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Abstract

A nonperturbative approach to field theory based on the decomposition of the
state vector in Fock components, and on the covariant formulation of light-front
dynamics, together with the Fock sector dependent renormalization scheme, is
briefly reviewed. The approach is applied to the calculation, in the framework of
three-body Fock space truncation, of the fermion electromagnetic form factors
in the Yukawa model (in particular, of anomalous magnetic moment). Once
the renormalization conditions are properly taken into account, the anomalous
magnetic moment does not depend on the regularization scale when the latter
is much larger than the physical masses.
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1 Introduction

In the quantum field theory, due to the particle creation and annihilation, the number
of particles in a system is not fixed and the state vector is a superposition of the states
(Fock sectors) with different numbers of particles:

|p〉 =

∞
∑

n=1

∫

ψn(k1, . . . , kn, p) |n〉Dk. (1)

ψn is the n-body wave function and Dk is an integration measure. In the cases when
we can expect that the decomposition (1) converges rapidly enough, we can make
truncation, that is replace the infinite sum in (1) by a finite one. Then, substituting
the truncated state vector in the eigenvector equation

H |p〉 =M |p〉,

we obtain a system of integral equations of finite dimension for the Fock components
ψn which can be solved numerically. With the decomposition (1), the normalization
condition for the state vector 〈p′|p〉 = 2 p0 δ

(3)(p′ − p) writes as

∞
∑

n

In = 1, (2)

where In is the contribution of the n-body Fock sector to the norm.
In this way we do not require the smallness of the coupling constant. The approxi-

mate (truncated) solution is non-perturbative. This is the basis of a non-perturbative
approach which we developed, together with J.-F. Mathiot and A. V. Smirnov, in a
series of papers [1–5] (see for review [6]).
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The main difficulty on this way is to ensure cancellation of infinities. In a per-
turbative approach, for a renormalizable field theory, this cancellation is obtained as
a by-product after renormalization in any fixed order of coupling constant. For the
cancelation it is important to take into account the complete set of graphs in a given
order. Omitting some of these graphs destroys the cancellation and the infinities sur-
vive after renormalization. Namely that happens after the truncation: though the
truncated solution can be decomposed in infinite series in terms of the coupling con-
stant, it does not contain the complete set of perturbative graphs in any given order.
Therefore the standard renormalization scheme does not eliminate the infinities. To
provide cancellation of infinities, the sector-dependent renormalization scheme has
been proposed [7]. This scheme, in which the values of the counter terms are precised
from sector to sector according to unambiguously formulated rules, was developed
in detail in Ref. [3] and applied to calculation of electromagnetic form factors in
Refs. [4, 5]. Below we will give its brief review and present some results obtained in
this approach.

We discuss the convergence of the decomposition (1) in Section 2. The sector
dependent renormalization scheme is briefly described in Section 3. It is applied
to calculation of anomalous magnetic moment of fermion in Yukawa model. The
antifermion degrees of freedom are taken into account in Section 4. The results are
summarized in Section 5.

2 On convergence of the Fock decomposition

We work in the light-front dynamics (LFD) [8–10], more precisely, in its explicitly
covariant version [8, 9]. In four-dimensional space, the state vector (1) is defined on
the light-front plane of a general orientation ω ·x = 0, where ω is an arbitrary four-
vector restricted by the condition ω2 = 0 [8, 9]. The traditional form of LFD [10] is
recovered by using ω = (1, 0, 0,−1).

As mentioned, the truncation of the Fock decomposition can be efficient if the
decomposition (1) converges rapidly enough. The convergence depends, of course, on
the nature of a system under consideration. If this system is dominated by a finite
number of degrees of freedom (like hadrons in quark models), then the decomposi-
tion (1) is determined with a good accuracy by a finite number of the components.
Notice that these “degrees of freedom”, e. g., quarks as basis of decomposition (1),
may be some effective dressed constituents.

The convergence of the Fock decomposition was estimated [11] in the explicitly
solvable Wick–Cutkosky model [12]. This model corresponds to spineless massive
particles with equal massesm interacting by spineless massless exchange. One can find
the two-body Bethe–Salpeter amplitude. The requirement for the electromagnetic
form factor F (Q2 = 0) = 1 fixes the normalization of the Bethe–Salpeter amplitude.
On the other hand, projecting the Bethe–Salpeter amplitude on the light-front plane,
we find the two-body Fock component of the state vector (1). Its normalization
integral is not unity but gives the two-body contribution to the full normalization.
One can also estimate the valence three-body contribution. We chose the parameters
maximally unfavorable for dominance of a few-body sector. Namely, the coupling
constant is very strong, α = 2π, that corresponds to the limiting case when the
binding energy in the Wick–Cutkosky model, Eb = −2m, compensates the full mass
of the system. The strong coupling constant increases contributions of higher orders,
i. e., of many-body components. In addition, since the exchange particles are massless,
they can be easy created. The result for different contributions [11] is given in Table 1.

