interval
of its values [0, π] [the shift of this function by mπ is of no importance since we can
always redefine m in Eq. (22)].

Within the Lifshitz spectral shift function approach [14, 13], the phase shift is
calculated as

δl(Eν) = −π Eν − E0
ν

E0
ν+1 − E0

ν

. (24)

Here Eν are the eigenvalues of the truncated Hamiltonian HN while E0
ν are the

eigenvalues of the kinetic energy TN truncated to the matrix of the same size as HN .
We recall that the kinetic energy has a tridiagonal matrix (5) in the oscillator basis, the
functions Snl(E) are regular solutions of the respective finite-difference equation (7),
and the eigenenergies E0

ν of the truncated kinetic energy TN can be obtained by
solving this finite-difference equation with the boundary condition

SN+1,l(E
0
ν) = 0. (25)

Therefore, due to Eq. (23), the kinetic energy eigenstates correspond to the energies
at which tan fN+1,l(E

0
ν) = 0 or when the function fN+1,l(E

0
ν) = mπ, i. e., when the

plot of the function fN+1,l(E) crosses the horizontal lines at π, 2π, ... as is shown in
Fig. 3. We connect these crossing points by straight lines in Fig. 3. A set of these
straight lines is seen to provide a good approximation for the function fN+1,l(E).
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Figure 4: Calculation of phase shifts at eigenenergies Eν in the J-matrix approach
and using Lifshitz spectral shift function method. Dashed lines depict the func-
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this function in the Lifshitz approach. E10
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phase shifts obtained with ~Ω = 10 and 15 MeV, solid curve shows the J-matrix
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According to Eq. (24), the phase shifts at eigenenergies Eν in the Lifshitz approach
are obtained as the values of this straight-line approximation of the function fN+1,l(E)
at energies Eν as shown in Fig. 4.

It is seen that the J-matrix and Lifshitz approach provide close results for the
phase shifts if N is large enough when the strait-line Lifshitz approximation of the
function fN+1,l(E) is accurate. In Fig. 4, the difference of δl(Eν) values obtained
by these approaches is the difference between positions of crosses and circles. It is
interesting that the model interaction used to prepare this figure provides exactly
the same phase shifts δl(Eν) for both methods in calculations with ~Ω = 10 MeV. A
comparison of results of calculations by means of these two approaches of phase shifts
generated by our model interaction (19) in the d wave, is shown in Fig. 5.

It is also interesting to compare our J-matrix approach with the method of Ref. [4]
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Figure 5: Comparison of d wave phase shifts obtained by J-matrix and Lifshitz meth-
ods for the model interaction (19) with N = 10 and 20.
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where the phase shifts at the eigenenergies of the Hamiltonian HN truncated in the
oscillator basis was suggested to obtain through the following equation:

tan δl(Eν) =
jl(kνLi)

nl(kνLi)
. (26)

Here jl(x) and nl(x) are spherical Bessel and Neumann functions, momentum kν =√
2mEν/~2, and for low momenta

Li =
√

2(2N + l + 3/2 + i) r0, (27)

r0 =

√
~

mΩ
. (28)

The parameter Li was involved in Ref. [4] in the study of convergence properties of
bound states of the Hamiltonian HN , and the best fit of convergence behavior resulted
in i = 2.

Equation (26) can be easily obtained from our J-matrix formula (21) in the limit
of large N . Asymptotics of functions Snl(E) and Cnl(E) were studied in detail in
Ref. [18]. In the limit of large n, more precisely, for n≫ q, the functions (9) and (10)
are well approximated by spherical Bessel and Neumann functions [18, 15]:

Snl(E) ≈ 2kr0(n+ l/2 + 3/4)
1
4 jl

(
2kr0

√
n+ l/2 + 3/4

)
, (29)

Cnl(E) ≈ −2kr0(n+ l/2 + 3/4)
1
4 nl

(
2kr0

√
n+ l/2 + 3/4

)
. (30)

Substituting Snl(E) and Cnl(E) in Eq. (21) by their asymptotics (29) and (30), we
immediately obtain Eq. (26). The value of i = 2 for the parameter Li unambiguously
follows from the fact that Snl(E) and Cnl(E) appear in Eq. (21) with n = N + 1.

It is easy to conclude from Fig. 3 that eigenvalues Eν lying in the vicinity of the
resonance where the phase shift is rapidly increasing, should change only slightly when
the value of ~Ω is changed and hence the derivative dEν

~dΩ should be small and positive.
A wider resonance is associated with a less rapid increase of δl and a larger value of
the derivative dEν

~dΩ . One should be however accurate with making conclusions about

the relative widths of resonances based on comparison of values of derivatives dEν

~dΩ of
respective eigenvalues Eν . First, the slope of the function fN+1,l(E) decreases with
energy E and hence the derivatives dEν

~dΩ are different for the resonances of the same
width but of different energy. Next, the slope of fN+1,l(E) depends also on the orbital
momentum l and hence the derivatives dEν

~dΩ are different for the resonances of the same
width and energy but of different l. It is also important to get the eigenvalue Eν in
the vicinity of the resonance: the derivative dEν

~dΩ decreases when the eigenvalue Eν is

shifted to the edge of the resonance region where the slope of δl(E) decreases; dEν

~dΩ
gets even larger values in the non-resonant region.

Which eigenvalues Eν are associated with a resonance and which are not? It
is important to find a condition able to distinguish these eigenvalues. The phase
shift δl(E) is increasing and hence the derivative dδl/dE is positive in the resonance
region. We need to find an expression for δl(E) at the energies E = Eν . Using Eqs. (9)
and (10) and expressions for the derivatives of Laguerre polynomials and confluent
hypergeometric function [19], we obtain:

dSnl(E)

dE
=

(
n+ l/2 + 1/2

E
− 1

~Ω

)
Snl(E) −

√
n(n+ l + 1/2)

E
Sn−1,l(E), (31)

dCnl(E)

dE
=

(
n+ l/2 + 1/2

E
− 1

~Ω

)
Cnl(E)−

√
n(n+ l + 1/2)

E
Cn−1,l(E). (32)
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We note that Snl(E) and Cnl(E) are two independent solutions of the second order
finite-difference equation (7), and the Casorati determinant of these solutions,

Kn(C, S) ≡ Cn+1,l(E)Sn,l(E)− Cn,l(E)Sn+1,l(E), (33)

which plays the same role in the theory of linear difference equations as Wronskian
in the theory of linear differential equations, differs from zero:

T l
n,n+1Kn(C, S) =

q

2
~Ω. (34)

Using Eqs. (16), (31)–(34) we obtain

d δl(E)

dE

∣∣∣∣
E=Eν

=
qν
~Ω
· 1

S2
N+1,l(Eν) + C2

N+1,l(Eν)

×
[

2

〈N |ν〉2(N + 1)(N + l + 3/2)
− 2

q2ν

]
, (35)

where qν ≡
√

2Eν/~Ω. Expression (35) involves not only the eigenvalue Eν but also
the last component of the eigenvector 〈N |ν〉. We would like to eliminate 〈N |ν〉 in the

expression for the derivative d δl(E)
dE at E = Eν .

The phase shift δl at E = Eν in our approach is expressed through the func-
tion fN+1,l defined by Eq. (23). The function fN+1,l depends on the eigenenergy Eν

and the oscillator basis parameter ~Ω, fN+1,l = fN+1,l(Eν , ~Ω). We recall that the
value of Eν depends on ~Ω. Suppose that eigenvalue E′

ν is close enough to Eν and
the respective ~Ω′ is close enough to ~Ω. In this case, we have:

fN+1,l(E
′
ν , ~Ω′) ≃ fN+1,l(Eν , ~Ω) +

∂fN+1,l

∂E
(E′

ν − Eν) +
∂fN+1,l

∂~Ω
(~Ω′ − ~Ω). (36)

The phase shift δl(E) depends only on the energy E and should not depend on ~Ω.
Therefore

δl(E
′
ν) ≃ δl(Eν) +

dδl
dE

(E′
ν − Eν). (37)

The partial derivatives
∂fN+1,l

∂E and
∂fN+1,l

∂~Ω entering Eq. (36) can be calculated using
Eqs. (23), (9) and (10), and then from Eqs. (35)–(37) we obtain

dEν

d~Ω
≃ (E′

ν − Eν)

(~Ω′ − ~Ω)
≃ 1

2
〈N |ν〉2(N + 1)(N + l+ 3/2). (38)

Using Eq. (38), we rewrite the expression (35) as

d δl(E)

dE

∣∣∣∣
E=Eν

≃ qν
~Ω
· 1

S2
N+1,l(Eν) + C2

N+1,l(Eν)

(
1

dEν/d~Ω
− ~Ω

Eν

)
. (39)

Since the phase shift derivative dδl(E)
dE > 0 in the vicinity of resonance, it follows

from Eq. (39) that
Eν

~Ω
>
dEν

d~Ω
> 0 (40)

in the resonance region. If this inequality is not fulfilled, the eigenvalueEν corresponds
to a non-resonant phase shift behavior.

One should be careful with using condition (40) for determining which of the
Hamiltonian eigenstates obtained in a variational calculation with oscillator basis can
be associated with a resonance. In such variational calculations, in the nuclear shell
model in particular, each of the obtained eigenenergies usually decreases with ~Ω at
small enough ~Ω values, gets a variational minimum at some ~Ω = ~Ω0 and starts



156 A. I. Mazur, A. M. Shirokov, J. P. Vary, P. Maris and I. A. Mazur

increasing after this minimum. One should use only the increasing part of the func-
tion Eν(~Ω) corresponding to ~Ω > ~Ω0 for the analysis by means of inequality (40).
The eigenvalues obtained at small ~Ω < ~Ω0 before the minimum of Eν(~Ω) may need
strong so-called ultraviolet corrections [2, 3, 4] and thus lie outside ARJP. The ~Ω
regions corresponding to large negative dEν

d~Ω cause the unphysical ‘backbending’ en-
ergy dependence of phase shift shown in the left panel of Fig. 2. Note also that
in many-body calculations the energies Eν(~Ω) should be calculated relative to the
respective threshold. For example, in case of resonance associated with neutron scat-
tered by nucleus AZ, one should calculate the ground state energy EA

0 (~Ω) and the
energy EA+1

ν (~Ω) of the state of interest in the nucleus A+1Z with respective oscillator
quanta of excitations to obtain Eν(~Ω) as

Eν(~Ω) = EA+1
ν (~Ω)− EA

0 (~Ω). (41)

4 Breit–Wigner resonance

In a variational calculation with the oscillator basis with some truncation boundary N
we obtain the energy Eν of state ν as a function of oscillator parameter ~Ω, Eν =
Eν(~Ω). As was shown above, using the function Eν(~Ω), we can calculate the phase
shifts δl(E) in some energy interval [Eν(~Ω1), Eν(~Ω2)] where both ~Ω1 and ~Ω2 are
within ARJP. Generally the interval [Eν(~Ω1), Eν(~Ω2)] shifts down in energy and
increases with N . If this energy interval includes a large enough slice of energy in the
vicinity of some resonance, we can extract the resonance energy and width.

