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Preface

The International Conference on Nuclear Theory in the Supercomputing Era — 2013
(NTSE-2013) brought together experts in nuclear theory and high-performance com-
puting in Ames, Iowa from May 13 to May 17, 2013. It was the second conference in a
series that focuses on forefront challenges in physics, namely the fundamentals of nu-
clear structure and reactions, the origin of the strong inter-nucleon interactions from
QCD, the nonperturbative regime of relativistic quantum field theory, and compu-
tational nuclear physics with leadership class computer facilities to provide forefront
simulations leading to new discoveries. During this year’s conference, we also cele-
brated James P. Vary’s 70th birthday.

Throughout his career, James has made important contributions to theoretical
and computational nuclear physics, mentored more than 30 students and postdocs,
and served the science community in a number of elected and appointed positions.
He has published a few hundred refereed journal articles, and is a regular invited
lecturer at national and international scientific conferences. During his career James
has always been involved in international collaborations, and in promoting science in
far-flung places.

During the period 1993–2000 James served as Director of the International Insti-
tute of Theoretical and Applied Physics (IITAP) and institute patterned after the
renowned ICTP in Trieste, Italy. IITAP sponsored more than 1000 international
visits, primarily of developing country scientists to the US, with sponsorship from
UNESCO, Iowa State University, NSF, DOE as well as corporations and foundations.
Many of these projects continue until the present time. The state funding crunch of
2000 and 2001 led to a discontinuance of IITAP operations. However, other univer-
sities continue to study the model that IITAP pioneered for multi-lateral support of
international scientific projects.

We were very pleased that several of his international collaborators were able to
participate in this meeting. We were also very happy to be able to bring together
some of James’ collaborators from his early career, including his PhD supervisor
Joe Ginocchio, his former collaborator as postdocs at MIT, Peter Sauer, and Hans
Weidenmüller, his mentor and host on various visits to Heidelberg, Germany.

The conference also welcomed many young scientists, including graduate students
in nuclear physics and computational science. All participants together made the
conference a great success.

The conference topics,

(1) Ab initio nuclear structure;

(2) Microscopic approaches to nuclear reactions;

(3) Origin and properties of the strong interactions;

(4) Light-front quantum field theory; and

(5) Computational science and applied mathematics,

reflect James’ research interest and encompass a broad area of fundamental physics
and high-performance computing. For each of these topics, a keynote speaker (Gaute
Hagen, Jerry Draayer, Petr Návratil, Ruprecht Machleidt, Stan Brodsky, and Esmond
Ng) presented an overview of the topic, with an additional keynote talk on Lattice
QCD by Martin Savage. George Fai (program manager for nuclear theory at DOE)
gave us the view from the DOE nuclear theory office, and the conference concluded
with a summary talk by Bruce Barrett. James himself delivered a distinguished
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lecture with an overview of his recent research as well as his projections for future
directions.

We would like to express our appreciation to all participants of the NTSE-2013
conference, to all contributors to these proceedings, to all members of the Scientific
Advisory Committee and to the NTSE-2013 sponsors — Iowa State University and
Pacific National University.

The organizing committee:

Bruce Barrett (Co-Chair), University of Arizona

Kristina Launey, Louisiana State University

Pieter Maris (Co-Chair), Iowa State University

Jianwei Qiu, Brookhaven National Laboratory

Joseph Shinar, Iowa State University

Andrey Shirokov (Co-Chair), Moscow State University, Russia

Masha Sosonkina, Old Dominion University

Kirill Tuchin, Iowa State University

Xingbo Zhao, Iowa State University
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Program of International Conference on Nuclear

Theory in the Supercomputing Era — 2013

(NTSE-2013)

Sunday, May 12
Memorial Union, 2nd floor, Campanile Room

5:30–6:30pm Welcome Reception

Monday, May 13
All talks are in Memorial Union, 3d floor, Gallery Room

Chair: Bruce Barrett
8:30–8:45am Conference opening

Keynote talk:

8:45–9:30am Gaute Hagen
Ab Initio Nuclear Structure — from Light to Medium Weight
Nuclei

9:30–10:00am David Dean
A Survey of Experimental Challenges to Computational Nuclear
Physics

10:00–10:30am Coffee break

Chair: Winfried Leidemann
10:30–11:00am Robert B. Wiringa

Quantum Monte Carlo Calculations of Transitions and Reactions
11:00–11:30am Steven C. Pieper

Green’s Function Monte Carlo Calculations of Carbon
11:30–12:00pm Pieter Maris

Ab Initio Calculations of p-shell Nuclei with JISP16

12:00–1:30pm Lunch break

Chair: Robert B. Wiringa

Keynote talk:

1:30–2:15pm Jerry P. Draayer
— Unraveling Mysteries of the Strong Interaction — ‘Top Down’
versus ‘Bottom Up’ Considerations

2:15–2:45pm Tomáš Dytrych
Utilizing Symmetry Coupling Schemes in Ab Initio Nuclear
Structure Calculations

2:45–3:15pm Coffee break

Chair: Steven C. Pieper

3:15–3:45pm Gerald A. Miller
Nuclear Isospin Violation — How It Turned out and Where It
Is Going

3:45–4:15pm Joseph Carlson
Homogeneous and Inhomogeneous Fermions: Cold Atoms and
Neutrons

4:15-4:45pm Hans Weidenmüller
Nuclear Excitation by a Strong Zeptosecond Laser Pulse: Theo-
retical Expectations
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Tuesday, May 14
All talks are in Memorial Union, 3d floor, Gallery Room

Chair: Martin Savage

Keynote talk:

8:30–9:15am Stanley J. Brodsky
Light-Front Quantum Chromodynamics

9:15–9:45am Heli Honkanen
Modeling Nuclear Parton Distribution Functions

9:45–10:15am Dipankar Chakrabarti
Generalized Parton Distributions for the Proton

10:15–10:45am Coffee break

Chair: Morten Hjorth-Jensen

10:45–11:15am Vladimir Karmanov
Nonperturbative Calculations in the Light-front Field Theory

11:15–11:45am Yang Li
Introduction to Basis Laight-Front Quantization Approach to
QCD Bound State Problems

11:45–12:15pm Paul Wiecki
Positronium in Basis Light Front Quantization

12:15–1:45pm Lunch break

Chair: Stanley J. Brodsky

Keynote talk:

1:45–2:30pm Martin Savage
Nuclear Forces from Quantum Chromodynamics

2:30-3:00pm Kirill Tuchin
Hot Nuclear Matter in Intense Magnetic Field

3:00–3:30pm Coffee break

Chair: Steven C. Pieper

3:30–4:00pm Usha Kulshreshtha
Light-front Quantization of Non-Linear Sigma Models

4:00–4:30pm Daya Shankar Kulshreshtha
Light-Front Quantization and DLCQ of Large N Scalar QCD2

4:30–5:00pm Xingbo Zhao
Scattering in Time-Dependent Basis Light Front Quantization
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Wednesday, May 15
All talks are in Memorial Union, 3d floor, Gallery Room

Chair: Achim Schwenk

Keynote talk:

8:30–9:15am Petr Navrátil
Ab Initio Approaches to Nuclear Reactions

9:15–9:45am Winfried Leidemann
Recent Results with the Lorentz Integral Transform (LIT)
Method

9:45–10:15am Jimmy Rotureau
Ab Initio Description of Light Nuclei in the Berggren Basis

10:15–10:45am Coffee break

Chair: Jerry P. Draayer

10:45–11:15am Andrey Shirokov
Oscillator Basis and Scattering

11:15–11:45am Youngman Kim
SuperHeavy Element Studies at RAON

11:45–12:15pm George Fai
The View from Germantown

12:15–1:45pm Lunch break

Chair: Takaharu Otsuka

1:45–2:15pm John Hill
Studies of Hot Dense Nuclear Matter with the PHENIX Detector
at RHIC

2:15–2:45pm Jianwei Qiu
The Nucleus: a Laboratory for QCD

2:45–3:15pm Coffee break

Chair: Peter U. Sauer

3:15–3:45pm Joseph N. Ginocchio
Relativistic Symmetries in Nuclei and Hadrons

Distinguished lecture:

3:45–4:45pm James P. Vary
Computational Nuclear Physics: Key to Discovery Opportuni-
ties

4:45 -6:00pm Social Hour; Cash Bar

6:00 pm Group photo and Banquet
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Thursday, May 16
All talks are in Howe Hall, Alliant Energy - Lee Liu Auditorium

Chair: Joseph N. Ginocchio

Keynote talk:

8:30–9:15am Esmond Ng
Challenges in Computational Science at Exascale

9:15–9:45am Masha Sosonkina
Accelerating Ab Initio Nuclear Physics Calculations with GPUs
and Optimization Techniques

9:45–10:15am Ümit Çatalyürek
Exploring Intel Xeon Phi and NVidia GPUs for Nuclear Physics
Simulations

10:15–10:45am Coffee break

Chair: Mark A. Caprio

10:45–11:15am Chao Yang
Computational Techniques for Accelerating Nuclear Configura-
tion Interaction Calculations in MFDn

11:15–11:45am George Fann
Adaptive Pseudo-Spectral Method for Solving HFB Equations

11:45–12:15pm Hai Ah Nam
Computational Nuclear Physics for Modern Computing Archi-
tectures

12:15–1:15pm Lunch onsite (covered by the conference fee paid in full)

Chair: Esmond Ng

1:15–1:45pm Takaharu Otsuka
Monte Carlo Shell Model and Shape Phase Transitions in Exotic
Nuclei

1:45–2:15pm Takashi Abe
Monte Carlo Shell Model Towards Ab-Initio Calculations

2:15–2-45pm Achim Schwenk
Neutron Matter With Chiral Effective Field Theory: Perturba-
tive and First Quantum Monte Carlo Calculations

2:45–3:15pm Coffee break

Chair: Chao Yang

3:15–3:45pm Sidney A. Coon
Infrared and Ultraviolet Cutoffs: Convergence Strategies for
Harmonic Oscillator Basis Expansion Methods