We see that even in this unfavorable case, the Fock states with 2 and 3 particles
contribute 90% to the normalization integral. This would give the 10% accuracy in
calculation of observables, say, of the electromagnetic form factor.
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Table 1: Contributions of the Fock sectors with the number of particles n = 2, n = 3
and n ≥ 4 (In≥4 =

∑∞

n=4 In) to the full normalization integral I =
∑∞

n=2 In = 1 of
the state vector for M = 0 (α = 2π).

I2 I3 In≥4 I2 + I3 + In≥4

0.643 0.257 0.100 1

3 Fock sector dependent renormalization scheme

We will find the state vector of the Yukawa model Hamiltonian containing the fermion
field ψ and the scalar field φ with the interaction vertex g0ψ̄ψφ. For regularization,
we include in the Hamiltonian the Pauli–Villars fields (one fermion and one boson),
which, after that, appear in the basis of decomposition (1). Since our formalism is
explicitly covariant, the spin structure of the wave function ψn is easy found. It
should incorporate the ω-dependent components. Therefore the spin structure of the
two-body component in the Yukawa model reads:

ū(k1) Γ2u(p) = ū(k1)

[

b1 +
M 6ω

ω ·p
b2

]

u(p). (3)

where 6 ω = ωµγ
µ. The coefficients b1 and b2 are scalar functions determined by

dynamics. In LFD they depend on well-known variables k⊥, x: b1,2 = b1,2(k⊥, x).
System of equations for the Fock components in the truncation N = 3 is graph-

ically shown in Fig. 1. One can exclude the three-body component and obtain a
reduced system of equations which includes the one- and two-body components only.
It is shown in Fig. 2. In comparison to the equations of Fig. 1, we included in the
equations of Fig. 2 another counter term Zω discussed below in this section. Namely
this reduced system of eight equations for two two-body spin components, for physical
and Pauli–Villars fermions and bosons (2 × 2 × 2 = 8), was solved numerically. It
contains also a one-body component Γ1, but it is a constant which can be found from
the normalization condition. The limit of the fermion Pauli–Villars mass m1 → ∞
was taken analytically, whereas the limit of the boson Pauli–Villars mass µ1 → ∞
was taken numerically.

The renormalization condition, as always, means that one should express the bare
coupling constant g0 and the fermion mass counter term δm via the physical coupling
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Figure 1: System of equations for the Fock components in the truncation N = 3.
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Figure 2: Equation for the two-body component.

constant and mass. In perturbation theory, as mentioned, this leads, as a by-product,
to cancellation of infinities. In the non-perturbative approach the strategy is, in
principle, the same, however, because of truncation, the infinities are not cancelled.
Therefore we use the sector-dependent renormalization scheme [3]. The fermion mass
counter term δm, and the bare coupling constant g0, are thus extended to a sequence:

g0 → g0l, (4)

δm → δml, (5)

The index l runs through the Fock sectors with l = 1, 2, ... , N . The quantities g0l
and δml are calculated by solving the systems of equations for the vertex functions
in the N = 1, N = 2, N = 3, ... approximations successively. That is, we start
with the first non-trivial case N = 2 and find g02, δm2. In the case N = 3, the
parameters g0, δm0 may appear in two ways. Namely: (i) Via the two-body sector
which enters the three-body equations, as it happens, for example, in the last line in
Fig. 1. In this case we use for them already found values of g02 and δm2. (ii) Via
the one-body sector which also enters the three-body equations, as it happens, for
example, in the first line in Fig. 1. Then these parameters are the new ones: g03,
δm3, which did not appear in the previous N = 2 truncation. They are found from
the renormalization conditions in the three-body sector. This procedure continues for
increasing N . As an example, system of equations for the next N = 4 truncation is
shown in Fig. 3.