The phase shifts in the vicinity of resonance are conventionally described by the
Breit–Wigner resonance formula [20],

δl(E) = arctan

(
Γ/2

Er − E

)
− φl, (42)

where Er and Γ are resonance energy and width respectively. The background
phase φl is supposed to change only slightly in the resonance region, i. e., we can
suppose φl = const in the vicinity of the resonance to obtain

dδl
dE

=
Γ/2

(Er − E)2 + (Γ/2)2
. (43)

The phase shift derivative dδl
dE gets its maximum at E = Er. This maximal value

of dδl
dE is related to the resonance width Γ:

Γ = 2

(
dδl
dE

)−1
∣∣∣∣∣
E=Er

. (44)

Combining Eqs. (39) and (43), we obtain

Γ/2

(Er − Eν)2 + (Γ/2)2
=

qν
~Ω
· 1

S2
N+1,l(Eν) + C2

N+1,l(Eν)

(
1

dEν/d~Ω
− ~Ω

Eν

)
. (45)

This equation can be used directly for getting resonance parametersEr and Γ from the
fit to RHS of Eq. (45) where the function Eν(~Ω) is obtained in variational calculations
with oscillator basis with ~Ω values from ARJP. Having Er and Γ one can easily obtain
the background phase φl from Eq. (42) if some of the eigenenergies Eν(~Ω) lie outside
the resonance region.

We show in Fig. 6 the phase shifts supported by our model interaction (19) in the
vicinities of resonances in s and d waves and their approximation in the vicinities of
resonances by the Breit–Wigner formula (42) with parameters fitted using Eq. (45).
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Figure 6: Phase shifts in the vicinity of resonances in d (left) and s (right) waves,
resonance description by the Breit–Wigner formula with parameters Er and Γ ob-
tained by the fit using Eq. (45) and phase shifts used in this fit obtained by our
approach [Eq. (21)] at eigenenergies Eν(~Ω) calculated with various ~Ω values and
truncations N = 10, 20 and 30. Filled symbols are the phase shifts obtained with the
lowest eigenstates E0(~Ω), open symbols are the phase shifts obtained with the first
excited eigenstates E1(~Ω).

The phase shifts at eigenenergies Eν(~Ω) used in this fit are obtained with Hamilto-
nian truncations N = 10, 20 and 30 and are also depicted in Fig. 6. In the case of
s wave, the lowest eigenstates E0(~Ω) lie below the resonant region, and we use the
first excited states E1(~Ω) for the resonance parameter fit (the respective phase shifts
are shown in Fig. 6 by open symbols). The Breit–Wigner formula is seen to nicely
reproduce the phase shifts in the resonance region. The Breit–Wigner parameters
obtained by the fit are: Er = 0.8315 MeV, Γ = 0.0602 MeV and φl = 5◦ in the d
wave and Er = 3.405 MeV, Γ = 0.230 MeV and φl = 76◦ in the s wave. The fitted
values of the resonance energies Er and widths Γ reproduce with high precision the
exact values given in Table 1.

The highly accurate description of the resonance parameters become possible be-
cause we use large enough truncation boundaries in calculations. It is also important
to use a ‘global’ fit to a large enough set of eigenvalues Eν(~Ω) covering the whole
resonance region as the sets shown in Fig. 6. If we have restrictions in the size of the
Hamiltonian, i. e., the values of N are not large enough, or the eigenvalues Eν(~Ω)
are available only at the edge of the resonance region, the quality of the fit is reduced.

We illustrate this statement by Fig. 7 where we demonstrate the results obtained
with model interaction (19) with various truncations of the Hamiltonian. All results
shown in this figure are obtained with eigenvalues Eν(~Ω) fitting inequality (40)
which are shown in the upper panels. The middle and lower panels demonstrate
‘local’ fits of resonance energies Er and widths Γ, i. e., the fits utilizing only three
neighboring eigenvalues Eν(~Ωi−1), Eν(~Ωi) and Eν(~Ωi+1) obtained with the same
truncation N . We see that in the interval of ~Ω values where the eigenstates Eν(~Ω)
lie in the resonance region, the locally fitted resonance energies Er and widths Γ form
plateaus well reproducing the exact values. These plateaus are wider for larger N and
for the lowest eigenstates E0(~Ω) than for excited eigenstates E1(~Ω). The plateaus
for resonance energies Er seem to be wider than for widths Γ; note however very
different scales in the middle and lower panels. In the case of the s wave, the plateau
for Er is obtained even with a very small Hamiltonian truncated at N = 5. Note that
a zigzag in Er at ~Ω < 25 MeV is due to the fact that these ~Ω values are outside
ARJP for N = 5.
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Figure 7: Eigenenergies Eν (a, d) as functions of ~Ω, resonance energies Er (b, e)
and widths Γ (c, f) obtained in ‘local’ fits (see text) with various truncations N for
the d (left) and s (right) wave resonances. Solid lines depicts exact values of Er and Γ,
shaded areas in panels a and d show the resonance region. Filled symbols are the
results for the lowest eigenstates E0(~Ω) while open symbols are the results for the
first excited eigenstates E1(~Ω).

5 Analysis of resonant states in 5He nucleus based
on NCSM calculations

The suggested approach to extracting the resonance energy and width can be
applied to any variational calculation with oscillator basis generating a set of eigen-
values Eν(~Ω) forming a function of the oscillator basis spacing ~Ω. As an
example, we perform calculations of 5He within NCSM [21] and analyze unbound
states 3/2− and 1/2− in this nucleus. These states are observed as wide reso-
nances in neutron scattering by α-particles; the 3/2− resonance has an energy Er =
0.80 MeV and width Γ = 0.65 MeV while the resonance parameters of the 1/2− state
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Figure 8: Energies E0(~Ω) of nα relative motion associated with 3/2− (left) and 1/2−

(right) resonance states in 5He obtained in NCSM calculations of 5He and 4He nuclei
with various Nmax truncations using JISP16 NN interaction. Filed (open) symbols
depict eigenstates which fit (do not fit) inequality (40).

are Er = 2.07 MeV and Γ = 5.57 MeV [22]. We use the JISP16 NN interaction [23]
in our NCSM calculations. It is interesting to note that JISP16 and earlier versions
of this type of NN interaction, ISTP [24] and JISP6 [25], arise from an application
of J-matrix formalism to an inverse scattering treatment of the NN phase shift data.

A very important parameter of NCSM calculations is Nmax, maximal quanta of
oscillator excitations included in the NCSM many-body basis space. It is easy to
conclude that relation between the NCSM basis truncation Nmax and the J-matrix
truncation N associated with the principal quantum number of nα relative motion
oscillator functions is Nmax = 2N in case of 3/2− and 1/2− states in 5He.

The 3/2− and 1/2− resonances in 5He are associated with the lowest eigenstates of

respective spin-parity E(
5He,Jπ)

Nmax
(~Ω) obtained in the NCSM calculations. Note how-

ever that we need for the analysis of resonance energy and width the energy E0(~Ω)
of nα relative motion, i. e., the energy relative to the nα threshold given by Eq. (41)
which in our case reads

E0(~Ω) = E(
5He,Jπ)

Nmax
(~Ω)− E(

4He,gs)
Nmax

(~Ω), (46)

where E(
4He,gs)

Nmax
(~Ω) is the 4He ground state energy obtained in NCSM with the

same Nmax and ~Ω. The plots of energies E0(~Ω) obtained with various NCSM
truncations Nmax are shown in Fig. 8. Note, some of nα eigenstates E0(~Ω) do not
fit inequalities (40) and cannot be used for calculations of resonance energy Er and
width Γ (they are shown by open symbols in Fig. 8).

We use only eigenstates E0(~Ω) to calculate phase shifts shown in Fig. 9. The
borders of ARJP are unknown. We see that some phase shifts values obtained with
different Nmax truncations are in good correspondence and lie on the same curve.
However we see that phase shifts calculated using few lowest eigenstates E0(~Ω)
available for a given small enough basis spaces, i. e., basis spaces characterized by
small enough Nmax values, deviate essentially from the common curve. These small-
est eigenstates correspond to lowest ~Ω values which evidently are outside the ARJP.
The deviation from the common curve decreases as Nmax increases. We should use
for the calculation of Breit–Wigner parameters Er and Γ only eigenstates E0(~Ω)
providing the phase shifts forming the common phase shift curve and fitting inequal-
ities (40), i. e., lying in the resonance region. As a result, we obtain Er = 1.41 MeV
and Γ = 0.24 MeV for the 3/2− resonance and Er = 2.55 MeV and Γ = 0.91 MeV
for the 1/2− resonance. The respective Breit–Wigner phase shifts are also shown in
Fig. 9.
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Figure 9: nα phase shifts in 3/2− (left) and 1/2− (right) states obtained by means
of Eq. (21) using eigenstates E0(~Ω) depicted in Fig. 8 and Breit–Wigner phase
shifts (42) calculated with Er and Γ obtained by the fit. Filed (open) symbols corre-
spond to eigenstates fitting (not fitting) inequality (40). Experimental data are taken
from Ref. [26].

Our calculation overestimates resonance energiesEr and underestimates resonance
widths Γ for both 3/2− and 1/2− resonances. This is clear from comparison with
their experimental values (Er = 0.80 MeV and Γ = 0.65 MeV for the 3/2− resonance
and Er = 2.07 MeV and Γ = 5.57 MeV for the 1/2− resonance) and from comparison
of our phase shifts with experimental data of Ref. [26] shown in Fig. 9. The JISP16
interaction sifts the 5He resonance states up in energy by about 0.5 MeV as compared
to experiment. We note that the JISP16 interaction causes also underbinding of both
6Li and 6He nuclei by approximately 0.5 MeV [1]. This seems to be a drawback of
the JISP16 interaction in description of nuclei at the beginning of p-shell which can
be hopefully eliminated in future versions of this interaction by a more careful fit to
experimental data which can include information about resonant states.

6 Conclusions

We formulated a simple method of accurate calculation of phase shifts which uses only
eigenenergies Eν obtained by diagonalization of the Hamiltonian in the oscillator
basis and their dependence on the oscillator basis parameter ~Ω. We analyze the
relation of the suggested approach to other methods available in the literature. The
method is illustrated by calculations of two-body scattering with model Woods–Saxon
potentials.

Next we use this method to formulate an approach for calculating resonance en-
ergies and widths which can be applied to the analysis of results for energies above
open thresholds obtained in any variational calculation with the oscillator basis, in
the nuclear shell model in particular. We illustrate the accuracy of analysis of reso-
nant parameters in calculations with model Woods–Saxon potentials and apply the
suggested approach to calculation of resonances in nα scattering in NCSM with the
JISP16 NN interaction.