3:45–4:45pm Thomas Papenbrock
Corrections to Nuclear Energies and Radii in Finite Oscillator
Spaces

4:15–4:45pm Mark A. Caprio
Convergence of NCCI Calculations for Light p-Shell Nuclei with
the Coulomb–Sturmian Basis

5:30pm Tour Excursion and Dinner
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Friday, May 17
All talks are in Memorial Union, 3d floor, Gallery Room

Chair: Dick Furnstahl

Keynote talk:

8:30–9:15am Ruprecht Machleidt
Origin and Properties of Strong Inter-Nucleon Interactions

9:15–9:45am Evgeny Epelbaum
Nuclear Forces and Light Nuclei from Chiral Effective Field The-
ory

9:45–10:15am Robert Roth
New Horizons in Ab Initio Nuclear Structure Theory

10:15–10:45am Coffee break

Chair: Petr Navrátil

10:45–11:15am Morten Hjorth-Jensen
Living on the Edge of Stability, the Limits of the Nuclear Land-
scape

11:15–11:45am Wayne Polyzou
Three Nucleon Scattering at Relativistic Energies

11:45–12:15pm Peter U. Sauer
Three-Nucleon Forces — Revisited

12:15–1:45pm Lunch break

Chair: Wayne Polyzou

1:45–2:15pm Scott Bogner
Shell Model Interactions from the In-Medium Similarity Renor-
malization Group

2:15–2:45pm Dick Furnstahl
High-Resolution Probes of Low-Resolution Nuclei

2:45–3:15pm Coffee break

Chair: Ruprecht Machleidt

3:15–4:00pm Bruce Barrett
Conference Summary

4:00pm Conference closing
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Jerry P. Draayer, Tomáš Dytrych, Kristina D. Launey, Alison C. Dreyfuss,

Mia C. Ferriss, Gregory K. Tobin, Feng Pan and Xin Guan, — Unraveling
mysteries of the strong interaction — ‘top down’ versus ‘bottom up’ consider-
ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

T. Dytrych, J. P. Draayer, K. D. Launey, P. Maris, J. P. Vary and D. Langr,

Utilizing symmetry coupling schemes in ab initio nuclear structure calculations . . 62

Gerald A. Miller, Nuclear isospin violation — how it turned out and where it is
going . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A. Pálffy and H. A. Weidenmüller, Nuclear excitation by a strong zeptosecond
multi-MeV laser pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

NTSE-2013 Keynote Talk:
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I. Tews, T. Krüger, A. Gezerlis, K. Hebeler and A. Schwenk, Neutron matter
with chiral EFT interactions: Perturbative and first QMC calculations . . . . . . . 302

Sidney A. Coon, Michael K. G. Kruse, Universal properties of infrared extrapo-

lations in a harmonic oscillator basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

M. A. Caprio, P. Maris and J. P. Vary, Halo nuclei with the Coulomb–Sturmian

basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

NTSE-2013 Keynote Talk:

R. Machleidt, Origin and properties of strong inter-nucleon interactions . . . . . . . . . 336

Wayne Polyzou, Computational challenges in the relativistic few-nucleon problem . 352

Peter U. Sauer, Three-nucleon forces revisited — some historical thoughts . . . . . . . 361

R. J. Furnstahl, High-resolution probes of low-resolution nuclei . . . . . . . . . . . . . . . . . . 371

NTSE-2013 Summary Talk:

Bruce R. Barrett, Conference summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

List of participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388



Distinguished Lecture of

Professor James P. Vary

Computational Nuclear Physics:

Key To Discovery Opportunities

presented on May 15, 2013 at International Conference

NUCLEAR THEORY

IN THE SUPERCOMPUTING ERA – 2013

(NTSE-2013)







Distinguished Lecture:

Computational Nuclear Physics:

Key to Discovery Opportunities

James P. Vary

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

Abstract

The vision of solving the nuclear many-body problem with fundamental in-
teractions tied to QCD via Chiral Perturbation Theory appears to be gaining
support. The goals are to preserve the predictive power of the underlying theory,
to test fundamental symmetries with the nucleus as laboratory and to develop
new understandings of the full range of complex nuclear phenomena. Advances
in theoretical frameworks (renormalization and many-body methods) as well as
in computational resources (new algorithms and leadership-class parallel com-
puters) signal a new generation of theory and simulations that will yield pro-
found insights into the origins of nuclear shell structure, collective phenomena
and complex reaction dynamics. Fundamental discovery opportunities also exist
in such areas as physics beyond the Standard Model of Elementary Particles,
the transition between hadronic and quark-gluon dominated dynamics in nuclei
and signals that characterize dark matter. I will review some recent achieve-
ments and present ambitious consensus plans along with their challenges for a
coming decade of research that will build new links between theory, simulations
and experiment.

Keywords: Computational Physics, ab initio Nuclear Theory

1 Introduction

Computational Physics has joined Theoretical and Experimental Physics to form a
foundation that supports advances in Physics. According to the recent National
Academy Report [1], “High Performance Computing provides answers to questions
that neither experiment nor analytic theory can address; hence, it becomes the third
leg supporting the field of nuclear physics.”

Many of the forefront questions that we address in nuclear physics require advances
in theory as well as advances in both computational algorithms and hardware to
address. Here are some of my personal favorites for these questions.

1. What controls nuclear saturation?

2. How do the nuclear shell and collective models emerge from the underlying
theory?

3. What are the properties of nuclei with extreme neutron/proton ratios?

4. Can we predict useful cross sections that cannot be measured?

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 15.

http://www.ntse-2013.khb.ru/Proc/JPVary.pdf.
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16 James P. Vary

5. Can nuclei provide precision tests of the fundamental laws of nature?

6. Can we solve QCD to describe hadronic structures and interactions?

Before I delve into specific issues, let us address a general question: “What is
Computational Physics?”. I propose that Computational Physics is the field that
takes a physics problem through the following stages leading to its solution.

1. Theoretical developments leading to the Problem Statement.

2. Computational hardware and resource assessments.

3. Algorithm developments and/or selections.

4. Software developments and/or selections including validation and verification.

5. Generation of results, analysis of the results and uncertainty quantification.

6. Conclusion with the problem’s solution.

There are many prominent examples where computational nuclear physics has
become a leading route to discovery. A few examples will suffice:

1. Core-collapse supernova simulation.

2. Hadronic structures and interactions from Lattice QCD.

3. Quark-gluon plasma simulations in Lattice QCD.

4. Ab initio nuclear structure and nuclear reactions.

5. Energy density functional simulation of neutron and proton drip lines.

6. Nuclear fission dynamics.

It may be useful to visualize the challenges we face from the long-term perspective
of the overarching goal of nuclear physics which I posit as “If the Standard Model of
Elementary Particles is correct, we should be able to accurately describe all nuclear
processes.” For our long-term goal, I propose that we aim to use all the fundamental
interactions, including yet-to-be-discovered interactions, to construct a model for the
evolution of the entire universe. In my view, the purpose of this international confer-
ence is to assess the current progress with theory and the associated supercomputer
simulations that highlight our journey along this path.

Since my specific goal here is to address the question of the discovery potential
using supercomputer simulations in nuclear theory, I will begin with my particular
problem statement: solve the quantum many-body Hamiltonian with strong interac-
tions. Here, I am including both the conventional non-relativistic nuclear many-body
Hamiltonian formulation as well as the fully relativistic light-front Hamiltonian ap-
proach.

In order to provide one concrete set of examples, I show in Fig. 1 the projected
goals of calculating the Nuclear Matrix Elements (NMEs) needed for interpreting ex-
periments on neutrinoless double beta-decay. The goals are laid out along an axis of
estimated computational resources needed to perform ab initio nuclear structure cal-
culations that retain the predictive power of the underlying microscopic Hamiltonian.
The need for reliable NMEs, free from phenomenology and associated uncertainties,
to interpret the experimental data is well established [3].
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Figure 1: As more computational resources become available (horizontal axis in units
of sustained flops × year) we anticipate the indicated research highlights will be
achieved under the banner “Nuclei as neutrino physics laboratories” [2].

2 No Core Shell Model

The ab initio No Core Shell Model (NCSM) first appeared in Refs. [4,5] where realistic
NN interactions, suitably renormalized to a finite Hamiltonian matrix in the harmonic
oscillator (HO) basis, were employed to solve for the spectroscopy of 12C in modest
basis spaces that were nevertheless sufficient to demonstrate good convergence of
the low-lying excitation spectra. Since that time, there has been rapid progress for
increasing the basis space in order to address additional observables with increasing
precision and to solve for the properties of a wide range of light nuclei. Recent
progress has evolved along many semi-independent lines of research aimed at achieving
improved accuracy and/or reducing the demands on computational resources.

Fig. 2 displays a snapshot of methods that have appeared that relate in some way
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methods based on the NCSM [13]. See the text for additional details.
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to the NCSM. At present, some address primarily nuclear structure applications while
others address nuclear reactions. I will mention each with a short review.

Ref. [6] introduces the ab initio No Core Full Configuration (NCFC) method that
adopts the given microscopic strong interaction suitable for an infinite basis space
and performs a sequence of increasing finite basis space calculations. The NCFC then
features an extrapolation to the infinite basis limit to arrive at the predicted spectra
and observables. A significant success of this approach was the accurate prediction
of the spectroscopy for the proton-unstable nucleus 14F [7] which was later confirmed
by an experiment at Texas A&M University [8]. For a recent review of applications
to properties of p-shell see Ref. [9].

The Monte Carlo No Core Shell Model (MCSM) was recently introduced and
benchmarked with the NCSM in Ref. [10]. The MCSM has advantageous scaling
properties for solving heavier nuclei and is summarized by Abe at this conference [11].
To date, successful benchmark calculations have been performed for p-shell nuclei
using the realistic NN interaction, JISP16 [12].