The renormalization condition for the coupling constant g0 is a relation between
the two-body components Γ2 (containing g0) and the physical coupling constant g. In
order to fix this relationship, one needs to take into account the normalization factors
of the external legs of the two-body vertex function. These normalization factors do
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Figure 3: System of equations for the Fock components in the truncation N = 4.
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also depend on the order of truncation of the Fock space. In the Yukawa model, this
relationship reads [6]:

Γ
(N)
2 (s2 =M2) = g

√

I
(N−1)
1 . (6)

Here Γ
(N)
2 is the two-body Fock component found in the truncation N whereas I

(N−1)
1

is the one-body normalization integral (for the fermion state) calculated in the pre-
vious N − 1 truncation. We omit the corresponding boson factor since we do not
consider here fermion loops and the boson self-energy (quenched approximation).

The condition (6) has an important consequence: the two-body vertex function,
depending according to Eq. (3) on ω, at the value s2 = M2 should be independent
of the orientation ω of the light-front plane. With the spin decomposition (3), this
implies that the component b2 at s2 =M2 should be identically zero:

b
(N)
2 (s2 =M2) ≡ 0. (7)

If Eq. (7) is satisfied, Eq. (6), in the quenched approximation, turns into

b
(N)
1 (s2 =M2) ≡ g

√

I
(N−1)
1 . (8)

While the property (7) is automatically fulfilled in the case of the two-body Fock
space truncation provided one uses a rotationally invariant regularization scheme [6],
this is not guaranteed for higher order truncations. The ω-dependence of the off-shell
vertex Γ2, Eq. (3), is allowed even for the exact solution, but it must completely
disappear on the energy shell. Because of approximations, the latter does not happen
automatically.

Another consequence of the truncation of the Fock space is the fact that the
components b1,2(s2 =M2) are not constants. Indeed, b1,2 depend on two kinematical
variables k⊥, x. The on-shell condition

s2 ≡
k2⊥ +m2

1− x
+
k2⊥ + µ2

x
=M2 (9)

can be used to fix one of the two variables, say k⊥, in the non-physical domain
(for M = m):

k⊥ = k∗⊥(x) ≡ i
√

x2m2 + (1− x)µ2, (10)

so that b1,2(s2 = M2) ≡ b1,2(k
∗
⊥(x), x) depends on x, whereas the conditions (7)

and (8) should be valid identically, i. e. for any value of x.
In order to enforce the condition (7), we introduce an appropriate counterterm

which depends explicitly on the four-vector ω. It is shown by cross in the first line of
Fig. 2. It originates from the following additional term introduced in the interaction
Hamiltonian:

δHint
ω = −Zωψ̄

′ m 6ω

iω ·∂
ψ′ϕ′, (11)

where Zω is just the new counterterm, ψ′(ϕ′) is the fermion (scalar boson) field being
a sum of the corresponding physical and Pauli–Villars components: ψ′ = ψ + ψPV

and similarly for ϕ′; 1/(iω·∂) is the reversal derivative operator. The enforcement of
the condition (7) for any x by an appropriate choice of the counterterm Zω implies
that Zω should a priori depend on x, i. e. Zω = Zω(x). It induces also an unique
dependence of g0N = g0N (x) as a function of the kinematical variable x.

The fact that, in order to satisfy the renormalization conditions, the bare parame-
ters must depend on the kinematical variable x, is crucial to obtain results which are
finite after the renormalization procedure in the truncated Fock space. The stability
of our results relative to the value of the regularization scale, if the latter reasonably
exceeds the physical masses, is confirmed numerically with high precision (see Fig. 4
below).
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At first glance, the x-dependence of the bare parameters seems unusual. However,
it is a natural consequence of the truncation. Of course, the bare parameters in the
fundamental non-truncated Hamiltonian are true constants. After truncation, the
initial Hamiltonian is replaced by a finite matrix which acts now in a finite Fock
space. But it turns out that the modification of the Hamiltonian is not restricted
to a simple truncation. Indeed, to preserve the renormalization conditions, the bare
parameters in this finite matrix become x-dependent. This x-dependence cannot be
derived from the initial Hamiltonian. It appears only after the Fock space truncation.

Our truncated Hamiltonian with the x-dependent bare parameters is a self-con-
sistent approximation to the initial fundamental Hamiltonian. One expects that the
approximation becomes better when the number of Fock components increases. At
the same time, the x-dependence of the bare parameters should become weaker. An
indication of this behavior, when one adds the antifermion contribution, is found
in Ref. [5] and is demonstrated below in Section 4. We emphasize that there is no
any ambiguity in finding the bare parameters, in spite of their x-dependence. These
functions of x are completely fixed by the renormalization conditions.