The work was supported in part by the Ministry of Education and Science of
Russian Federation through contract No 14.V37.21.1297 and by the US Depart-
ment of Energy under Grant Nos. DE-FG02-87ER40371 and DESC0008485 (SciDAC-
3/NUCLEI). This work was also supported in part by the National Science Foundation
under Grant No PHY-0904782. A portion of the computational resources were pro-



J-matrix analysis of resonant states 161

vided by the National Energy Research Scientific Computing Center (NERSC), which
is supported by the DOE Office of Science. AMS is also supported by the American
Physical Society through the International Travel Grant Award Program.

References

[1] P. Maris, J. P. Vary and A. M. Shirokov, Phys. Rev. C 79, 014308 (2009).

[2] S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van Kolck, P. Maris and J. P. Vary,
Phys. Rev. C 86, 054002 (2012).

[3] R. J. Furnstahl, G. Hagen, and T. Papenbrock, Phys. Rev. C 86, 031301(R)
(2012).

[4] S. N. More, A. Ekström, R. J. Furnstahl, G. Hagen and T. Papenbrock, Phys.
Rev. C 87, 044326 (2013).

[5] A. M. Shirokov, A. I. Mazur, J. P. Vary and E. A. Mazur, Phys. Rev. C 79,
014610 (2009); A. M. Shirokov, A. I. Mazur, E. A. Mazur and J. P. Vary, Appl.
Math. Inf. Sci. 3, 245 (2009).

[6] G. Papadimitriou, J. Rotureau, N. Michel, M. P loszajczak and B. R. Barrett,
Phys. Rev. C 88, 044318 (2013).
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High Performance Calculations on the Lattice
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Far Eastern Federal University, 8 Sukhanova st., Vladivostok 690950, Russia

Abstract

The purpose of this article is to study a surface operator in an SU(2) non-
Abelian gauge field theory. We analyse an Abelian projection of the SU(2)
symmetry on the U(1) group by calculating the Witten parameter by the lattice
method. We use multilevel and multi-hit algorithms for the sake of statistical
confidence. We demonstrate that the Witten parameter depends on surface area
and volume in both phases. Therefore the Witten parameter cannot be consid-
ered as an order parameter of confinement-deconfinement phase transition.

Keywords: Surface operator; SU(2) gluodynamics; phase transition; lattice;
multilevel scheme.

1 Introduction

A vacuum of quantum chromodynamics (QCD) has two phases: a confinement phase
where quarks are bound, and a deconfinement phase where quarks are free. Free
quarks cannot be observed nowadays. It is possible to see quarks only in bound
states such as baryons and mesons.

In electrodynamics, we can take two charged particles and spread them to infinity.
However, it is not possible in the QCD confinement phase because quarks are bound by
strings. The energy of string tension increases linearly with the distance between the
quarks. It is worth mentioning that so far nobody has managed to derive analytically
the linear potential between quarks based on the gluodynamics Lagrangian, however
the linear potential growth has been clearly demonstrated by supercomputer lattice
simulations. This linear growth of the potential can be observed in the asymptotic
behavior of large Wilson loop expectation values. The confinement phase is defined
through its dependence on the surface area. On the contrary, the deconfinement phase
is marked by a dependence on the perimeter. This means that the surface coefficient
is the order parameter of phase transition. The Wilson loop is a line operator. It is
interesting to learn whether a surface operator can act as an order parameter which
can be used to study the structure of vacuum state.

The QCD confinement is a fundamental property of hadron matter which is re-
sponsible for explanation of the spectrum of hadrons. One of possible explanations
of this property is a condensation of magnetic monopoles in vacuum [1] as a dual
superconductor mode. The BCS theory explains superconductivity as a result of
condensation of electric chargers as Cooper pairs. In this case, magnetic field lines
consentrate in a some analogue of a string between monopoles. In a dual superconduc-
tor, an analogous effect occurs through the condensation of magnetic charges (also
called magnetic monopoles), and the string connects electrically charged particles.
According to ’t Hooft [2], the monopoles can appear as a result of partial breaking
of the gauge symmetry. In this work, we break the SU(2) symmetry preserving the
U(1) group symmetry.

A surface operator [3] is sensitive to the existence of monopoles. This property
was first pointed out by Witten [4, 5]. It is manifested as a divergence of the chro-
momagnetic field flow through a closed surface. We use lattice calculations to study
the structure of vacuum in the SU(2) gluodynamics.

163
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In non-Abelian pure gauge theories, the expectation values of large surface oper-
ators are difficult to compute via numerical simulation because an increase of surface
area results in a very fast decay of the signal-to-noise ratio. We adapt a multilevel
scheme [6] introduced for line operators to work with surface operators when the area
exceeds 1 fm2.

2 Witten parameter

The vector flux of magnetic field through a closed surface in a trivial vacuum, e. g.,
in electrodynamics, is identical to zero:

∮
H · dS ≡ 0. (1)

In our lattice calculation we use a phase factor eıϕ, therefore the identity (1) acquires
the following form:

eıκ
∮
H·dS ≡ 1, (2)

where κ is a dimensional coefficient. In Abelian theories, this identity works in a
simply connected space. If the space topology is non-trivial or the group symmetry is
non-Abelian, the identity (2) does not necessarily works. Hence, in lattice quantum
chromodynamics we have:

e
ıκ

∑
k

Hk·∆Sk 6= 1, (3)

where Hk is the magnetic field vector on the lattice plaquette with index k, ∆Sk is a
surface area of the plaquette (with the normal vector in the center of the plaquette),
and the integral is calculated over a closed surface made up of lattice plaquettes.

Thus we consider the following value as the Witten parameter:

Wp (S) = Re
∏

S

eıθp , (4)

where θp is a plaquette angle. Essentially, the plaquette angle is a quantitative mea-
sure of the gauge field impact on an external source moving along the contour of a
plaquette. This angle relates to the magnetic field flux through the plaquette surface:

κ

∫

S

H · dS = κ

∮

C

A · dl = θp, (5)

where integration over dl is carried out on a path surrounding the surface S.
Let us rewrite the magnetic field flux as

∫

S

H · dS =

∫

S

Fik dσik, (6)

where Fik is the gauge field tensor, dσik is a surface element (we do not distinguish
upper and lower indices because all calculations are performed in the Euclidean space-
time after Wick rotation), and i, k = 1, 2, 3 are space directions. In this work we
consider a pure gauge field theory with SU(2) group symmetry. Thus θp is related
with Fµν due to the following formula:

Fp = 1̂ cos θp + ı niσi sin θp, (7)

where ni is a vector on the unit sphere, σi is the Pauli matrix, Fp is a value of the
gauge field tensor Fµν on the plaquette. Therefore we can define θp as

θp = arccos

(
1

2
Tr Fp

)
. (8)
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All phases are calculated on the surface of a cube in four-dimensional space-time.
The range of function arccos(x) is [0, π]. The range of angle in the gauge group U(1)
is [0, 2π]. Hence the phase on one side of the cube is defined as + arccos

(
1
2Tr Fp

)

while on the opposite side it is − arccos
(
1
2Tr Fp

)
.

The Witten parameter is related not only to the chromomagnetic field but also to
an average plaquette correlation function which is defined as

C(l) =

〈(
1− 1

2
Tr Fp(x)

)(
1− 1

2
Tr Fp(x + l)

)〉

x

, (9)

where Fp = UijUjkUklUli and Uij , Ujk, Ukl, Uli are link variables on the plaquette.
The correlation between plaquettes located on the opposite planes of the cube de-
creases when the surface increases. The phase θp has the same correlation function
which in turn affects the Witten parameter.

3 Witten parameter on lattice

The partition function can be expressed as

Z =

∫
(dU) e−S(U). (10)

We use Wilson formalism of lattice theory [7]. The action in the SU(2) theory can be

written as S(U) = β
∑
p

(
1− 1

2
ReTr Fp

)
, where β = 4/g2 and g is the gauge coupling

constant. We can calculate an observed value of a physical quantity A as

〈A〉 = Z−1

∫
(dU)A(U) e−S(U), (11)

where A(U) is a physical quantity calculated on lattice configuration U and the inte-
gration is over all configurations with the weight e−S(U).

Within this approach, we need to generate a set of lattice configurations with
weights e−S(U). This problem is solved with the use of Monte Carlo algorithm [8].
Next we calculate physical observables on these configurations and average them.
To generate configurations, we use the cold start, cyclic boundary conditions and
other parameters shown in Table 1. We use the 99% confidence interval in error
calculations, therefore errors for 50 configurations are calculated as 2.8σ where σ is a
typical dispersion.

We prepare a set of configurations in both phases to study the Witten parameter.
We calculate a Polyakov loop to verify the phase state on configurations. This loop
is defined as

L(T ) =
1

2
Tr exp

(
ıg

1/T∫

0

A dt

)
, (12)

where t is a cyclic variable with period 1/T , T is a temperature on the lattice. The
Polyakov loop is an order parameter of confinement-deconfinement phase transition.

Table 1: Monte Carlo parameters.

Thermalization iterations 2000
Correlation iterations 200

Configurations 50
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Table 2: Lattices used to study the volume dependence.

Phase Lattice size β L(T )
Deconfinement 4 · 303 2.55 0.349± 0.002
Confinement 414 2.55 0.0002± 0.0006

It is equal to zero in the confinement phase and differs from zero in the deconfinement
phase. The parameters of lattices used in calculations are shown in Table 2. The
Polyakov loop on the lattice is a Wilson line composed of lattice links in the direction of
time completed by periodic boundary conditions. The Polyakov loop on the lattice is

L(x) =
1

2
Tr

Nt−1∏

t=0

U0(t,x), (13)

where U0 (t,x) is the time direction link.
Within our lattice approach, we select a cube in the 3D subspace (the lattice is

defined in the four-dimensional space-time). The phase is calculated on each plaquette
on the surface of the cube, the result is obtained by summation of these phases. Next
we calculate the Witten parameter at different points in the lattice configuration and
average them. The final result is obtained by averaging over the set of configurations.

We consider the cubes with edge length ranging from 1a to 13a (a is a lattice
scale) and surface area ranging from 6 to 1014 plaquettes, respectively. We use the
multilevel [6] and multi-hit [9] algorithms for the sake of statistical confidence and
the MPI parallelization to speed up the calculations.

3.1 Multilevel scheme

We can fractionize the cube surface into 6 planes. Thus we need to calculate the
phases on these planes. We use a multilevel scheme which includes the following
calculations performed recursively:

1. If the depth of recursion exceeds some parameter depthmax or the current plane
contains only one plaquette, the phase is calculated by the multi-hit algorithm
(see below).

2. The current plane is divided into two pieces by a line perpendicular to the longer
edge of the plane, see Fig. 1.

3. The multilevel algorithm is used recursively for each piece of the plane to calcu-
late the phase on this plane ϕi (i = 1, ..., Nϕ where Nϕ is a predefined number
of phase calculations on the current plane) as a sum of phases on individual
pieces of the plane.

4. When all Nϕ calculations of the phases ϕi on the plane are completed, we obtain

the phase ϕ as an average of individual calculations ϕi: ϕ = Arg
(
N−1

ϕ

∑
i

cosϕi+

ı N−1
ϕ

∑
i

sinϕi

)
; otherwise we perform a few Monte Carlo runs to generate new

links on the current plane and turn back to the point 3.