Light nuclei exhibit collective motion and this provides a challenge for the NCSM
in a HO basis. This has motivated the development and application of the SU(3)-
NCSM as summarized by Draayer [14] and by Dytrych [15] at this conference. In
the SU(3)-NCSM one truncates the basis space by including only the leading ir-
reducible representations of SU(3) that are motivated by the collective degrees of
freedom dominating the low-lying eigenstates. This approach has led to successful
ab initio descriptions of collective states in light nuclei with highly truncated basis
spaces [16].

Roth and collaborators have introduced the Importance Truncated No Core Shell
Model (IT-NCSM) in order to facilitate convergence by sampling larger basis spaces
and retaining configurations making significant contributions to the low-lying eigen-
states [17–19]. The prospects for this method are very strong and recent developments
are presented by Roth at this meeting [20]

The drive to extend the ab initio NCSM to heavier nuclei has led to the devel-
opment of a method that re-introduces the core in order to cut down on the basis
space dimensions. Specifically, the ab initio Shell Model with a Core method [21, 22]
carries out a second renormalization procedure to develop a valence-nucleon Hamilto-
nian suitable for solving nuclei beyond doubly-magic reference systems. The method
is currently being developed for nuclei in the sd-shell [23].

Since these Hamiltonian many-body methods have shown great flexibility and
applicability, it is natural to seek applications to subfields outside of nuclear structure
and nuclear reactions. Not surprisingly, a parallel line of developments has emerged
in Hamiltonian light-front field theory with a basis function approach. This has been
termed Basis Light-Front Quantization (BLFQ) [24, 25] and several papers at this
conference present results from this approach [26–28]. The central theme is that non-
perturbative solutions of bound state and scattering problems are achievable in BLFQ
and in a time-dependent BLFQ (tBLFQ) [29].

3 No Core Shell Model — applications to reactions

The ab initio theory of nuclear reactions has dramatically advanced in recent years
based, in part, on the successes of the ab initio NCSM. Selected examples are listed
on the bottom row of Fig. 2 showing their connections with related no-core structure
methods. Space does not permit to review of additional ab initio reaction methods
based on other ab initio structure methods such as the Green’s Function Monte Carlo
(GFMC) and Coupled Cluster (CC) methods.

The J-matrix inverse scattering approach has been introduced and employed with
a HO basis representation to analyze scattering phase shifts and extract resonance
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energies and widths from experimental data. One of the main advantages of the J-
matrix formalism is that it provides eigenstates directly related to the eigenstates of
the NCSM in a given model space and with a given value of the oscillator spacing. In
Ref. [30] we discussed the J-matrix inverse scattering technique, extended it for the
case of charged colliding particles, and applied it to the analysis of n−α and to p−α
scattering. We then compared the J-matrix eigenvalues extracted from experimental
phase shifts with the NCSM calculations of 5He and 5Li based on the JISP16 NN
interaction and found a remarkably good correlation between J-matrix eigenstates and
the NCSM eigenvalues. We anticipate that with improved Hamiltonians that more
accurately predict binding energies, the NCSM eigenstates will become predictive
components of scattering phase shifts within the J-matrix formalism.

By employing the techniques of EFT and confining our scattering problem to an
external HO potential, we may extract the elastic scattering phase shifts as demon-
strated in Ref. [31]. An analytic expression that relates the eigenvalues of two in-
teracting particles confined by a HO potential to the scattering phase shift at those
energies, analogous to “Lüscher’s method” [32,33] allows one to extract the phase shift
in the limit that the oscillator length is large compared to the range of nuclear forces.
The requirements for demonstrating high accuracy with the NN phase shift applica-
tion [31] suggests more work is needed to reduce the computational requirements for
this method.

Major efforts are underway to develop and apply a hybrid NCSM and Resonating
Group Method (RGM) approach called NCSM/RGM [34–36]. The aim is to simulta-
neously describe both bound and scattering states in light nuclei by combining these
two approaches. The goal is to eventually achieve ab initio descriptions of scattering
and reactions of two light nuclei with three-body breakup channels included [37].

Another major set of efforts aims to develop and apply the Gamow Shell Model
(GSM) [38, 39] where a discretized representation of continuum single-particle states
are included with conventional bound single-particle states in the many-body basis.
The first ab initio no core Gamow Shell Model (NCGSM) application has recently ap-
peared [40] and shows great promise for producing ab initio descriptions of resonances
in light nuclei.

The field of ab initio nuclear reaction theory is emerging as a vibrant area of
activity with many new ideas showing great promise. For example, direct calculation
of microscopic reaction amplitudes in an extended NCSM approach is under intensive
investigation [37, 41, 42].

4 Selection of recent results

Since this conference features many excellent talks presenting results from the theoret-
ical approaches that I outlined above as well as from additional ab initio approaches,
I will select a few examples to illustrate some recent results that complement those
discussed by others. The results that I select use realistic interactions from chiral
EFT and from inverse scattering.

However, before diving into these results it is also worthwhile to survey the land-
scape of the research closely related to the ab initio approaches, their goals and the
computational issues associated with them. This is best illustrated in Fig. 3 that
overviews the current research activities in the SciDAC-NUCLEI project [43], a set of
collaborations among nuclear theorists, computational scientists and applied math-
ematicians supported by DOE. Clearly, there is a broad scope of linked research
efforts depicted and that scope requires a large set of collaborative enterprises to be
successful.

In a recent effort, we examined the properties on A = 7 and 8 nuclei in the
NCSM [44]. We compared results with chiral NN interaction only [45, 46] and those
with chiralNN+NNN interactions [47] (in the local form of Ref. [48]) using Nmax = 8



20 James P. Vary

Figure 3: Overview of the workflow of the SciDAC-NUCLEI project [43]. The items in red
identify computational and applied mathematics topics related to that particular branch of
the workflow. Note that the links extend from fundamental interactions based on QCD at
the top to large amplitude nuclear phenomena at the bottom and on the left.

basis spaces. Note that the chiral NN interaction is complete though N3LO while
the chiral NNN interaction is complete through N2LO. These are the most advanced
chiral interactions available at the present time.

We showed [44] that including the chiral EFT NNN interaction in the Hamilto-
nian improves overall agreement with experimental binding energies, excitation spec-
tra, transitions and electromagnetic moments. We also predicted states that exhibit
sensitivity to including the chiral EFT NNN interaction but are not yet known ex-
perimentally.

In order to soften the chiral interactions to render them suitable for the many-body
basis spaces currently accessible, we adopted the Okubo–Lee–Suzuki (OLS) [49, 50]
renormalization procedure. We review this and alternative renormalization proce-
dures in detail in Ref. [13]. It is worth remarking that the OLS renormalization
approach generates induced multi-nucleon interactions that are needed to preserve
many-body unitarity. It is our practice to date to retain at most the induced NNN
interactions along with the initial NNN interactions. That is, we ignore the induced
4N interactions as well as higher-body interactions. While all indirect signs (such as
convergence trends) are encouraging, there is a definite need to further investigate
this approximation in the future by retaining induced 4N interactions.

One should also note there are a number of additional freedoms in the OLS pro-
cedure [51, 52] as, indeed, there are in other renormalization procedures. First, there
is the choice of the states from the full space calculations with non-vanishing com-
ponents in the model space. This choice goes into the definition of the similarity
transformation and is not unique. Second, there is the additional freedom of a uni-
tary transformation of the resulting effective Hamiltonian within the model space [52].
Third, there is the freedom in the selection of an additional interaction to add and
subtract at various stages of the solution of the decoupling equations. The second
and third freedom are related. These freedoms remain as opportunities for future
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investigations.
While the binding energies are generally close to agreement with experiment, it

is easier to view the comparison between theoretical and experimental spectra by
lining up the energies of the ground states and displaying just the excitation energies.
Therefore, we show in Fig. 4 the excitation spectra of the A = 8 nuclei where we
compare theory and experiment. For the chiral NNN interaction we adopt the low-
energy constants (indicated by cD = −0.2 on the figure) that are tuned to the binding
energy and half-life of tritium [53]. The states predicted by the theory, for which
there is no apparent experimental counterpart, appear as dashed lines in Fig. 4. Note
that these states are in the continuum. We interpret the energies of these states
as indications of the resonance widths but we are not able to predict the widths
themselves at the present time. We expect that the predictions will be more accurate
for the states with narrow widths. We plan to implement the continuum physics in
the future and to predict the widths of states appearing above breakup threshold.
Among the many options we are considering, several are well-represented here at this
meeting [38–41,54].

In another set of investigations, we have adopted the Similarity Renormaliza-
tion Group (SRG) [55, 56] approach for decoupling the high momenta components
of the inter-nucleon interactions from the low momenta components. As in the OLS
renormalization approach mentioned above, this is intended to facilitate convergence
of the ab initio many-body calculations at the “cost” of calculating induced multi-
nucleon interactions and of requiring a corresponding treatment of other operators
corresponding to observables that we intend to evaluate with the resulting ab initio
wavefunctions. We have investigated the detailed predictions and the convergence
properties of no-core full configuration calculations with SRG-evolved interactions in
p-shell nuclei over a wide range of softening [57, 58]. The dependence on the degree
of softening (the SRG resolution scale) allows us to assess convergence properties,
to investigate extrapolation techniques, and to infer the role of neglected induced
higher-body contributions.
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Figure 5: Lowest excited states of 10B as a function of ~Ω for each SRG λ value
at Nmax = 8. The small black arrows on the left shows the experimental values. Each
color and shape of the symbol represents a value of λ as defined in the legend. Two
excited states are shown in each panel, one with an open symbol and the other with
a closed symbol. See Ref. [58] for additional details.