Using this scheme, in the three-body truncation (up to 1 fermion + 2 bosons),
we calculated [4, 5] the fermion electromagnetic form factors F1(Q

2) and F2(Q
2). In

all computations, we used the physical particle masses m = 0.938 and µ = 0.138
reflecting the characteristic nuclear physics mass scales. Each physical quantity was
calculated for three values of the physical coupling constant α = g2/4π = 0.5, 0.8,
and 1.0.

The value F2(0) is the anomalous magnetic moment (AMM). It is shown in Fig. 4
as a function of the Pauli–Villars boson mass µ1. Each of the two- and three-body
Fock sector contributions to the AMM essentially depends on µ1, while their sum is
stable as µ1 becomes large enough. Note that using x-dependent bare parameters
removes µ1-dependence of the AMM observed in Ref. [4] already for α ∼ 0.5, even for
larger coupling constants.

As it was explained, we took the limit m1 → ∞ analytically and then the limit
of large µ1 numerically. For a test of stability of our calculations, we compare in
Table 2 the numerical results for AMM obtained in two different orders of limits of
large Pauli–Villars masses. The AMM is considered as a function of the Pauli–Villars
mass which is kept finite (m1, if the limit µ1 → ∞ has been taken, and vice versa).
For convenience of the comparison, we took the same sets of finite mass values for
Pauli–Villars boson and fermion.

If each of the finite Pauli–Villars masses is much larger than all physical masses,
the values of the AMM, obtained in both limits, coincide within the computational
accuracy (about 0.2%), as it should be if the renormalization procedure works prop-
erly. We can thus choose any convenient order of the infinite Pauli–Villars mass
limits. Since the equations for the Fock components are technically simpler in the

Table 2: The anomalous magnetic moment calculated for α = 0.8 in the two different
limits of the Pauli–Villars masses.

Pauli–Villars mass kept AMM when AMM when
finite (µ1 or m1) m1 → ∞ µ1 → ∞

5 0.1549 0.1454
10 0.1641 0.1630
25 0.1690 0.1704
50 0.1702 0.1715
100 0.1706 0.1716
250 0.1708 0.1714
500 0.1709 0.1713
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Figure 4: The anomalous magnetic moment in the Yukawa model as a function of
the Pauli–Villars mass µ1, for three different values of the coupling constant, α = 0.5
(upper plot), 0.8 (middle plot) and α = 1.0 (lower plot). The dashed and long-dashed
lines are, respectively, the two- and three-body contributions, while the solid line is
the total result.

limit m1 → ∞, we continue to work with the vertex functions and the electromag-
netic vertex taken in this limit. The independence of physical results of the order in
which the infinite Pauli–Villars mass limit is taken and, hence, on the way we use
to get rid of the bare parameters, is a strong evidence of the self-consistency of our
renormalization scheme.

The AMM of electron was calculated non-perturbatively, in the N = 2 truncation
and with the oscillator basis, in Ref. [13] (see Ref. [14] for the review).
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Figure 5: Graphical representation of the equation for the two-body vertex function
including the contribution of antifermion d.o.f. in the quenched approximation.

4 Antifermion degrees of freedom

We extend the Fock decomposition of the fermion state vector by introducing the
antifermion d.o.f. In the lowest (also three-body) approximation this corresponds
to adding the ff f̄ Fock sector to those previously introduced (f , fb, and fbb). In
the three-body approximation, this new Fock component is easily expressed through
the two-body component, as the fbb one. As a result, we obtain a closed (matrix)
equation for the two-body vertex function, as given, in the quenched approximation,
by Fig. 5. It differs from the equation in the f + fb + fbb approximation, shown in
Fig. 2, by an additional term on the right-hand side (the last diagram in Fig. 5).

It turns out that the antifermion contribution makes a week influence on values
of form factors, but these values are now obtained with the parameters g03(x), Zω(x)
which are much more flat functions of x than without the antifermion.

In Figs. 6 and 7 these bare parameters are shown as a function of x, each for
α = 0.5, 0.8, and 1.0, at a typical value µ1 = 100. In Fig. 6 the relative value of g′03
with respect to its mean value ḡ′03 over the interval 0 ≤ x ≤ 1 is shown, i. e. we plot
the quantity

δg′03(x) = [g′03(x) − ḡ′03]/ḡ
′
03,

where ḡ′03 =
∫ 1

0
g′03(x) dx. The “prime” indicates that g′03(x) and Z

′
ω(x) include some

factors precised in Ref. [5]. For comparison, we show also in these plots the same
functions calculated without antifermion contributions. The most interesting fact
is that the function g′03(x), which exhibits strong x-dependence in the f + fb+ fbb
approximation, becomes almost a constant if the ff f̄ Fock sector is included. Con-
cerning the function Z ′

ω(x), it shows a similar tendency as well, with a bit stronger
x-dependency than g′03(x). In addition, the magnitude of Z ′

ω(x) is reasonably smaller
than that calculated in the f + fb+ fbb truncated Fock space.