To test this scheme, we use a set of recursion depths ranging from 1 to 3 to
calculate the dependence of the Witten parameter on a surface area on some set
of lattice configurations. The multilevel algorithm applied to calculate the surface
operators appears to have very good convergence behavior. The results of calculations
for recursive depth equal to two and three are close. The recursion depth is equal to
three in all calculations presented below.
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Figure 1: The plane is divided into two pieces at each recursion step. 1 shows surfaces
(surrounded by a solid curve) used to calculate phases at the first recursion step, the
phases on surfaces 2 are computed at the second recursion step.

3.2 Multi-hit algorithm

The main idea of the multi-hit algorithm is that the phase on the plaquette is defined
by boundary conditions. We can substitute the phase calculated on the plaquette by
the phase expressed through boundary links. We cannot do it analytically, but we
can use the Monte Carlo algorithm to obtain an accurate enough phase value. We
perform few Monte Carlo runs on the plaquette to generate boundary links and calcu-
late a set of phases on a single plaquette. The phase is finally obtained by averaging
the set of phase factors in the same manner as at the point 4 of the previous subsection.

A combination of these two algorithms makes it possible to improve essentially
an accuracy of calculations of the Witten parameter. However, this results in the
increase of required computer time. To resolve this problem, we employ an MPI
parallelization of calculations.

4 Results

All calculations are performed for 50 lattice configurations at 1000 points on each of
them. The results for both phases are shown in Fig. 2. The surface area dependences
of the Witten parameter in both phases look the same. To understand better the
behavior of the Witten parameter, we fit the obtained dependences as

Wp(S, V ) = e−σS−γV, (14)

where σ is a surface coefficient, γ is a volume coefficient, S is a surface area, and V is
the cube volume. The fit is performed by means of the minuit2 library of the ROOT
package [10]. We obtain high-quality fits when non-zero values of parameters σ and
γ are allowed as is seen in Fig. 2. Therefore the Witten parameter depends on both
the cube volume and surface area in each phase.

Regarding the β dependence, the Witten parameter vanishes in the continuum
limit corresponding to the β → ∞ limit: as is seen in Fig. 3, the Witten parameter
decreases with β. Clearly, the vacuum expectation value is suppressed by the ultra-
violet divergence of the self-energy which is proportional to the closed surface area.

This means that there is a divergence of the surface coefficient σ = σ(a)
a→0−→ ∞,

where a is the lattice scale. The scale in the continuum limit tends to zero. This
divergence is related to the colored dipole self-energy on the surface. It is analogous
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Figure 2: Surface area dependences of the Witten parameter in the confinement
(upper panel) and deconfinement (lower panel) phases and comparison of fittings.
The confinement phase calculations (‘data’) were performed with lattice size of 414

and β = 2.55.
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Figure 4: Dependence of σ on lattice spacing a in both phases.

to the divergence of Wilson lines:

〈
Tr P exp

{
−
∫

C

∧
Aµ dxµ

}〉
∼ exp

{
−const g2L/a

}
, (15)

where L is the perimeter of the Wilson line C, a is the lattice spacing, g2 is a coupling
constant, and we keep only the most divergent terms. A description of magnetic
degrees of freedom and surface operators may be found in Ref. [11].

Fig. 4 shows the σ dependence on the scale a. σ diverges in the continuum limit
while the volume coefficient γ does not depend on lattice scale. Due to Eq. (15), the
surface divergence has the following form:

σ(a) = σph + σdiv/a
2, (16)

where σph is a physical coefficient and σdiv is a divergence coefficient. The fit results
in σph = (0.091 ± 0.007) fm−2, or (3.6 ± 0.3) · 103 MeV2. This approximation is
illustrated in Fig. 4.

It is seen that the Witten parameter depends on a surface area and volume in
both phases. Consequently, the Witten parameter cannot be considered as an order
parameter of the confinement-deconfinement phase transition. This is similar to the
behavior of spatial Wilson loops expectation value which is also unrelated to the phase
transition. It might be interesting for the study of surface operators to calculate the
Witten parameter on the cube with two spatial axis and one temporal axis. In this
case the parameter should be sensitive to the phase transition.
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Infrared and Ultraviolet Cutoffs in Variational

Calculations with a Harmonic Oscillator Basis

Sidney A. Coon

Department of Physics, University of Arizona, Tucson, Arizona USA

Abstract

I abstract from a recent publication [1] the motivations for, analysis in and
conclusions of a study of the ultraviolet and infrared momentum regulators in-
duced by the necessary truncation of the model spaces formed by a variational
trial wave function. This trial function is built systematically from a complete
set of many-body basis states based upon three-dimensional harmonic oscillator
(HO) functions. Each model space is defined by a truncation of the expansion
characterized by a counting number (N ) and by the intrinsic scale (~ω) of the
HO basis. Extending both the uv cutoff to infinity and the ir cutoff to zero is
prescribed for a converged calculation. In [1] we established practical procedures
which utilize these regulators to obtain the extrapolated result from sequences
of calculations with model spaces. Finally, I update this subject by mentioning
recent work on our extrapolation prescriptions which have appeared since the
submission of [1]. The numerical example chosen for this contribution consists
of calculations of the ground state energy of the triton with the “bare” and
“soft” Idaho N3LO nucleon-nucleon (NN) interaction.

Keywords: No-core shell model; convergence of expansion in harmonic oscil-
lator functions; ultraviolet regulator; infrared regulator

1 Introduction

The advent of giant nuclear shell-model codes based upon the three-dimensional har-
monic oscillator (HO) in the 1970s coincided with the advent of a program to use
the HO eigenfunctions as a basis of a finite linear expansion to make a straightfor-
ward variational calculation of the properties of light nuclei [2]. At the same time
theorems based upon functional analysis established the asymptotic convergence rate
of these latter calculations as a function of the counting number (call it N ) which
characterizes the size of the expansion basis (or model space) [3, 4]. The conver-
gence rates of these theorems (inverse power laws in N for “non smooth” potentials
with strong short range correlations and exponential in N for “smooth” potentials
such as gaussians) were demonstrated numerically in [3] for the HO expansion and in
[5] for the parallel expansion in hyperspherical harmonics. These convergence theo-
rems seem to be known in the hyperspherical harmonic community and are effectively
demonstrated in the calculation of the properties of few-nucleon systems “from first
principles”; that is, solving the many-body Schrödinger equation with a Hamiltonian
containing nucleon-nucleon interactions fitted to scattering data and to properties of
the deuteron. The convergence rates of variational calculations using the HO basis
have been periodically rediscovered empirically by those who, in the present day, have
adapted “giant shell-model codes” or written new codes to perform “ab initio” “no-
core shell model” (NCSM) calculations of s- and p-shell nuclei. I have never seen a
reference to the functional analysis theorems regarding these convergence rates in the
NCSM papers. However, the HO expansion basis has an intrinsic scale parameter ~ω
which does not naturally fit into an extrapolation scheme based upon N as discussed
by [3, 4, 6]. Indeed the model spaces of these NCSM approaches are characterized
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by the ordered pair (N , ~ω). Here the basis truncation parameter N and the HO
energy parameter ~ω are variational parameters [7, 8, 9]. It is the purpose of this
contribution to summarize the properties of another ordered pair which perhaps more
physically describes the nature of the model spaces and provides extrapolation tools
which use N and ~ω on an equal footing [1]. This is the pair of ultraviolet (uv) and
infrared (ir) cutoffs (each a function of both N and ~ω) induced by the truncation.
They were first introduced to the NCSM in [10] in the context of an effective field
theory (EFT) approach (for a recent review of this program see [11]). These cutoffs
or regulators can usefully be employed in novel extrapolation schemes [1] which are
a natural outgrowth of those introduced in the 1970s, rediscovered by the NCSM
community, and in current use.

The variational approach alluded to above generates a trial wave function in a
completely systematic manner without regard for the details of the Hamiltonian under
consideration other than the implementation of exact symmetries. The goal, then,
is to define a complete set of states for a few-body system and to construct and
diagonalize the Hamiltonian matrix in a truncated basis of these states. The result
of the diagonalization is an upper bound to the exact eigenvalue of the complete
set. With this method a reliable estimate of the accuracy attained can be made
with the variational upper bound [3] provided that the trial function is constructed
using the terms of a systematic expansion set and convergence of the diagonalization
result (such as a ground-state energy) is observed as the basis is increased. The
algebra appropriate to generating and using trial wave functions, based on three
dimensional HO eigenfunctions, has been given by Moshinsky [2] and others [12]. The
trial functions take the form of a finite linear expansion in a set of known functions

ΨT =
∑

ν

a(N )
ν hν ,

where a
(N )
ν are the parameters to be varied and hν are many-body states based on

a summation over products of HO functions. The advantage of a HO basis is that
it is relatively straightforward to construct a complete set of few-body functions of
appropriate angular momentum and symmetry; examples are given in [12, 13]. The
trial function must have a definite symmetry reflecting the composition of the bound
state: fermions or bosons. This trial function ΨT must be quadratically integrable and
the expectation value of the Hamiltonian must be finite. The expansion coefficients
(known as generalized Fourier coefficients in the mathematical literature) depend
on the upper limit (such as an N defined in terms of total oscillator quanta) and
are obtained by minimizing the expectation value of the Hamiltonian in this basis.

Treating the coefficients a
(N )
ν as variational parameters in the Rayleigh quotient [14],

one performs the variation by diagonalizing the many-body Hamiltonian in this basis.
This is an eigenvalue problem so the minimum with respect to the vector of expansion
coefficients always exists and one obtains a bound on the lowest eigenvalue (and indeed
on the higher eigenvalues representing the excited states [15]). The basis functions
can also depend upon a parameter (such as the harmonic oscillator energy ~ω which
sets a scale) that then becomes a non-linear variational parameter additional to the
linear expansion coefficients.

One can view a shell-model calculation as a variational calculation, and thus ex-
panding the configuration space merely serves to improve the trial wave function [16].
The traditional shell-model calculation involves trial variational wave functions which
are linear combinations of Slater determinants. Each Slater determinant corresponds
to a configuration of A fermions distributed over A single-particle states. If we take
any complete set of orthonormal single-particle wave functions and consider all pos-
sible A-particle Slater determinants that can be formed from them, then these wave
functions form a complete orthonormal set of wave functions spanning the A-particle
Hilbert space. The Slater determinant basis of HO single-particle wave function is
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often defined in the “m-scheme”. That is, the single-particle states are labelled by
the quantum numbers n, l, j, and mj , where n and l are the radial and orbital HO
quantum numbers, j is the total single-particle spin, and mj its projection along the
z-axis. The many-body basis states have well-defined total spin projection, which
is simply the sum of mj of the single-particle states Mj =

∑
mj , hence the name

“m-scheme”. The many-body basis states are limited only by the imposed symme-
tries — parity, charge and total angular momentum projection (M), as well as by N .
However, in general the many-body basis states do not have a well defined total J .
This scheme is simple to implement and in two calculations (for positive and negative
parity) one gets the complete low-lying spectrum, including the ground state, even
though the spins of the low-lying states are not specified in the trial wave function.
The truncation by N results in finite matrices to be diagonalized, but they are much
larger than the matrices of the Moshinsky program which expects the properties of the
trial wave function (JT basis in shell model language) to be known. However, because
these shell model wave functions do span the space, an expansion in such “m-scheme”
Slater determinants is, in principle, also capable of giving an exact representation of
the eigenfunctions of the Hamiltonian.