Here, we use the same chiral NN + NNN interaction as in the applications
to A = 7 and 8 nuclei discussed above using the OLS renormalization. In this case,
we are using SRG with a range of evolution scales, λ from 2.5 fm−1 down to 1.0 fm−1.
This evolution scale dictates the approximate range of momentum transfer retained
in the NN T -matrix while preserving the on-shell phase shifts. Generally speaking,
we expect induced NNN interactions to increase as we decrease λ. Experience with
these chiral NN +NNN interactions indicates non-trivial induced NNN interaction
contributions even with λ = 2.5 fm−1.

Once we adopt the approximation to retain the induced NNN interactions but
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to neglect induced 4N interactions, it is natural to retain the “bare” chiral NNN
interaction defined by the underlying chiral EFT. Figure 5 presents a sample of excited
states in 10B relative to the lowest calculated (3+, 0) state which is the experimental
ground state. Note that the ground state spin for 10B has become a highly-cited
example of an observable that is sensitive to the inclusion of NNN interactions [59].
Realistic NN interactions, without NNN interactions, tend to predict a ground state
spin of (1+, 0). We see in the upper panel of Fig. 5 that the correct ground state spin is
obtained, within the results shown, for all but one value of the SRG λ scale parameter
over the range of ~Ω depicted. The spread in the predictions as a function of λ and
the dependence on ~Ω are indicators of the role of neglected induced 4N and/or
higher-body interactions. Thus, with these Nmax = 8 results in the SRG treatment,
it is not reliably established that the NNN interactions produce the correct ground
state spin of 10B. Clearly more work is needed to include the induced 4N interactions
which we expect to produce stronger indication of the fully converged result.

Another feature evident in the upper panel of Fig. 5 is the difference in the trends
of two states with the same spin and parity (1+, 0) in 10B. One state appears to be
better converged than the other — that is less reliant on induced 4-body interactions
and/or basis space increases. This indicates that these two states have very different
structure. A more detailed analysis is needed to disentangle those differences. For
example, future work may reveal that the “spin content” of these two states, when
decomposed into neutron and proton spin and orbital components as in Ref. [9] for
other states in other systems, is distinctively different.

The lower panel of Fig. 5 displays the excitation energy of the (0+, 1) and (2+, 0)
states compared with experiment. The former appears to be less sensitive to the
SRG λ scale parameter, indicating less sensitivity to neglected induced 4N inter-
actions. Both states reveal approximately the same dependence on the basis ~Ω
indicating approximately the same level of convergence with increasing basis space
cutoff Nmax.

The residual discrepancies between theory based on chiral EFT and experiment,
as seen in the results presented here as well as many other results presented at this
meeting, are indicators of shortcomings of the present chiral EFT interactions. At
present, we use chiral NNN interactions only at N2LO while the NN interactions
are at the level of N3LO, which was found important for an accurate description of
the NN phase shift data. Thus, we will have consistency once we include the chiral
NNN interaction itself at N3LO so that it is at the same order of chiral perturbation
theory as the NN interaction. In this context, it is worth noting the large-scale
international efforts that are underway to develop and apply these next-generation
chiral EFT interactions [60]. Here again, a workflow diagram (see Fig. 6 is useful to
illustrate the complexity and diversity of such a project. This workflow indicates the
multifaceted challenges and the need for bringing the expertise of many groups into
the project to achieve the project goals.

In closing this section with a sample of recent results that help indicate future
directions, I will briefly discuss the challenges of clustering phenomena in light nuclei.
These phenomena are a particular challenge to the ab initio NCSM since clustering
implies intermediate range correlations which require large HO basis spaces for accu-
rate descriptions [61,62]. For the Hoyle state, the (0+, 0) state at 7.66 MeV excitation
energy in 12C which is just above the threshold for breakup into three alpha particles,
the predominant thinking is that it is dominated by a three-alpha cluster and is the
leading resonance for 12C production in astrophysical settings. Many cluster-based
models provide successful descriptions of the Hoyle state with the three-alpha con-
figuration. Currently, our hope for extending the ab initio NCSM within the HO
basis to describe cluster states, like the Hoyle state, is to adopt the SA-NCSM or the
MC-NCSM approach discussed above.
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Figure 6: Workflow for the Low Energy Nuclear Physics International Collaboration
(LENPIC) showing the development and implementation of the next-generation chiral
EFT interactions complete and consistent through Next-to-Next-to-Next-to Leading
Order (N3LO). See the text and Ref. [60] for additional details.

5 Reaching for the infinite basis limit

There has been intense recent activity addressing the convergence properties of ab
initio no-core approaches [63–68]. Clearly, understanding the convergence properties
will help us predict results with greater precision using the available computational
resources and will help us quantify the uncertainties in these predictions.

While most of this research has focused on extrapolating the ground state energy
obtained in a no-core approach within the HO basis to the infinite basis limit, there
is also considerable progress in understanding the convergence properties of the root-
mean-square (rms) radius. Electromagnetic matrix elements are of particular interest
since they are challenging to describe in the HO basis as they are, typically, long-range
operators that are sensitive to the asymptotic properties of the nuclear wavefunction.
For this reason, the rms radius has served as the initial testing ground for the long-
range electromagnetic operators.

For the ground state energy, a simple exponential in Nmax at fixed ~Ω has proven
to be a useful extrapolation tool [6, 58, 69]. Current thinking implies this is a useful
phenomenological extrapolation tool for the ultraviolet (UV) properties but a differ-
ent functional form, a simple exponential in

√
Nmax is theoretically supported for

the infrared (IR) properties [65]. The physical argument for the IR behavior of the
wavefunction is appealing — we know from elementary quantum mechanics that the
long-range tail of a single-particle wavefunction for a bound state in a finite potential
well has an exponential form with a decay constant dictated by the binding energy.
The step to the many-body problem involves examining the highest HO single-particle
state in the basis and identifying the appropriate exponential tail for that state as it
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will dominate the longest range component of the many-body wavefunction. Follow-
ing, the ab initio results through a sequence of many-body cutoffs (i. e. systematically
raising the highest HO single-particle state in the basis) allows one to optimize the
choice of the constants that go with this exponential in

√
Nmax

Let us examine the case of the ground state energy of 6Li calculated in the ab
initio NCSM with the bare JISP16 interaction [12] as a function of the many-body
cutoff Nmax. This same case was examined in some detail in Refs. [6, 70] and a re-
cent extrapolation has been presented in Ref. [9]. Each of these papers extends the
preceding paper either with results calculated at higher Nmax values to reduce the un-
certainties or with improvements in the uncertainty estimation procedure. Each uses
the simple exponential in Nmax (i. e. phenomenological form alone) for the fit func-
tion. The results are consistent with each other — that is the fall within each others’
uncertainty estimates: −31.45± 0.05 MeV in Ref. [6] with the maximum Nmax = 14;
−31.49± 0.03 MeV in Ref. [70] with the maximum Nmax = 16; −31.49± 0.06 MeV
in Ref. [9] with the maximum Nmax = 16. Note that the experimental ground state en-
ergy is −31.994 MeV so JISP16 is clearly underbinding this nucleus by about 0.5 MeV.

A new set of calculations is underway to extend the calculated results to Nmax = 18
and to further improve the extrapolation procedure by combining both a phenomeno-
logical function for the UV and the derived function for the IR. In addition to the
ground state energy, extrapolations of the rms radii will be included. The aim is to
further reduce the quantified uncertainties by relying on additional theoretical input.

Figure 7 provides an indicator of recent progress in the research on extrapolation
methods. Here, I am following the line of developments introduced as “Extrapola-
tion A” in Ref. [6]. In this approach, one identifies the minimum in the ground state
energy as a function of ~Ω for each Nmax beginning with Nmax = 8 where one works
with increments of 2.5 MeV in ~Ω. Then one uses the the 5 consecutive data sets
spanning 10 MeV in ~Ω that begin with the ~Ω value below that minimum and extend
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Figure 7: Extrapolations of the ab initio No Core Shell Model ground state energy for
6Li using the JISP16 NN interaction [12] as a function of the upper limit on the Nmax

cutoff of the energies used in the extrapolation. “Extrapolation A (2009)” is the quan-
tity E∞ from Eq. (1) as reported in Ref. [6]. “Extrapolation A5 (2013)” employs an
improved UV + IR functional form using 5 free parameters that is under development.
For reference, the variational upper bound (minimum in the ground state energy as
a function of ~Ω) is shown for each Nmax providing a sense of the magnitude of the
extrapolation. The A5 extrapolation is −31.51 ± 0.03 MeV at Nmax = 16. See the
text for additional details.
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to larger values of ~Ω. Results at the 3 increments in Nmax below that upper limit
in Nmax are also included yielding a total of 20 calculated ground state energies (4
Nmax values and 5 ~Ω values) for determining the 3 fit parameters of the function:

E(Nmax) = E∞ + a exp(−bNmax). (1)

For Extrapolation A, one then uses Eq. (1) to fit the 4 ground state energies at
each of the 5 ~Ω values separately. This determines a spread of the values of E∞ and
half of that spread is defined as the uncertainty in the Extrapolation A result at that
upper limit in Nmax. This procedure was tested extensively with JISP16 results for
ground state energies of light nuclei and the evaluated uncertainties were found to be
consistent with each other with increasing upper limit in Nmax [6]. This is seen in
Fig. 7 by the overlapping error bars of the Extrapolation A points.

Extrapolation A5 builds on the experience with Extrapolation A and includes an
additional term to better simulate the IR behavior as motivated by the developments
of Refs. [63, 65, 67]. That is, I adopt a 5 parameter function which, for sufficiently
large Nmax can be represented by:

E(Nmax) = E∞ + a exp(−bNmax) + c exp
(
−b
√
Nmax

)
. (2)

The detailed functional form of the IR term added in Eq. (2)
[
exp
(
−b√Nmax

)]
is

more involved since it closely follows the forms advocated in Ref. [67]. However, the
difference effects mainly the behavior at lower Nmax and I use Eq. (2) to indicate the
primary dependence at large Nmax.