5 Conclusion

We have developed a non-perturbative approach to field theory based on the Fock
decomposition and its truncation. It includes also the non-perturbative renormaliza-
tion. The approach is applied to calculations of electromagnetic form factors in the
Yukawa model. Truncating the Fock space up to the three-body sector fbb and then
including ff f̄ , we calculated anomalous magnetic moment of fermion. It is rather
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Figure 6: x-dependence of the bare coupling constant g′03 calculated for µ1 = 100
relatively to its mean value over the interval x ∈ [0, 1] for α = 0.5 (upper plot),
α = 0.8 (middle plot) and α = 1.0 (lower plot). The solid (dashed) lines correspond
to the results obtained with (without) the ff f̄ Fock sector contribution.

stable relative to the increase of the regulator — the Pauli–Villars meson mass µ1,
that indicates that in this way we find the convergent results. Due to the trunca-
tion, the bare parameters in the truncated Hamiltonian depend on the kinematical
variable x. This dependence becomes weaker when the ff f̄ sector is included.

The numerical results for the N = 3 truncation presented above were obtained by
a laptop. In order to go further, one should certainly use supercomputers which open
wide perspectives for the non-perturbative calculations in the field theory. This can
make an alternative to the lattice calculations. For a review of this field, applications
to the light-front Hamiltonian dynamics and the results of ab initio calculations in
nuclear physics see Refs. [14, 15]. It would be very important, as the next step, to
carry out calculations for the four-body truncation (to solve the equations shown in
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Figure 7: The same as Fig. 6 but for the x-dependence of the counterterm Z ′
ω.

Fig. 3) in order to check a possible convergence relative to the number of incorporated
Fock sectors. From the Yukawa model which serves as a testing area for development
of methods, one should go over to a realistic field theory.

References

[1] V. A. Karmanov, J.-F. Mathiot and A. V. Smirnov, Phys. Rev. D 69, 045009
(2004).

[2] V. A. Karmanov, J.-F. Mathiot and A. V. Smirnov, Phys. Rev. D 75, 045012
(2007).

[3] V. A. Karmanov, J.-F. Mathiot and A. V. Smirnov, Phys. Rev. D 77, 085028
(2008).



Nonperturbative calculations 135

[4] V. A. Karmanov, J.-F. Mathiot and A. V. Smirnov, Phys. Rev. D 82, 056010
(2010).

[5] V. A. Karmanov, J.-F. Mathiot and A. V. Smirnov, Phys. Rev. D 86, 085006
(2012).

[6] J.-F. Mathiot, A. V. Smirnov, N. A. Tsirova and V. A. Karmanov, Few-Body
Syst. 49, 183 (2011).

[7] R. J. Perry, A. Harindranath and K. G. Wilson, Phys. Rev. Lett. 65, 2959 (1990).

[8] V. A. Karmanov, Zh. Eksp. Teor. Fiz. 71, 399 (1976) [Sov. Phys. JETP 44, 210
(1976)].

[9] J. Carbonell, B. Desplanques, V. A. Karmanov and J.-F. Mathiot, Phys. Rept.
300, 215 (1998).

[10] S. J. Brodsky, H. Pauli and S. S. Pinsky, Phys. Rept. 301, 299 (1998).

[11] Dae Sung Hwang and V. A. Karmanov, Nucl. Phys. B 696, 413 (2004).

[12] G. C. Wick, Phys. Rev. 96, 1124 (1954); R. E. Cutkosky, ibid. 96, 1135 (1954).

[13] X. Zhao, H. Honkanen, P. Maris, J. P. Vary and S. J. Brodsky, Few-Body Syst.
52, 339 (2012).

[14] J. P. Vary, Few-Body Syst. 52, 331 (2012).

[15] J. P. Vary, Computational Nuclear Physics: Key to Discovery Opportunities,
Distinguished Lecture at NTSE-2013, see these Proceedings, p. 15,
http://www.ntse-2013.khb.ru/Proc/JPVary.pdf.