These early ab initio calculations, both of the “no-core” shell model in which all
nucleons are active [16] and of the Moshinsky program [17, 18] attempted to overcome
the challenges posed by “non-smooth” two-body potentials by including Jastrow type
two-body correlations in the trial wave function. Nowadays, the NN potentials are
tamed by unitary transformations within the model space [19] or in free space by
the similarity renormalization group evolution [20]. In both cases, this procedure
generates effective many-body interations in the new Hamiltonian. Neglecting these
destroys the variational aspect of the calculation (and the physics contained in the
calculation, of course). We retain the variational nature of our NCSM investigation
by choosing a realistic smooth nucleon-nucleon interaction Idaho N3LO [21] which has
been used previously without renormalization for light nuclei(A ≤ 6) [7]. This poten-
tial is inspired by chiral perturbation theory and fits the two body data quite well. It
is composed of contact terms and irreducible pion-exchange expressions multiplied by
a regulator function designed to smoothly cut off high-momentum components in ac-
cordance with the low-momentum expansion idea of chiral perturbation theory. The
version we use has the high-momentum cutoff of the regulator set at 500 MeV/c. The
Idaho N3LO potential is a rather soft one, with heavily reduced high-momentum com-
ponents as compared to earlier realistic NN potentials with a strongly repulsive core.
Alternatively, in coordinate space, the Yukawa singularity at the origin is regulated
away so that this potential would be considered “smooth” by Delves and Schneider
and the convergence in N would be expected to be exponential [3, 4]. Even without
the construction of an effective interaction, convergence with the Idaho N3LO NN
potential is exponential in N , as numerous studies have shown [7, 20].

With the HO basis in the nuclear structure problem, convergence has been dis-
cussed, in practice, with an emphasis on obtaining those parameters which appear
linearly in the trial function (i. e. convergence with N ). Sometimes for each N the
non-linear parameter ~ω is varied to obtain the minimal energy [7, 22] for a fixed N
and then the convergence with N is examined. Sometimes ~ω is simply fixed at a
value which gives the fastest convergence in N [13]. Other extrapolation schemes have
been proposed and used [8]. In all of these schemes, in my opinion, the extrapolation
to an infinite basis is effected with the main role played by N and a secondary role
played by ~ω. The scheme proposed in [1] gives N and ~ω equal roles by employing
uv and ir cutoffs which which must be taken to infinity and to zero, respectively to
achieve a converged result (see Fig. 1).

In section 2 we briefly describe expansion schemes in HO functions. None of the
discussion in section 2 is new, but it paves the way for section 3 in which we suggest
a convergence analysis based upon the uv and ir cutoffs induced by the truncation
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Figure 1: (Color online) Schematic view of a finite model space (limited by the basis
truncation parameter N as described in the text), in which the uv and ir momentum
cutoffs are arbitrary. To reach the full many-body Hilbert space, symbolized by the
complete oval, one needs to let the uv cutoff →∞ and the ir cutoff → 0.

of the model space. Section 4 is devoted to a sampling of tests and examples of this
new convergence scheme; for a more extensive discussion with more examples please
see Ref. [1].

2 Expansion in a finite basis of harmonic oscillator

functions

We briefly indicate the workings of the finite HO basis calculations performed and re-
fer the reader to a comprehensive review article [9] on the no-core shell model (NCSM)
for further details and references to the literature. A HO basis allows preservation of
translational invariance of the nuclear self-bound system. Translational invariance is
automatic if the radial HO wave function depends on relative, or Jacobi, coordinates
as was done in Refs. [13, 17, 18, 22]. Antisymmetrization (or symmetrization for the
α particle models of [17, 18]) of the basis is necessary and described in Refs. [9] and
[23]. Antisymmetrization in a Jacobi basis becomes analytically and computationally
forbidding as the number of nucleons increases beyond four or five. For this rea-
son these calculations are alternatively made with antisymmetrized wave functions
constructed as Slater determinants of single-nucleon wave functions depending on
single-nucleon coordinates. This choice loses translational invariance since, in effect,
one has defined a point in space from which all single-particle coordinates are defined.
Translational invariance is restored by choosing a particular truncation of the basis:
a maximum of the sum of all HO excitations, i. e.

∑A
i=1(2ni + li) ≤ Ntotmax, where

ni, li are the HO quantum numbers corresponding to the harmonic oscillators associ-
ated with the single-nucleon coordinates and Ntotmax is an example of the generic N
of the Introduction. The gain of this choice is that one can use technology developed
and/or adapted for NCSM, such as the shell model code ANTOINE [24], the parallel-
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processor codes “Many-Fermion Dynamics — nuclear” (MFDn) [25] and the No-Core
Shell Model Slater Determinant Code [26]. These codes set up the many-body basis
space, evaluate the many-body Hamiltonian matrix, obtain the low-lying eigenvalues
and eigenvectors using the Lanczos algorithm, and evaluate a suite of expectation
values using the eigenvectors.

The eigenstates factorize as products of a wave function depending on relative
coordinates and a wave function depending on the c. m. coordinates. The precise
method of achieving the factorization of the c. m. and intrinsic components of the
many-body wave function follows a standard approach, sometimes referred to as the
“Lawson method” [27]. In this method, one selects the many-body basis space in the
manner described above with N = Ntotmax and adds a Lagrange multiplier term to
the many-body Hamiltonian β(Hc.m. − 3

2~ω) where Hc.m. is the HO Hamiltonian for
the c. m. motion. With β chosen positive (10 is a typical value), one separates the
states of lowest c.m. motion (0S 1

2
) from the states with excited c. m. motion by

a scale of order β~ω. The resulting low-lying states have wave functions that then
have the desired factorized form. We checked, for the two cases A = 3 and A = 4,
that the codes manyeff [23] which use Jacobi coordinates and No-Core Shell Model
Slater Determinant Code [26] based upon single-nucleon coordinates gave the same
eigenvalues for the same values of N = Ntotmax and ~ω, indicating that the Lawson
method is satisfactory for the calculations in single-particle coordinates.

Now we return to the truncation parameter N of the HO basis expansion of the
many-body system. Usually, instead of truncating the sum of all HO excitations
N = Ntotmax, one uses the the more familiar truncation parameter Nmax. Nmax is
the maximum number of oscillator quanta shared by all nucleons above the lowest
HO configuration for the chosen nucleus. One unit of oscillator quanta is one unit of
the quantity (2n+ l) where n is the principle quantum number and l is the angular
quantum number. For A = 3, 4 systems Nmax = Ntotmax. For the p-shell nuclei they
differ, e. g. for 6Li, Nmax = Ntotmax−2, and for 12C,Nmax = Ntotmax−8. Later on we
will want a truncation parameter which refers, not to the many-body system, but to
the properties of the HO single-particle states. If the highest HO single-particle state
of this lowest HO configuration has N0 HO quanta, then Nmax + N0 = N identifies
the highest HO single-particle states that can be occupied within this many-body
basis. Since Nmax is the maximum of the total HO quanta above the minimal HO
configuration, we can have at most one nucleon in such a highest HO single-particle
state with N quanta. Note that Nmax characterizes the many-body basis space,
whereas N is a label of the corresponding single particle space. Let us illustrate this
distinction with two examples. 6He is an open shell nucleus with N0 = 1 since the
valence neutron occupies the 0p shell in the lowest many-body configuration. Thus
if Nmax = 4 the single particle truncation N is 5. On the other hand, the highest
occupied orbital of the closed shell nucleus 4He has N0 = 0 so that N = Nmax.

3 Ultraviolet and infrared cutoffs induced by basis
truncation

We begin by thinking of the finite single-particle basis space defined by N and ~ω
as a model space characterized by two momenta associated with the basis functions
themselves. In the HO basis, we follow [10] and define Λ =

√
mN (N + 3/2)~ω as

the momentum (in units of MeV/c) associated with the energy of the highest HO
level. The nucleon mass is mN = 938.92 MeV. To arrive at this definition one applies
the virial theorem to this highest HO level to establish kinetic energy as one half the
total energy (i. e., (N + 3/2)~ω ) and solves the non-relativistic dispersion relation
for Λ. This sets one of the two cutoffs for the model space of a calculation. En-
ergy, momentum and length scales are related, according to Heisenberg’s uncertainty
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principle. The higher the energy or momentum scale we may reach, the lower the
length scale we may probe. Thus, the usual definition of an ultraviolet cutoff Λ in
the continuum has been extended to discrete HO states. It is then quite natural to
interpret the behavior of the variational energy of the system with addition of more
basis states as the behavior of this observable with the variation of the ultraviolet
cutoff Λ. Above a certain value of Λ one expects this running of the observable with
Λ to “start to behave” so that this behavior can be used to extrapolate to the exact
answer. However, the truncation of the model space by N implies a second cutoff,
absent in free space; an infrared cutoff. Because the energy levels of a particle in a HO
potential are quantized in units of ~ω, the minimum allowed momentum difference
between single-particle orbitals is λ =

√
mN~ω and that has been taken to be an

infrared cutoff [10]. That is, there is a low-momentum cutoff λ = ~/b corresponding

to the minimal accessible non-zero momentum (here b =
√

~

mNω plays the role of a

characteristic length of the HO potential and basis functions). Note however that
there is no external confining HO potential in place. Instead the only ~ω dependence
is due to the scale parameter of the underlying HO basis. In [10] the influence of the
infrared cutoff is removed by extrapolating to the continuum limit, where ~ω → 0
with N →∞ so that Λ is fixed. Clearly, one cannot achieve both the ultraviolet limit
and the infrared limit by taking ~ω to zero in a fixed-Nmodel space as this procedure
takes the ultraviolet cutoff to zero.

The calculated energies of a many-body system in the truncated model space will
differ from those calculated as the basis size increases without limit (N →∞). This
is because the system is in effect confined within a finite (coordinate space) volume
characterized by the finite value of b intrinsic to the HO basis. The “walls” of the
volume confining the interacting system spread apart and the volume increases to the
infinite limit as λ → 0 and b → ∞ with Λ held fixed. Thus it is as necessary to
extrapolate the low momentum results obtained with a truncated basis with a given b
or ~ω as it is to ensure that the ultraviolet cutoff is high enough for a converged result.
These energy level shifts in a large enclosure have long been studied [28]; most recently
with the explicit EFT calculation of a triton in a cubic box allowing the edge lengths
to become large (and the associated ir cutoff due to momentum quantization in the
box going towards zero) [29]. There it was shown that as long as the infrared cutoff
was small compared to the ultraviolet momentum cutoff appearing in the “pionless”
EFT, the ultraviolet behavior of the triton amplitudes was unaffected by the finite
volume. More importantly, from our point of view of desiring extrapolation guidance,
this result means that calculations in a finite volume can confidently be applied to the
infinite volume (or complete model space) limit. Similar conclusions can be drawn
from the ongoing studies of systems of two and three nucleons trapped in a HO
potential with interactions from pionless EFT combined with this definition of the
infrared cutoff (λ =

√
mN~ω); see the review [11].