Since two more parameters must now be determined, the procedure defined in
Ref. [6] is further extended in several ways. First, I include 5 sets of Nmax at each
of 5 ~Ω values. The range of the ~Ω values is shifted upwards by +5 MeV compared
to Extrapolation A as this was found to produce more reliable in tests with ground
state energy results in 4He. The need for 5 sets of Nmax values is clear in order to
adequately determine the spread in a manner analogous to the spread determination
in Extrapolation A. The data point for Extrapolation A5 at the upper limit Nmax = 8
is a special case as I continue the practice of omitting the Nmax = 0 calculated ground
state energies in the fits. For Nmax = 8, the total data set is then only 20 calculated
points. The uncertainty assigned to the data point at the upper limit Nmax = 8 for
Extrapolation A5 is simply taken to be twice the uncertainty calculated for the next
higher data point in Fig. 7.

Note that Extrapolation A and Extrapolation A5 produce results that are consis-
tent with each other — that is they fall within each others’ uncertainties. However,
both Extrapolation A and Extrapolation A5 produce a noticeable downward drift in
the values of E∞ with increasing upper limit in Nmax. This indicates the need for
additional research to develop improved extrapolation forms and procedures.

6 Conclusion and Outlook

Computational physics and forefront simulations have developed rapidly to become
one of the key areas of research in nuclear physics, approaching a par with experi-
ment and theory. Many breakthroughs in our understanding of fundamental nuclear
processes have emerged from recent advances and any listing would not do justice to
the field. In fact, I have generated with the help of colleagues, a list of more than 90
Physical Review Letters to date that have focused on ab initio nuclear structure and
nuclear reactions. Many of these are joint experiment and theory letters. Therefore,
I will simply select examples that specifically focus on the developing bridge pro-
vided by chiral EFT between QCD and low-energy nuclear properties. Each of these
achievements, indicated in the title, is the focus of a Physical Review Letter that
appears below in a chronological sequence.
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1. “The three nucleon and four nucleon systems from chiral effective field the-
ory” [71].

2. “Structure of A = 10−13 nuclei with two plus three-nucleon interactions from
chiral effective field theory” [59].

3. “Ab Initio many-body calculations of n-3H, n-4He, p-3,4He, and n-10Be scatter-
ing” [34].

4. “Medium-mass nuclei from chiral nucleon-nucleon interactions” [72].

5. “Evolution of nuclear many-body forces with the Similarity Renormalization
Group” [73].

6. “Three-nucleon low-energy constants from the consistency of interactions and
currents in Chiral Effective Field Theory” [53].

7. “Ground-state and single-particle energies of nuclei around 16O, 40Ca, and 56Ni
from realistic nucleon-nucleon forces” [74].

8. “Role of long-range correlations on the quenching of spectroscopic factors” [75].

9. “Lattice effective field theory calculations for A = 3, 4, 6, 12 nuclei” [76].

10. “Ab initio computation of the 17F proton halo state and resonances in A = 17
nuclei” [77].

11. “Constraints on neutron star radii based on chiral effective field theory interac-
tions” [78].

12. “Thermal neutron captures on d and 3He” [79].

13. “Ab initio calculation of the Hoyle state” [80].

14. “Origin of the anomalous long lifetime of 14C” [81].

15. “In-medium Similarity Renormalization Group for open-shell nuclei” [82].

16. “Quenching of spectroscopic factors for proton removal in oxygen isotopes” [83].

17. “Similarity-transformed chiralNN+3N Interactions for the ab initio description
of 12C and 16O” [84].

18. “Measurements of the differential cross sections for the elastic n-3H and n-2H
scattering at 14.1 MeV by using an inertial confinement fusion facility” [85].

19. “Chiral two-body currents in nuclei: Gamow–Teller transitions and neutrinoless
double-beta decay” [86].

20. “Ab initio many-body calculations of the 3H(d, n)4He and 3He(d, p)4He fu-
sion” [87].

21. “First direct mass measurement of the two-neutron halo nucleus 6He and im-
proved mass for the four-neutron halo 8He” [88].

22. “Continuum effects and three-nucleon forces in neutron-rich oxygen isotopes” [89].

23. “Evolution of shell structure in neutron-rich calcium isotopes” [90].

24. “New precision mass measurements of neutron-rich calcium and potassium iso-
topes and three-nucleon forces” [91].

25. “Medium-mass nuclei with normal-ordered chiral NN + 3N interactions” [92].
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26. “Structure and rotations of the Hoyle state” [93].

27. “Three-body forces and proton-rich nuclei” [94].

28. “Ab initio description of the exotic unbound 7He nucleus” [95].

29. “Neutron matter at next-to-next-to-next-to-leading order in chiral effective field
theory” [96].

30. “Spectroscopy of 26F to probe proton-neutron forces close to the drip line” [97].

31. “The isoscalar monopole resonance of the alpha particle: a prism to nuclear
Hamiltonians” [98].

32. “Viability of carbon-based life as a function of the light quark mass” [99].

33. “An optimized chiral nucleon-nucleon interaction at next-to-next-to-leading or-
der” [100].

34. “Ab initio calculations of even oxygen isotopes with chiral two- plus three-
nucleon interactions” [101].

35. “Quantum Monte Carlo calculations with chiral effective field theory interac-
tions” [102].

36. “Isotopic chains around oxygen from evolved chiral two- and three-nucleon in-
teractions” [103].

37. “First principles description of the giant dipole resonance in 16O” [104].

These are indicators of a broader set of recent achievements that portend the
discovery opportunities in computational nuclear physics. Continued close collabo-
ration among nuclear theorists, computational scientists and applied mathematicians
will be essential to fully exploit the potential of the rapid growth in computational
resources. These collaborations are critical to devising new algorithms and their effi-
cient realizations in order to generate and capitalize upon the full discovery potential.
Further close collaboration with experimentalists is needed to fully exploit the pre-
dictive power that is emerging along with the opening of new frontier experimental
facilities in order to devise and plan critical tests of the theoretical foundations. Joint
planning activities will be valuable to efficiently utilize personnel, computational re-
sources and experimental facilities in order to maximize the discovery potential of the
field.

I am grateful to my collaborators for discussions and for the joint research ac-
complishments summarized here. This work was supported in part by the Depart-
ment of Energy (DOE) under Grant Nos. DE-FG02-87ER40371 and DESC0008485
(SciDAC-3/NUCLEI) and by the National Science Foundation under Grant No. PHY-
0904782. Computational resources were provided by the National Energy Research
Supercomputer Center (NERSC), which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DEAC02-05CH11231, and by the
Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725. Additional computational resources were pro-
vided by the Argonne Leadership Computing Facility at ANL, which is supported by
the DOE Office of Science under Contract DE-AC02-06CH11357. Allocations at the
DOE Leadership-class facilities (Argonne and Oak Ridge facilities) is provided by a
DOE INCITE award. Finally, I am very grateful to all of you who have organized
and/or attended this meeting and for you many generous remarks and warm wishes.
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[47] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U. G. Meißner and H. Wita la,
Phys. Rev. C 66, 064001 (2002), nucl-th/0208023 (2002).
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[87] P. Navrátil and S. Quaglioni, Phys. Rev. Lett. 108, 042503 (2012), arXiv:
1110.0460 [nucl-th] (2011).

[88] M. Brodeur, T. Brunner, C. Champagne, S. Ettenauer, M. J. Smith, A. Lapierre,
R. Ringle, V. L. Ryjkov, S. Bacca, P. Delheij, G. W. F. Drake, D. Lun-
ney, A. Schwenk and J. Dilling, Phys. Rev. Lett. 108, 052504 (2012), arXiv:
1107.1684 [nucl-ex] (2011).

[89] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt and T. Papenbrock,
Phys. Rev. Lett. 108, 242501 (2012), arXiv:1202.2839 [nucl-th] (2012).

[90] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt and T. Papenbrock,
Phys. Rev. Lett. 109, 032502 (2012), arXiv:1204.3612 [nucl-th] (2012).

[91] A. T. Gallant, J. C. Bale, T. Brunner, U. Chowdhury, S. Ettenauer, A. Lennarz,
D. Robertson, V. V. Simon, A. Chaudhuri, J. D. Holt, A. A. Kwiatkowski,
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Abstract

I present an overview of binding energies and ground state magnetic moments
for p-shell nuclei calculated with the phenomenological NN interaction JISP16,
and compare with experimental data. I also illustrate how the decomposition of
total angular momentum into intrinsic spin and orbital components can provide
insights into the structure of states and relationships among states.

Keywords: Nuclear structure; ab initio; configuration interaction; JISP16

1 No-Core Full Configuration approach

In the Configuration Interaction (CI) approach to describe quantum many-body sys-
tems, the many-body Schrödinger equation

H Ψi(r1, . . . , rA) = Ei Ψi(r1, . . . , rA) (1)

becomes a large sparse matrix problem with eigenvalues Ei and eigenvectors Ψi rep-
resenting the A-body wavefunctions. For No-Core nuclear structure calculations [1]
the wavefunction Ψ of a nucleus consisting of A nucleons is expanded in an A-body
basis of Slater determinants Φk of single-particle wavefunctions φnljm(r),

Ψ(r1, . . . , rA) =
∑

ck Φk(r1, . . . , rA), (2)

with Φk(r1, . . . , rA) = A[φn1l1j1m1
(r1)φn2l2j2m2

(r2) . . . φnAlAjAmA
(rA)] and A is the

antisymmetrization operation. Conventionally, one uses a harmonic oscillator (HO)
basis for the single-particle wavefunctions, which are labelled by their quantum num-
bers n, l, j, and m; n and l are the radial and orbital HO quantum numbers
(with N = 2n+ l the number of HO quanta), j is the total single-particle spin, and m
its projection along the z-axis. The many-body basis states Φk have well-defined
parity, (−1)

∑
A li, and total spin-projection, M =

∑
Ami, but they do not have a

well-defined total spin J . Thus, in two runs (one for each parity), one can obtain
the complete low-lying spectrum, including the ground state, even if the spin of the
ground state is not known a priori.