Other studies define the ir cutoff as the infrared momentum which corresponds
to the maximal radial extent needed to encompass the many-body system we are
attempting to describe by the finite basis space (or model space). These studies find
it natural to define the ir cutoff by λsc =

√
(mN~ω)/(N + 3/2) [20, 30]. Note that λsc

is the inverse of the root-mean-square (rms) radius of the highest single-particle state
in the basis; 〈r2〉1/2 = b

√
N + 3/2. We distinguish the two definitions by denoting

the first (historically) definition by λ and the second definition by λsc because of its
scaling properties demonstrated in the next Section.

The extension in [10] of the continuum ultraviolet cutoff to the discrete (and trun-
cated) HO basis with the definition Λ =

√
mN (N + 3/2)~ω seems unexceptional.

But, as always when one confidently makes such a statement, there are exceptions.
For example, an effective momentum for a HO state can be defined by the asymptotic
relation for large n between the radial part Rnl(r)/r of the harmonic oscillator func-
tions and the spherical Bessel functions jl(kr) of radial part of the 3D plane wave [31].
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Kallio showed that this relation is very accurate at small r for all n values [32]. The
alternate definition, suggested by Vary [33], identifies a uv regulator with the “Kallio
momentum” defined by this relation so that Λalternate =

√
2Λ. This is a scale change

only as is the definition by fiat in [34] which arrives at the same
√

2 factor for their
Λ. The more important distinction is the alternate definitions of the ir cutoff which
have different functional forms. It is clear that increasing Λ by increasing ~ω in a
fixed-N model space is not sufficient; doing so increases both of the putative infrared
cutoffs as well because Λ = λ

√
N + 3/2 = λsc(N + 3/2) and one continues to effec-

tively calculate in an effective confining volume which is getting smaller rather than
larger. This confining volume is certainly removed by letting N → ∞, at fixed ~ω,
because HO functions form a basis of the complete space. In addition, taking N →∞
simultaneously removes the uv cutoff defined by Λ and the ir cutoff defined either by
λ or λsc. But increasing N without limit is computationally prohibitive. Thus there
is a practical issue to address: whether one must take the ir cutoff to zero by taking
~ω → 0 at fixed Λ (λir ≡ λ definition) or whether it is sufficient to allow ~ω be some
larger value, perhaps near that used in traditional shell-model calculations, and let
an increasing N take λir to small values, as it does with the definition λir ≡ λsc.

4 A study of uv and ir cutoffs in the triton

We display in a series of figures the running of the ground-state eigenvalue of a single
nucleus, 3H, on the truncated HO basis by holding one cutoff of (Λ, λir) fixed and
letting the other vary. These 3H calculations were made for N ≤ 36 and values of ~ω
as appropriate for the chosen cutoff value. For N ≥ 16, we used the code manyeff
[23] which uses Jacobi coordinates and the No-Core Shell Model Slater Determinant
Code [26] which use single-particle coordinates for smaller N . We checked that the
codes gave the same eigenvalues for overlapping values of N , indicating that the
Lawson method satisfactorily restores translational invariance to ground-state energy
calculations in single-particle coordinates.

In Fig. 2 and the following figures, |∆E/E| is defined as |(E(Λ, λir)−E)/E| where
E reflects a consensus ground-state energy from benchmark calculations with this NN
potential, this nucleus, and different few-body methods. The accepted value for the
ground state of 3H with this potential is −7.855 MeV from a 34 channel Faddeev
calculation [21], −7.854 MeV from a hyperspherical harmonics expansion [35], and
−7.85(1) from a NCSM calculation [7].

For the choice of Fig. 2, λir ≡ λ =
√
mN~ω, |∆E/E| decreases exponentially at

fixed λ, as Λ increases for the values of Λ achieved in this study. Fixed ~ω implies N
alone increases to drive Λ→∞, λsc → 0 simultaneously. The linear fit on a semi-log
plot is extracted from the data. For fixed Λ, a smaller λ implies a smaller |∆E/E|
since more of the infrared region is included in the calculation.

In Fig. 3 we hold fixed the uv cutoff of (Λ, λir) to display the running of |∆E/E|
upon the suggested ir cutoff λ. For fixed λ, a larger Λ implies a smaller |∆E/E| since
more of the uv region is included in the calculation. But we immediately see a quali-
tative change in the curves between the transition Λ = 700 MeV and Λ = 800 MeV;
for smaller Λ, |∆E/E| does not go to zero as the ir cutoff is lowered and more of the
infrared region is included in the calculation. This behavior suggests that |∆E/E|
does not go to zero unless Λ ≥ ΛNN , where ΛNN is some uv regulator scale of the
NN interaction itself. From this figure one estimates ΛNN ∼ 800 MeV/c for the
Idaho N3LO interaction.

Yet the description of this interaction in the literature says that the version we use
has the high-momentum cutoff of the regulator set at ΛN3LO = 500 MeV/c [21]. This
does not mean that the interaction has a sharp cutoff at exactly 500 MeV/c, since
the terms in the Idaho N3LO interaction are actually regulated by an exponentially
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Figure 2: Dependence of the ground-state energy of 3H (compared to a converged
value; see text) upon the uv momentum cutoff Λ =

√
mN (N + 3/2)~ω for different

fixed λ =
√
mN~ω. The curves are a fit to the calculated points.
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/
E
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Figure 3: Dependence of the ground-state energy of 3H (compared to a con-
verged value; see text) upon the ir momentum cutoff λ =

√
mN~ω for fixed

Λ =
√
mN (N + 3/2)~ω.
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suppressed term of the form

exp

[
−
(

p

ΛN3LO

)2n

−
(

p′

ΛN3LO

)2n
]
.

In this expression, p and p′ denote the magnitude of the initial and final nucleon
momenta of this non-local potential in the center-of-mass frame and n ≥ 2. Because
the cutoff is not sharp, it should not be surprising that one has not exhausted the
uv physics of this interaction for values of single-particle Λ somewhat greater than
500 MeV/c. Note that this form of the regulator allows momentum transfers (~p− ~p′)
to achieve values in the range up to 2ΛN3LO. Can one make an estimate of the
uv regulator scale of the Idaho N3LO interaction which is more appropriate to the
discrete HO basis of this study? An emulation of this interaction in a harmonic
oscillator basis uses ~ω = 30 MeV and Nmax = N = 20 [36]. Nucleon-nucleon
interactions are defined in the relative coordinates of the two-body system, so one
should calculate ΛNN =

√
m(N + 3/2)~ω with the reduced mass m rather than the

nucleon mass mN appropriate for the single-particle states of the model space. Taking
this factor into account, the successful emulation of the Idaho N3LO interaction in a
HO basis suggests that ΛNN ∼ 780 MeV/c, consistent with the figure.

For Λ < ΛNN there will be missing contributions of size |(Λ − ΛNN)/ΛNN |, so
“plateaus” develop as λ → 0, revealing this missing contribution to |∆E/E|. We
cannot rule out the possibility of a plateau appearing at the level of 0.0001 or less for
Λ ≥ 800 MeV/c as λ→ 0. This is because the smallest λ available to our calculations
is limited by λ = Λ/

√
N + 3/2 and the largest N = 36 with our computer resources.

That is, the leftmost calculated points of Fig. 3 move to higher values of λ as fixed Λ
increases above 800 MeV/c. At fractional differences of 0.001 or less, the development
of possible plateaus could be masked by round-off errors in the subtraction of two
nearby numbers, each of which may have its own error. Nevertheless, the “plateaus”
that we do see are not flat as λ → 0 and, indeed, rise significantly with decreasing
Λ < ΛNN . This suggests that corrections are needed to Λ and λ which are presently
defined only to leading order in λ/Λ. The authors of [34] take our suggested simile
of a truncated basis to a confining region quite seriously and use it to obtain a first
order correction to both Λ and λir. We hope to learn if higher-order corrections can
be directly determined by our data in a future study.

Now we turn to the second pair of cutoffs of (Λ, λir) and display in Fig. 4 the ana-
logue of Fig. 2 except that this time λir ≡ λsc =

√
mN~ω/(N + 3/2). For fixed λsc,

|∆E/E| does not go to zero with increasing Λ, and indeed even appears to rise for fixed
λsc ≥ 35 MeV/c and Λ ≥ 800 MeV/c. Such a plateau-like behavior was attributed in
Fig. 3 to a uv regulator scale characteristic of the NN interaction. Can the behavior
of Fig. 4 also be explained by a “missing contributions” argument; i. e. an argument
based upon λsc ≤ λNN

sc where λNN
sc is a second characteristic ir regulator scale im-

plicit in the NN interaction itself? One can envisage such an ir cutoff as related to
the lowest energy configuration that the NN potential could be expected to describe.
For example, the inverse of the np triplet scattering length of 5.42 fm corresponds to
a low-energy cutoff of about 36 MeV/c. The previously mentioned emulation of the
Idaho N3LO interaction in a harmonic oscillator basis [36] has λNN

sc ∼ 36 MeV/c. At
low Λ and λsc ≤ λNN

sc , |∆E/E| does fall with increasing Λ and this behavior can be
fitted by a Gaussian as shown for 3H and and other s-shell nuclei in [1]. But we will
see in the next figure that one has not yet captured the uv region at these low values
of Λ.

Fig. 5 is the analogue to Fig. 3: only the variable on the x-axis changes from λ
to λsc = λ2/Λ. For Λ < ΛNN ∼ 780 MeV/c the missing contributions and resulting
“plateaus” are as evident as in Fig. 3. (Please see discussion of Fig. 3 for an account
of possible “plateaus” for larger values of Λ.) The tendency of these plateaus to rise
as λsc → 0 again suggests a refinement is needed to this first-order definition of the
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Figure 4: Dependence of the ground-state energy of 3H (compared to a converged
value; see text) upon the uv momentum cutoff Λ =

√
mN (N + 3/2)~ω for different

values of the ir momentum cutoff λsc =
√

(mN~ω)/(N + 3/2). Curves are not fits
but simple point-to-point line segments to guide the eye.
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Figure 5: Dependence of the ground-state energy of 3H (compared to a converged
value; see text) upon the ir momentum cutoff λsc =

√
(mN~ω)/(N + 3/2) for fixed

Λ =
√
mN (N + 3/2)~ω.
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cutoffs. Around Λ ∼ 600 MeV/c and above the plot of |∆E/E| versus λsc in Fig. 5
begins to suggest a universal pattern, especially at large λsc. For Λ ∼ 800 MeV/c
and above the pattern defines a universal curve for all values of λsc. This is the
region where Λ ≥ ΛNN indicating that nearly all of the ultraviolet physics set by the
potential has been captured. Such a universal curve suggests that λsc could be used
for extrapolation to the ir limit, provided that Λ is kept large enough to capture the
uv region of the calculation. Fig. 5 is also the motivation for our appellation λsc,
which we read as “lambda scaling”, since this figure exhibits the attractive scaling
properties of this regulator.

We now utilize the scaling behavior displayed on Fig. 5 to suggest an extrapolation
procedure which we demonstrate in Fig. 6. The extrapolation is performed by a
fit of an exponential plus a constant to each set of results at fixed Λ. That is,
we fit the ground state energy with three adjustable parameters using the relation
Egs(λsc) = a exp(−b/λsc)+Egs(λsc = 0). The mean and standard deviation of the five
values of Egs(λsc = 0) were −7.8511 MeV and 0.0011 MeV, respectively, as suggested
by Fig. 7 in which the overlap of the five separate curves cannot be discerned. It
should be noted that our five extrapolations in Fig. 7 employ an exponential function
whose argument 1/λsc =

√
(N + 3/2)/(mN~ω) is proportional to

√
N/(~ω). This

extrapolation procedure of taking λsc =
√
mN~ω/(N + 3/2) toward the smallest

value allowed by computational limitations treats both N and ~ω on an equal basis.
The exponential extrapolation in

√
N/(~ω) is therefore distinct from the popular

extrapolation which employes an exponential in Nmax (= N for this s-shell case)
[7, 8, 9, 20] and provides a refinement to the procedures of the 1970s for dealing with
“smooth” potentials.

This extrapolation procedure treats both N and ~ω on an equal basis. For

λsc (MeV/c)

Figure 6: The ground state energy of 3H calculated at five fixed values of Λ =√
mN (N + 3/2)~ω and variable λsc =

√
(mN~ω)/(N + 3/2). The curves are fits

to the points and the functions fitted are used to extrapolate to the ir limit λsc = 0.
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example, the extrapolation at fixed Λ = 1200 MeV/c employs values of ~ω from 41
to 65 MeV and N = 22−36. The one at fixed Λ = 800 MeV/c employs values of ~ω
from 18 to 44 MeV and N = 14−36. The curves of Fig. 6 encompass values of λsc
between 20 and 52 MeV/c. We attempted to quantify the spread in extrapolated
values by fitting only segments of the curves of this figure. Recall that the small-
est value of λsc requires the largest N . Fits to the segment from λsc = 20 MeV/c
to λsc = 40 MeV/c (always for the five displayed values of fixed Λ) resulted in a
mean of −7.8523 MeV and standard deviation of 0.0008 MeV. Cutting out the left
hand parts of the curves and fitting only from λsc = 30 MeV/c to λsc = 55 MeV/c
gave a mean of −7.8498 MeV and standard deviation of 0.0022 MeV. For both these
trials a rather large N was needed, ranging from 14 to 36 but the extrapolation is
quite stable. In contrast, values of λsc higher than those shown in Fig. 7, namely
from λsc = 50 MeV/c to λsc = 85 MeV/c, require fewer computational resources
(N = 8−22). The extrapolations have a mean and standard deviation of −7.792 MeV
and 0.042 MeV, still not so far away from the accepted value of −7.85 MeV.

Fig. 3 suggests that an extrapolation to the infrared limit could equally well be
made by taking λ → 0 for a fixed large Λ. Instead we choose to extrapolate in
~ω with an eye to future exploitation of archival calculations made in the variables
(Nmax, ~ω). In Fig. 7 we fit the ground state energy of 3H with three adjustable
parameters using the relation Egs(~ω) = a exp(−c/~ω) + Egs(~ω = 0) six times,
once for each fixed value of Λ. It is readily seen that one can indeed make an ir
extrapolation by sending ~ω → 0 with fixed Λ as first advocated in Ref. [10] and
that the five ir extrapolations with Λ > ΛNN ∼ 780 MeV/c are consistent. The
spread in the six extrapolated values is about 0.049 MeV or about 1% about the
mean of −7.832 MeV. The standard deviation is 0.020 MeV.

Now let us accept the role of the ordered pair (Λ, λir) of cutoffs in these varia-
tional calculations and examine the ordered pair (N , ~ω). That is, we take the basis

Figure 7: The ground state energy of 3H calculated at six fixed values of Λ =√
mN (N + 3/2)~ω. The curves are fits to the points and the functions fitted are

used to extrapolate to the ir limit λ =
√
mN~ω = 0 with fixed Λ as in Fig. 6.
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Figure 8: Dependence of the ground-state energy of 3H upon ~ω = λ2/mN =
λ2sc/[mN(N + 3/2)] for fixed N = Λ2/λ2 − 3/2 = Λ/λsc − 3/2. Curves are not
fits but spline interpolations to guide the eye.

truncation parameter N and the HO energy parameter ~ω to be variational param-
eters. We now observe convergence as the truncation of the model space is lessened
by increasing N = Nmax, where N is the specific truncation parameter N and Nmax

is the total number of energy quanta kept in the basis. Fig. 8 shows a plot of the
variational energy of the ground state of 3H plotted in this traditional way, pioneered
in Fig. 1 of [2] and continued through [37] to the present day [8, 34]. Optimum values
for the parameters that enter linearly can be obtained by solving a matrix eigenvalue
problem. But the optimum value of the nonlinear parameter must in principle be
obtained by, for example, numerical minimization which could be difficult as the al-
gorithm could easily miss the global minimum and get trapped in a local minima.
The plots such as Fig. 8 and others in the nuclear physics literature show that 1) for
small bases a change in the non-linear parameter ~ω can have a dramatic change in
the variational estimate of the ground state energy and 2) the dependence on the
nonlinear parameter decreases as the basis size increases. These observations seem
to vitiate the need for an extensive numerical minimization by varying ~ω [38]. For
example, in Fig. 8 the minimum of each fixed N curve is easily read off the plot.

From Fig. 8, we see that the variational energy decreases and thus moves away
from the converged value −7.85 MeV as ~ω → 0 at fixed N (for all N considered!).
This is readily understood in terms of Fig. 1. At fixed N one captures more infrared
physics by lowering the infrared cutoff (λir ∝

√
~ω) but misses the ultraviolet physics

because lowering ~ω also lowers the ultraviolet cutoff (Λ ∝
√
~ω). The loss of uv

physics due to the lower ~ω overwhelms the gain of ir physics and the estimate of
the ground state becomes very bad. A similar situation holds as ~ω increases: the uv
cutoff increases toward ∞ so that more uv physics is captured but the ir cutoff also
rises and more and more of the infrared physics is lost to the calculation.

The approximate minimum of the N = 8 curve is at ~ω ∼ 43 MeV which corre-
sponds to Λ ∼ 620 MeV/c and λsc ∼ 65 MeV/c. From Fig. 5 we realize that for this
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small value of Λ < ΛNN ∼ 780 MeV/c and large value of λsc > λNN
sc ∼ 36 MeV/c,

we would expect about a 30% shortfall in the ground state energy and this is what
we see in Fig. 8. At the minimum of the N = 8 curve the variational parameters are
nowhere near their limits in the (Λ, λir) regulator picture and the variational energy
is not very good. Because N ∝ Λ2/λ2 or N ∝ Λ/λsc, increasing the truncation pa-
rameter N simultaneously increases the uv cutoff and decreases the ir cutoff so that
the curves move lower and lower. We observe that, as fixed N increases, the minima
of each curve moves to a lower value of ~ω, as was previously observed in similar
calculations for 4He with this potential [8] and for a variety of nuclei (A = 2−16) [8]
with another realistic NN potential JISP16 [39]. Maris also observes a monotonic
movement to the left with a basis truncation on the single-particle basis so that the
truncation parameter N becomes Nshell rather than Nmax [40]. Apparently another
behavior, first a shift to the right and then to the left as fixed N is increased, is noted
in [34] and interpreted as first an approach to uv convergence and then, as the uv
physics is obtained a further convergence in the ir regulator. We, and other NCSM
calculations (including one with a Nshell truncation), do not see this behavior.

In Fig. 8, the monotonic movement to a lower ~ω is clear as N increases from 8
to 20, all values corresponding to Λ < ΛNN ∼ 780 MeV/c, the region in which
the uv physics has not yet been captured. As N is increased to N = 24 (not yet
possible for p-shell nuclei with present day computers and codes) the minimum moves
down to ~ω ∼ 24 MeV which corresponds to Λ ∼ 790 MeV/c , λ ∼ 150 MeV/c
and λsc ∼ 31 MeV/c. At these values the uv cutoff seems high enough (see Figs. 3
and 5) and the ir cutoff low enough (see Figs. 2 and 4) that one could argue that
convergence was nearly reached. As N increases from 24 to 36 the fixed N curves pile
up on each other, but an expanded scale (not shown) separates them to demonstrate
that the minimum stays near 24 MeV (Λ ∼ 920 MeV/c and λsc ∼ 24 MeV/c) and
the curves become somewhat independent of ~ω within a limited range. Even so,
any calculation in a finite basis should be examined from the point of view of the
more physical regulators (Λ, λir). This calculation should, in principle, always be
extrapolated to the uv and ir limits. Independence of ~ω for fixed N is due to a
playoff between the uv and ir cutoffs and it should be understood how this playoff
affects the calculation. The often heard mantra “look for independence upon the
value of ~ω because that means the series of calculations has converged” should be
retired, in my opinion.

After submission of [1], Furnstahl, Hagen and Papenbrock posted an investigation
of uv and ir cutoffs in finite oscillator spaces [34]. They assume that λsc (scaled by
a factor of

√
2 from the λsc of this paper) is the ir cutoff. They take our suggested

simile of a truncated basis to a confining region quite seriously and use the simile to
derive an explicit extrapolation formula in their ir cutoff. The derived formula is the
same (exponential in

√
N/(~ω)) as the one of [1] reviewed here and is used in the

same way: establish that the uv cutoff is large enough and then extrapolate in the
ir variable. In addition, they suggest a first (higher) order correction to both the uv
and ir regulators. The caveat to what they call a “theoretically derived ir formula”
is the remark made recently by Lieb et al.: “If one fixes the particle number N in a
very large box and calculates the shift in energy caused by [a given local one-body
potential] V , the answer depends on the box shape and boundary conditions” [41].
But this has always been true [28].