The many-body Hamiltonian H in Eq. (1) can be expressed in terms of the relative
kinetic energy plus 2-body, 3-body, and, in general, up to A-body interaction terms

H = Trel + VCoulomb + VNN + VNNN + . . . (3)

Here I focus on results obtained with the phenomenological 2-body (NN) interac-
tion JISP16. This interaction is constructed from inverse scattering analysis of the
neutron-proton phase shifts; subsequently its off-shell behavior is tuned to reproduce
the deuteron properties as well as select additional light nuclear properties using

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 37.

http://www.ntse-2013.khb.ru/Proc/Maris.pdf.
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phase-shift equivalent unitary transformations [2]. The resulting NN interaction is
charge-independent; the only charge dependence comes from the Coulomb interac-
tion VCoulomb in Eq. (3).

A convenient and efficient truncation of the complete (infinite-dimensional) basis
is a truncation on the total number of HO quanta of the many-body basis: the basis
is limited to many-body basis states with

∑
ANi ≤ N0 + Nmax. Here, Ni is the

number of quanta of each single-particle state; N0 is the minimal number of quanta
for that nucleus; and Nmax is the truncation parameter. Note that for HO single-
particle states, this truncation leads to an exact factorization of the center-of-mass
wavefunction and the relative wavefunction [3].

Any CI calculation, using a finite truncation of the complete basis, gives a strict
upperbound for the lowest states of each spin and parity for a given nuclear poten-
tial. In the No-Core Full Configuration (NCFC) approach [4] one is interested in the
convergence with increasing basis space dimensions and thus recover, to within quan-
tifiable uncertainties, results corresponding to the complete basis. In order to do so,
one has to address eigenvalue problems for increasingly large matrices, with dimen-
sions of well over a billion. Improved algorithms to construct these matrices and to
determine their lowest eigenstates, as well as efficient use of increasing computational
resources are critical for the success of this approach [5–10].

The empirical model used for the extrapolation of the (ground state) energies to
the complete basis is [4]

E(~ω,Nmax) = E∞ + a~ω e
−b~ωNmax , (4)

where ~ω is the HO energy. I use sets of three consequitive Nmax values at fixed values
of ~ω to estimate the energy in the complete basis. Extrapolations based on calcula-
tions up to Nmax are using results from the (Nmax − 4), (Nmax − 2), and Nmax bases
for the extrapolation, and the difference with the extrapolation of the (Nmax − 6),
(Nmax − 4), and (Nmax − 2) bases is used as an estimate of the extrapolation uncer-
tainty. For this extrapolation method one needs results up to at least Nmax = 8.

For consistency, I then check that (1) extrapolations at different ~ω values are
within each other’s uncertainty estimates; (2) as Nmax increases, the extrapolations
are within the uncertainty estimates of smaller Nmax values; and (3) numerical un-
certainty estimates decrease as Nmax increases. This is all done at fixed ~ω; the final
result for E∞ is the extrapolated result at that ~ω value for which the amount of ex-
trapolation is minimal, i. e. the point where E(~ω,Nmax)−E∞ is minimal. Typically,
with JISP16, this is at or slightly above the ~ω value that minimizes the (ground-
state) energy in finite bases. The final error estimate is enlarged as necessary in order
to get consistent results, such that the central values are within the final numerical
error estimate over a 10 MeV range around the variational minimum. (Note that in
the original version of this extrapolation [4] we did not make such an adjustment.)

2 Ground state energies with JISP16

This extrapolation method is illustrated in the left panel of Fig. 1 for the ground
state of 7Li. As one can see in this figure, the error estimates are minimal around
the variational minimum in ~ω; furthermore, extrapolations based on the three data
points at the largest Nmax do indeed fall within the error estimates of the previous
extrapolations, and do have smaller error estimates. However, there seems to be a sys-
tematic ~ω dependence of the extrapolated results suggesting that Eq. (4) is not the
correct asymptotic behavior. Indeed, recent studies [11–14] of the effective infrared
and ultraviolet cutoffs of a finite HO basis have shown that the asymptotic behavior
contains a term that is exponential in

√
Nmax, in addition to a term that is exponen-

tial in Nmax. The uncertainty analysis of these extrapolation methods is still under



Ab initio calculations of p-shell nuclei with JISP16 39

10 15 20 25 30 35
basis space hω  (MeV)

-39

-38

-37

-36

gr
ou

nd
 s

ta
te

 e
ne

rg
y 

 (
M

eV
)

JISP16

7
Li

4
He + 

3
H

expt.

10 15 20 25 30 35
basis space hω  (MeV)

0

2

4

6

8

ex
ci

ta
tio

n 
en

er
gy

 (
M

eV
)

N
m
=  8

N
m
= 10

N
m
= 12

N
m
= 14

N
m
= 16

JISP16
7
Li

J = 7/2
J = 5/2

J = 1/2

J = 5/2

Figure 1: Ground state energy (left) and low-lying spectrum for 7Li (right). Extrap-
olated energies are depicted with open symbols connected by dotted lines.

investigation; once their uncertainties have been quantified, these extrapolations are
likely to become more valuable.

In Fig. 2 I present a summary of ground state energies of light nuclei up to 16O
calculated with JISP16 in the NCFC approach [15]. For A = 3 and A = 4, as well
as for 6He and 6Li, our results are in excellent agreement with calculations using the
hyperspherical harmonics approach [16, 17]. In recent years, JISP16 has been been
used successfully to benchmark novel truncation methods for ab initio CI calculations,
such as the No-Core Monte Carlo Shell Model [18, 19] and the Symmetry-Adapted
No-Core Shell Model [20,21], as well calculations based on Coulomb–Sturmian single-
particle wavefunctions [22] and calculations in a Wood–Saxon basis [23] — each of
these methods yields results consistent with the results presented here.

There is a reasonable overall agreement between the calculated and experimen-
tal binding energies: for A = 6 to 10 JISP16 underbinds slightly, but starting
from A = 12, JISP16 overbinds the T = 0 and T = 1

2 states by an amount that
increases with A, but decreases with T . This trend towards overbinding of the N = Z
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Figure 2: Ground state energy for A = 2 to A = 16 with JISP16, including numer-
ical uncertainty estimates (only one ground state for each A and T ), compared to
experimental data.
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nuclei starting from 12C has been noted earlier [4], and can be remedied by a further
tuning of the off-shell behavior of the NN interaction [24].

3 Excited states

Most known excited states in p-shell nuclei are particle (or cluster) unstable but many
have widths less than a few hundred keV. For such narrow states the real part of the
S-matrix poles may be well-approximated by the eigenenergies calculated in a HO

basis [25]. E. g., for 7Li the first excited state, with Jπ = 1
2

−
, is below the threshold

for 4He plus 3H, but the next excited states state, at about 5 MeV with Jπ = 7
2

−
, is

well above this threshold. Nevertheless, the excitation energy of this state is very well
converged, see the right panel of Fig. 1, and one does not really need any extrapolation
for the excitation energies of these two lowest excited states [26].

The excitation energies of the two Jπ = 5
2

−
states around 7 to 8 MeV however are

not as well converged, and do depend on the basis parameters. Even after the expo-
nential extrapolation to a complete basis, the excitation energies shows a systematic

dependence on the basis parameter ~ω, in particular for the first Jπ = 5
2

−
state. This

behavior is characteristic for resonances in a pure HO basis, and one might get bet-
ter converged results using an approach that incorporates continuum states [27–29].
Nevertheless, one can conclude that with JISP16 the excitation energies for the lowest
four excited states in 7Li are all within about 10 % to 15 % of the experimental values.

Experimentally, the lowest Jπ = 5
2

−
state is broad, whereas the second Jπ = 5

2

−

is narrow; not much else is known to distinguish them. Our calculations [26] however

indicate that these two states have a very different structure: the first Jπ = 5
2

−

has a large negative quadrupole moment, whereas the second has a moderately large

positive quadrupole moment. Furthermore, the first Jπ = 5
2

−
state has a moderately

strong B(E2) transition to the Jπ = 3
2

−
ground state, whereas the B(E2) transition

from the second Jπ = 5
2

−
state is more than an order of magnitude smaller.

In order to get a better understanding of the structure of these (and other) states,
one can also look at their spin structure. The contributions to the total spin J in
terms of the nucleon intrinsic spin, S, and orbital motion, L, is given by

J =
1

J + 1

(
〈J · Lp〉+ 〈J · Ln〉+ 〈J · Sp〉+ 〈J · Sn〉

)
. (5)
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Generally (though not always) these components converge rather quickly. In Fig. 3
these components are shown for the five lowest states in 7Li. Clearly, the first and

second 5
2

−
and 5

2

−
states have a very different structure, despite being very close in

energy: they differ significantly in all their spin components. A closer look at both
the quadrupole moments and the spin components of the lowest four states suggests

that these states
(
with Jπ = 1

2

−
, 3

2

−
, 5

2

−
1

, and 7
2

−)
form a rotational band. Also

the B(E2) and B(M1) transition strengths between these states are in qualitative
agreement with predictions based on a rotational structure [30].

In Fig. 4 I summarize results for both the ground states and select excited states
for A = 6 to A = 9, after extrapolation to the complete basis. As already noted,
JISP16 slightly underbinds these nuclei, but the excitation energies are generally in
qualitative agreement with the data, as can be seen in Fig. 4: for most of these nu-
clei the calculated results (red plusses) seem all to be shifted upwards by a constant
(nucleus-dependent) amount, reproducing the experimental spectrum quite well. Also
the calculated spin and parity of the states shown in Fig. 4 agrees with the experi-
mentally assigned spin-parity.

4 Beryllium isotopes

It is known that the low-lying states in both 8Be and 9Be are members of rotational
bands. Indeed, the excitation energies of the first 2+ and 4+ states of 8Be, see Fig. 4,
follow the rotational pattern. Although the quadrupole moments themselves are not
(yet) converged, the ratio of the quadrupole moments of the first 2+ and 4+ states
of 8Be are in good agreement with a rotational model, as are their B(E2) transition
strength (relative to the intrinsic quadrupole moment) [30].