As [34] assumes that (scaled) λsc is the ir regulator, they took the behavior shown
in Fig. 4 for small λsc to suggest a second extrapolation formula for the uv cutoff.
That is, at low Λ and λsc ≤ λNN

sc , |∆E/E| falls with increasing Λ and this behavior can
be fitted by a Gaussian, as shown for 3H and other s-shell nuclei in [1]. This Gaussian
in Λ ∝

√
N(~ω) then becomes an exponential in N(~ω). Their final formula assumes

relative independence of the uv and ir extrapolations so it is a sum of exponentials with
arguments proportional to N(~ω) from the uv regulator and to

√
N/(~ω) from their ir
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regulator. These results are a useful advance on the exponential form of convergence
in N (with no mention of the role of the scale parameter ~ω) shown less concretely by
the forty-year-old theorems of [3] and [4]. The authors of [34] caution, as have we, that
results such as these should be expected only for the “smooth” potentials of [3] and [4]
(or in their momentum space characterization: “super-Gaussian falloff in momentum
space”) such as those inspired by chiral EFT or obtained by renormalization group
transformations. The extrapolation formulae appear to be successful in calculations
of open shell medium to heavy nuclei (A = 74) with nuclear interactions inspired by
chiral EFT [42].

There has been a recent turn to consider other bases for expanding the trial wave
function; bases which have a presumed better behavior at large distances than the
HO basis which has a Gaussian falloff [43]. The most effective basis used in few-
nucleon physics [44], in nucleon-nucleus scattering [45] and in nuclear reactions [46]
are the Coulomb–Sturmians. This is a complete and discrete set of the eigenfunctions
of a Sturm–Liouville problem associated with the Coulomb potential [47]. Caprio
et al. have recently used this basis to make NCSM calculations of light nuclei [48].
They found it beneficial to link the length scale parameter bl of the Sturmian with
the length scale b of the HO eigenfunction so as to provide a closer alignment of the
low-n Coulomb–Sturmian basis functions with the harmonic-oscillator basis functions.
They choose to formally truncate the Coulomb–Sturmian basis with anNmax counting
number. Thus they end up with the same ordered pair (N , ~ω) as with the HO basis.
However, the ~ω value quoted for the Coulomb–Sturmian basis is simply the ~ω of the
reference oscillator length, from which the actual l-dependent length parameters bl
are chosen to align the low-n Coulomb–Sturmian basis functions with the harmonic-
oscillator basis functions. It therefore has no direct significance as an energy scale for
the problem. Moreover, the Nmax truncation is difficult to interpret as an “energy
cut” as it is for the HO basis. Caprio et al. extrapolate to an infinite basis in the
following way: the non-linear parameter ~ω is varied to obtain the minimal energy for
the highest N available, ~ω is then fixed at that value and the convergence with N
is assumed to be exponential (extrapolation B of [8]). This is basically the procedure
of Delves [3], rooted in theorems of functional analysis, and is not directly related
to the EFT inspired cutoffs discussed here. Given that neither N nor ~ω are given
an energy interpretation in this paper, it is problematic that one can simply take
over the arguments of [1] or [34] to define new dimensionful uv or ir cutoffs for use in
extrapolation. Yet the savings in computation and increase in physical understanding
should motivate such an effort in the future.

In summary, we have introduced a practical extrapolation procedure with Λ→∞
and λir → 0 which can be used when the size of the HO basis needed exceeds the
capacity of the computer resources as it does for 4He and 6He and certainly will for
any more massive nuclei. Unlike other extrapolation procedures the ones advocated
in this paper treat the variational parametersN and ~ω on an equal footing to extract
the information available from sequences of calculations with model spaces described
by (N , ~ω). We have established that Λ does not need to be extrapolated to ∞ but
if Λ > ΛNN set by the potential one can make the second extrapolation to zero with
either ir cutoff λsc (see Fig. 6) or λ (see Fig. 7). The choice of the scaling cutoff λsc
is especially attractive as Λ need not be held constant but any Λ large enough can
be used in the ir extrapolation. The traditional plots in the variables (N , ~ω) can be
understood by considering the uv and ir cutoffs as primary.
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Abstract

In this write-up, we briefly summarize the Rare Isotope Science Project in
Korea.

Keywords: Rare Isotope Science Project; neutron rich rare isotope beams

1 Introduction

With the goal of creating world-class institute in basic sciences, Institute for Basic
Science (IBS) has been launched in November of 2011 [1]. IBS is located in Daejeon,
Korea. The core project of IBS is “Research Group Configuration” and “Rare Isotope
Accelerator.” IBS will host about fifty research centers and affiliated institutes. The
rare isotope accelerator is one of key research facilities to secure innovative successes
in basic sciences such as nuclear physics, astrophysics, and atomic physics. The
rare isotope accelerator will be designed and constructed under Rare Isotope Science
Project (RISP) of IBS. Currently RISP is a project team in IBS. Later, RISP will
become an affiliated institute of IBS. The accelerator of RISP/IBS is officially named
RAON, previously it was called KoRIA. RAON is a pure Korean word, meaning
delightful. This name implicates a wish that the rare isotope accelerator of RISP/IBS
would be a delightful gift for scientists all over the world and for the bright future of
mankind.

In this briefing, we present a bit on the history of RISP, its present status, and
its future plans. For more details on RISP, we refer to [2]. Some overviews on rare
isotope physics are given in [3, 4, 5].

2 Rare Isotope Science Project

We start with a brief history of RISP and its future plan. RISP of IBS started in
December of 2011 to perform technical design of RAON and to construct it. Cur-
rently, RISP consists of five divisions: Experimental Systems, Accelerator Systems,
Construction, Theory, and Administration. The division of experimental systems
consists of three teams: ISOL system, Spectrometer and Detector development, and
Application facility teams. The division of accelerator system is composed of three
teams: Injector and beam Physics, Superconducting Linac (SCL), In-flight Fragmen-
tation (IF) and RF (Radio Frequency) teams. The theory division contains nuclear
physics and particle/astrophysics teams. At the beginning stage, the utmost goals of
RISP were to determine main scientific research fields at RISP, to establish the con-
cept of the accelerator, and to review/revise/improve the Conceptual Design report
(CDR) of RAON [6] made from March 2010 to February 2011. The Baseline Design
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Summary [7], which is an upgraded version of the CDR summary, was completed in
June 2012.

Below is the development plan of RISP for RAON:

− The Technical Design Report of RAON will be completed by 2013.

− Main component production will start from 2014.

− Installation will start from 2016.

− Day-1 experiments are expected to be embarked in 2017.

Now we touch a bit on accelerator systems.
RAON is planned as a world class multi-purpose accelerator facility to provide

exotic rare isotope beams of various energies. The accelerator complex has three
accelerators: two heavy ion linear accelerators (Driver Linac, Post Linac) and one
cyclotron. The main heavy ion accelerator, Driver Linac, is designed to accelerate
ions from proton to Uranium to be used as the driver for 400 kW in-flight (IF) system
and for 400 kW isotope separation on-line (ISOL) system with the proton beam. In
addition, it can be used as a post accelerator for isotopes, which will be accelerated
up to 250 MeV/u, produced by the ISOL system.

As to rare isotope productions, RAON utilizes the IF system for fragmentation
and the ISOL system for target spallation and fission. To produce more exotic rare
isotope beams, a unique method, a combination of ISOL and IF systems in which the
RI beams generated by the ISOL facility will be accelerated to a higher energy by the
in-flight fragmentation Linac, will be also used.

Before we move onto experimental systems, we sketch main research fields and
subjects at RISP. A variety of basic and applied science can be studied with RI
beams. Especially high intensity RI beams with high purity near the drip lines offer
much opportunities to explore every facet of our universe. The research at RISP is
categorized into four science fields: Nuclear Science, Atomic and Molecular Science,
Material Science, and Medical and Bio Science.

Major scientific research fields at RISP are:

− Nuclear astrophysics and nucleosynthesis;

− Nuclear structure and matter;

− Nuclear data;

− Nuclear theory;

− Precision mass measurements and laser spectroscopy;

− RI material research;

− Medical and Bio applications.

The highest priority research subjects of RISP are:

− Nuclear reaction experiments important to nuclear astrophysics;

− Search for super heavy elements: Z > 113;

− Nuclear structure of n-rich RI near N = 126;

− Nuclear symmetry energy at sub-saturation density,
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and its important scientific applications are:

− Precision mass measurement and Laser spectroscopy;

− Material science: β-NMR, µSR;

− Medical and bio science;

− Nuclear data for Gen-IV NPP and nuclear waste transmutation.

Now, we have a glance over the experimental systems of RAON.

The Korea Recoil Spectrometer (KRS) is a main facility for nuclear structure,
nuclear astrophysics, and super heavy elements search.

The Large Acceptance Multipurpose Spectrometer (LAMPS) is designed to ex-
plore the nuclear symmetry energy and equation of state (EOS) of nuclear matter
with various neutron-proton asymmetries.

For the super heavy element research, we plan to use two types of separators:
gas-filled separator such as FLNR at Dubna and GARIS at RIKEN and vacuum type
separator such as SHIP at GSI.

Ion trap and laser spectroscopy are to do precise mass measurements and offer
spectroscopic information of rare isotopes.

In addition, the experimental apparatus of RAON includes β-NMR facility, µSR
facility, and neutron Time-of-Flight (n-ToF).

In a nutshell, essential experimental systems for the main scientific research fields
could be summarized as:

− Nuclear physics ⇒ Large Acceptance Spectrometer;

− Nuclear astrophysics⇒ Korea Recoil Spectrometer (KRS), Gas filled Separator
for SHE;

− Atomic physics ⇒ Atom and Ion Trap System;

− Nuclear data by fast neutrons ⇒ neutron Time-of-Flight (n-ToF);

− Material science ⇒ β-NMR/NQR, µSR, Laser Selective Ionizer;

− Medical and Bio sciences ⇒ Heavy Ion Therapy research, Irradiation Facility.

Finally, we show the selected rare isotope beams that are summarized on the
Baseline Design Summary in Table 1.

3 Summary

RISP will be establishing rare isotope accelerator, RAON, experimental systems, and
the theoretical foundation for basic sciences. The Technical Design Report for the
accelerator and experimental apparatus will be published by the end of 2013.
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Table 1: Selected RI beams in the Baseline Design Summary. Here, NS — nuclear
structure; NA — nuclear astrophysics; MS — material science; SE — symmetry
energy; NSPT — nuclear study with polarized target; NSPRI — nuclear study with
polarized RI beam; SHE — super heavy elements; AP — atomic physics; MBS —
medical and bio science.

RI beam Energy Desired Research
species range intensity [pps] fields

132Sn, 144Xe > 100 A MeV 108, 106 NS
15O < 10 A MeV 1010 NA
15O < 30 keV 108 MS

26mAl < 15 A MeV 107 NA
45V 0.6–2.25 A MeV 107–109 NA

68Ni, 106Sn, 132Sn, 140,142Xe 10–250 A MeV 109 SE
6,8He, 12Be, 24−30O 50–100 A MeV 109 NSPT

17N, 17B, 12B, 14−15B, 31−32Al, 34K 50–100 A MeV 109 NSPRI
64Ni, 58Fe (stable) a few MeV/A 1012 SHE
8Li, 11Be, 17Ne < 30 keV 108 MS

133−140Sn < 60 keV 1 AP
8B, 9−11C, 15O ≥ 200 A MeV 107–109 MBS
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