Starting with 8Be, narrow states of both parities appear in the experimental spec-
trum; and for 11Be the lowest positive parity state is the ground state, contrary to
the expectations based on the shell model, which predicts negative parity ground
states for all odd p-shell nuclei. For 7Be through 13Be I performed calculations for



42 Pieter Maris

8 9 10 11 12 13
total number of nucleons A

0

5

10

15

20

E
b(n

at
ur

al
) 

- 
E b(u

nn
at

ur
al

) 
 (

M
eV

) NCFC w. JISP16
experiment

Figure 5: Energy difference between lowest positive and negative parity states for
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both natural and unnatural parity states. Figure 5 shows the difference between the
extrapolated binding energy of the lowest natural parity state and the lowest unnat-
ural parity state [31], treating the extrapolation uncertainties as independent. One
expect this difference to be positive, but for isotopes with parity inversion it becomes
negative. Although JISP16 does not quite reproduce the observed parity inversion for
11Be, parity inversion is within the numerical error estimates for this isotope. Fur-
thermore, over the range of isotopes from 8Be to 11Be the results are in very good
qualitative agreement with the data: JISP16 seems to underbind all unnatural parity
states by a similar amount of about 1 MeV. Based on these results, I also predict par-
ity inversion for 13Be; experimentally, the parity of the ground state is not confirmed,
though likely to be negative [32], which indeed implies parity inversion (13Be has one
neutron in the sd-shell, so the natural parity is positive).

The negative parity spectrum and positive parity spectrum of 9Be, relative to
the lowest state of that parity, is shown in Fig. 6. The excitation energies of the

lowest 5
2

−
and 7

2

−
states are quite well converged, in contrast to excitation energies

of the 1
2

−
, the 3

2

−
, and the second 5

2

−
states. This difference in convergence rate can

be understood by the observation that the ground state forms a rotational band with
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the lowest 5
2

−
and 7

2

−
states, and the corresponding wavefunctions have therefore a

similar structure, and are likely to converge at a similar rate. The low-lying positive
parity states also form a rotational band, and indeed, their excitation energies, relative

the 1
2

+
state, are also quite well converged at Nmax = 11. Note however that the

excitation energy of the positive parity states relative to the (negative parity) ground
state are not as well converged, and can only be calculated after extrapolation to the
complete basis [15].

In Fig. 7 I show the spin contributions for the lowest two negative parity states and
for the lowest two positive parity states of 9Be. In all four states, the contribution from
the neutron intrinsic spin is close to 1

2 , and that from the proton intrinsic spin is nearly
zero. This is consistent with a cluster configuration of two α-particles and a neutron

for these states. The observed spin contributions for the ground state Jπ = 3
2

−

suggests that this state is dominated by an α-cluster configuration of two α-particles
plus a neutron in a π-orbital, in which the neutron orbital motion contributes one
unit to the total angular momentum. The ground state proton and neutron density
distributions are consistent with this interpretation as well [31]. On the other hand,

the lowest positive parity state, Jπ = 1
2

+
, is likely to be dominated by two α-particles

plus a neutron in a σ-orbital. The 5
2

−
and 5

2

+
states can then be interpreted as

rotational excitations of these two states, with most of the total angular momentum
coming from orbital motion of the nucleons. Indeed, calculations of the quadrupole
moments and B(E2) transition strengths of these states are also in agreement with
these states forming rotational bands [30].

5 Magnetic moments

Using the canonical 1-body current operator, the magnetic moments in impulse ap-
proximation follow from the spin components

µ =
1

J + 1

(
〈J · Lp〉+ 5.586〈J · Sp〉 − 3.826〈J · Sn〉

)
µ0. (6)

In Fig. 8 I show results for the magnetic moments of the ground states of p-shell
nuclei. Typically, the calculated results are within about 0.3µ of the experimental
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data. This discrepancy is likely due to the omission of 2-body currents; with con-
sistent 2-body currents, one expects to get much better agreement with the data.
However, since JISP16 is a purely phenomenological potential, it is not clear how to
construct a consistent 2-body current, whereas for a microscopic interaction such as
chiral interactions or a phenomenological meson-exchange potential like AV18, one
can use consistent meson-exchange currents, and find generally good agreement with
the data once meson-exchange currents are included [33, 34].

Some of the largest deviations between the impulse approximation calculations
and the experimental data are for the ground states of 9Li and 9C. It is interesting to
note that also with AV18 plus IL7 3-body force there is a similarly large discrepancy
between impulse approximation calculations and data for these two states. For the
AV18 plus IL7 it has been shown that meson-exchange currents contribute +0.70(2)µ
and −0.60(3)µ respectively to these magnetic moments, and with these corrections
included, the results for 9Li and 9C are in agreement with the data [34]. For other
ground state magnetic moments the contribution from meson-exchange currents is of
the order of 0.3µ or smaller with AV18 plus IL7, and with these corrections included,
the calculated magnetic moments are generally closer to the data.

Another surprisingly large discrepancy between the calculated and experimen-
tal magnetic moment occurs for 13N. JISP16 gives a negative magnetic moment of
about −0.3(1)µ, in sharp contrast to the positive experimental value of +0.322µ.
Note that the calculation for the mirror nucleus, 13C, is in good agreement with the
data. It would be interesting to see what one gets with other realistic interactions,
and what the meson-exchange contributions are for this case.
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Abstract

Ab initio theories that build on first principles are essential for understanding
nuclear structure at a fundamental level and for providing reliable predictions
of short-lived nuclei. While the ab initio symmetry-adapted no-core shell model
(SA-NCSM) has unveiled a clear symmetry structure that emerges from first
principles — an outcome that has only recently become feasible with the advent
of high performance computing (HPC) facilities, these symmetries have been
long recognized and have been key to successful algebraic models with the cor-
nerstone approaches reviewed here. Utilizing these symmetries, we have found
that a fully microscopic no-core symplectic model reproduces characteristic fea-
tures of the low-lying 0+ states in 12C and ground-state rotational bands in p
and sd-shell nuclei (from Be to Si). Such ‘top down’ algebraic considerations
can hence inform ‘bottom up’ ab initio approaches by exposing emergent prop-
erties in terms of simple interaction forms that are likely to dominate nuclear
structure.

Keywords: Ab-initio symmetry-adapted no-core shell model; SU(3) coupling
scheme; symplectic Sp(3,R) shell model; Hoyle state

1 Introduction

The ab initio symmetry-adapted no-core shell-model (SA-NCSM), with results that
corroborate and are complementary to those enabled within the framework of the
no-core shell model1 (NCSM) [1], and which can be used to facilitate ab initio appli-
cations to challenging lower sd-shell nuclei, reveal that bound states of light nuclei
are dominated by high-deformation and low-spin configurations [2]. The applicable
symmetries reveal the nature of collectivity in such nuclei and provide a description
of bound states in terms of a relatively small fraction of the complete space when the
latter is expressed in an (LS)J coupling scheme with the spatial configurations fur-
ther organized into irreducible representations of SU(3). That SU(3) plays a key role
tracks with the seminal work of Elliott [3], and is further reinforced by the fact that
SU(3) also underpins the microscopic symplectic model [4, 5], which provides a theo-
retical framework for understanding deformation-dominated collective phenomena in
atomic nuclei [6].

1This talk is dedicated to James P. Vary on the occasion of his 70th birthday, and is given
in recognition and celebration of his important contributions to nuclear physics, especially for his
seminal and sustained leadership in the development of the no-core shell model.

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 47.

http://www.ntse-2013.khb.ru/Proc/Draayer.pdf.
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While applications to p-shell and selected heavier nuclei [2, 7–9] illustrate the
success of the ab initio approach, a very simple algebraic interaction, which reduces to
the Elliott SU(3) model [3] in the single-shell limit, augmented by the SU(3) symmetry
breaking spin-orbit interaction, reproduces characteristic features of the low-lying 0+

states in 12C as well as ground-state rotational bands in p and sd-shell nuclei (from
Be to Si) [10,11]. The study of 12C includes the elusive first excited 0+2 state, known
as the Hoyle state [12] that was predicted based on observed abundances of heavy
elements in the universe, and which has attracted much recent attention [13–16].
An implication of the latter is that efforts to reproduce the structure of 12C using a
‘bottom up’ ab initio effective interaction theory may benefit from ‘top down’ algebraic
considerations that serve to expose emergent properties in terms of simple interaction
forms that seem to dominate the structure of deformed nuclei, especially the 0+ states
of 12C.

2 Shell models and collectivity-driven models

This section is dedicated to a short review of the major theoretical efforts that un-
derpin development of the SA-NCSM and/or have advanced our understanding of
particle- and collectivity-driven phenomena (Table 1). For a complete list of ap-
proaches that have made substantial contributions, we refer the reader to the review
articles [6, 17, 18] and references therein.

In the 1950s, two simple models of nuclear structure were advanced that are
complementary in nature, namely, the independent-particle model of Mayer and
Jensen [19], and the collective model of Bohr and Mottelson [20]. The first of these,
which is microscopic in nature, recognizes that nuclei can be described by particles
independently moving in a mean field, with the harmonic oscillator (HO) potential
being a very good first approximation to the average potential experienced by each
nucleon in a nucleus. The second of these, which is collective in nature, recognizes
that deformed shapes dominate the dynamics. For example, deformed configurations
are found to be important even in a nucleus such as 16O, which is commonly treated
as spherical in its ground state, but 20% of the latter is governed by deformed shapes;
in addition, the lowest-lying excited 0+ states in 16O and their rotational bands are
dominated by large deformation [21]. Bohr and Mottelson offered a simple but im-
portant description of nuclei in terms of the deformation of the nuclear surface and
associated vibrations and rotations.

The seminal work of Elliott [3, 22] focused on the key role of SU(3), the exact
symmetry of the three-dimensional spherical HO. Within a shell-model framework,
Elliott’s model utilizes an SU(3)-coupled basis that is related via a unitary transfor-
mation to the basis used in the conventional shell model. The new feature here is that
SU(3) divides the space into basis states of definite (λµ) quantum numbers of SU(3)
linked to the intrinsic quadrupole deformation [23–25]. E. g., the simplest cases, (0 0),
(λ 0), and (0µ), describe spherical, prolate, and oblate deformation, respectively. For
SU(3)-symmetric interactions, the model can be solved analytically. But regardless
whether a simple algebraic interaction is used, such as H = HHO− χ

2Q ·Q (see, e. g.,
Fig. 1, left), or an SU(3)-symmetry breaking interaction (see, e. g., Fig. 1, right),
the results have revealed a striking feature, namely, the dominance of a few most
deformed configurations. This has been shown for sd-shell nuclei, such as 18Ne, 20Ne,
22Ne, 22Mg, 24Mg, and 28Si, that have been known to possess a clear collective rota-
tional structure in their low-lying states [22,26]. It has been also observed in heavier
nuclei, where pseudo-spin symmetry and its pseudo-SU(3) complement have been
shown to play a similar role in accounting for deformation in the upper pf and lower
sdg shells, and in particular, in strongly deformed nuclei of the rare-earth and actinide
regions [27].



Unraveling mysteries of the strong interaction 49

Table 1: Major cornerstone theories in the development of two classes of nuclear
structure models, starting with the Shell Model (SM) and the Collective Model (CM).

Particle Focus Shape (Collectivity) Focus

Shell Model
Goeppert-Mayer & Jensen (1950s) [19]
1963 Nobel Prize: “... for their discover-
ies concerning nuclear shell structure ...”

◦ Independent-particle model, spherical
harmonic oscillator (HO) mean field
plus l·s+ l2

Collective Model
Bohr & Mottelson (1950s) [20]
1975 Nobel Prize: “... for the discovery
of the connection between collective mo-
tion and particle motion in atomic nuclei
and the development of the theory of the
structure of the atomic nucleus based on
this connection ...”

◦ Descriptions in shape variables, β & γ
(deformation, rotations, vibrations)

Nilsson Model (1955) [28]
◦ Independent-particle model with a de-
formed HO mean field plus l·s+ l2

Pairing Model
Algebraic pairing: Racah (1940s), Flow-
ers (1950s), Kerman (1960s) [29–31]
◦ SU(2) for like particles (pp and nn
pairs) and Sp(2) for pp, pn, nn pairs
Exact pairing:
◦ Exact solutions to standard pairing in
spherical/deformed mean field (Fig. 2,
Guan & Pan (2012) [32])

◦ Complementary developments: Ab ini-

tio Density Functional Theory (DFT) — first-

principle informed, self-consistent mean-field

theory plus correlation effects, UNEDF Sci-

DAC Collaboration (2005–Present) [33]

Elliott SU(3)* Model (1958) [3]
*SU(3) is the symmetry of the 3-D HO

Discovery of dominance of a few most
deformed configurations (Fig. 1)
◦ Shell model in SU(3)-adapted basis
◦ Valence shell
◦ SU(3)-conserving interactions
◦ SU(3)-breaking interactions: effective,
surface-delta (SDI), l · s + l2, pairing
(Fig. 3a, Vargas & Hirsch (2001) [36])

◦ Complementary developments: Geo-

metric Collective Model — with interactions in

terms of β & cos 3γ, Greiner (1969) [34] and In-

teracting Boson Model — algebraic, pairs ap-

proximated by bosons, Iachello (1975) [35]

Ab initio No-core Shell Model
Vary, Navrátil, Barrett, Maris, ...
(2000–Present) [1, 46]
First-principle descriptions (A ≤ 16)
◦ No-core shell model
◦ Realistic interactions (local/nonlocal;
NN , NNN , ...)
◦ “Horizontal” cutoff

◦ Complementary developments: (2000–

Present) GFMC [43], CC method [44], Lattice-

EFT [14] (for details, see [45])

Symplectic Sp(3,R)* Model
Rowe & Rosensteel (1980s) [4]
*Sp(3,R) is naturally realized in nuclei (see

first-principle findings, Fig. 4 & [2])

Successful reproduction of rotational
bands & transition rates without effec-
tive charges (Fig. 3b [39] and Section 4)
◦ Shell model in Sp(3,R)-adapted basis
(fixed-core & no-core, NCSpM)
◦ Schematic and effective interactions,
long-range central force
◦ “Vertical” cutoff (by symplectic slices)

Symmetry-Adapted NCSM (SA-NCSM)
Dytrych, Draayer, Launey, Maris, Vary, ... (2007–Present) [2]

Discovery of emergence of symmetries from first principles (see, e. g., Fig. 4);
expanding the reach of ab initio models to lower sd-shell nuclei
◦ Ab initio NCSM with SU(3)-adapted basis (any interaction)

◦ Manage spurious center-of-mass motion
◦ Fully microscopic & equals NCSM if the complete space is included

◦ No effective charges
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Figure 1: Elliott’s SU(3) model applied to sd-shell nuclei. Left panel: Spectrum of 22Ne (or 22Mg) (a) with a Majorana potential, (b) with the addition
of the second-order SU(3) Casimir invariant, Csu3

2 , and (c) with the Majorana potential plus an attractive Q ·Q interaction [or (b) with the addition
of L2]. Figure taken from [26]. Right panel: Spectrum of 24Mg with a Gaussian central force. Figure taken from [22]. The vertical axis in both
figures represents energy in MeV. Note the importance of the most deformed SU(3) configuration (8 2) in 22Ne and (8 4) in 24Mg for reproducing the
experimental low-lying states.
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Figure 2: Pairing gaps in MeV as calculated by the exact pairing theory (“HS pairing”)
and using the BCS approach (“BCS pairing”), and compared to experiment for Ni
isotopes, 58Ni to 77Ni, using four j shells, f5/2, p1/2, p3/2, g9/2 and G = 23/A MeV.
Figure taken from [32].

With an expanding body of experimental evidence that exposed prominent sys-
tematic features of nuclei, such as pairing gaps in energy spectra and enhanced elec-
tric quadrupole transitions within collective rotational bands, deformation modes
were added to the independent-particle model to yield the Nilsson Model (deformed
HO mean field) [28]; pairing correlations were taken into account in various alge-
braic [29–31] and exact pairing models (e. g., see Fig. 2). For the latter, the pairing
Hamiltonian includes non-degenerate single-particle energies plus standard pairing
and is exactly solvable, for example, yielding solutions for the ground states of Ca,
Ni, and Sn isotopes reproducing experimentally observed pairing gaps [32].

As noted in Table 1, a more complete Density Functional Theory (DFT) is a
modern derivative theory of this general type, a self-consistent mean-field theory,
that can incorporate correlation effects and can accommodate realistic interactions
to achieve better predictive capabilities across most of the Chart of the Nuclides.
For example, outcomes using this approach generally yield an excellent accounting of
binding energies as well as near ground state phenomena across much of the nuclear
landscape [33].

Also noted in the Table 1 on the “Shape Focus” side, are two other complementary
models that served to inform us of the importance of deformation and pairing; namely,
the Geometric Collective Model (GCM) [34] advanced by Greiner and collaborators,
and the intriguing Interacting Boson Model (IBM) of Iachello and associates [35].
The latter has offered a bosonic realization of these phenomena in terms of a common
overarching U(6) algebraic structure and its physical subgroups, U(5) for pairing
modes, SU(3)⊃SO(3) for rotations and O(6)⊃SO(3) for triaxial systems.

The pairing interaction has been microscopically incorporated into the Elliott
Model where it breaks the SU(3) symmetry and mixes different (λµ) configurations.
It has been shown in Ref. [36] (see also Fig. 3a adapted from [36]) that using an
SU(3)-symmetric interaction-plus-pairing yields results close to experiment and to
the energies obtained using full sd-shell-model calculations [37]. It is remarkable
that, even in the presence of pairing, comparable results have been obtained in a
truncated model space that includes only about 10 most deformed configurations.
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(a) (b)

Figure 3: (a) Elliott’s model with a SU(3)-preserving interaction + pairing in the sd
valence shell for 22Ne. Figure adapted from [36]. (b) Microscopic symplectic model
with a set of effective single-particle energies, a Q·Q-type interaction+pairing for 20Ne
[calculated B(E2 ↓) transition strengths, not shown in the figure, for Jπ = 2+, 4+,
6+, and 8+ without effective charges fall within the uncertainties of the corresponding
experimental measurements]. Figure taken from [39].

Another very significant advance is the microscopic symplectic model [4, 5], de-
veloped by Rowe and Rosensteel, which provides a theoretical framework for under-
standing deformation-dominated collective phenomena in atomic nuclei [6] that in-
volves particle-particle as well as particle-hole excitations across multiple shells. The
significance of the symplectic Sp(3,R) symmetry, the embedding symmetry of SU(3)
[Sp(3,R)⊃SU(3)], for a microscopic description of a quantum many-body system of
interacting particles naturally emerges from the physical relevance of its 21 generators,
which are directly related to the particle momentum (psα) and coordinate (rsα) op-
erators, with α = x, y, and z for the 3 spatial directions and s labeling an individual
nucleon, and realize important observables. Namely, the many-particle kinetic en-
ergy

∑
s,α p

2
sα/2m, the HO potential,

∑
s,αmΩ2r2sα/2, the mass quadrupole moment

Q(2M) =
∑

s q(2M)s =
∑

s

√
16π/5 r2s Y(2M)(r̂s) and angular momentum L operators,

together with multi-shell collective vibrations and vorticity degrees of freedom for a
description from irrotational to rigid rotor flows are all part of this symmetry. Indeed,
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the symplectic Sp(3,R) symmetry underpins the symplectic shell model that provides
a microscopic formulation of the Bohr–Mottelson collective model and is a multiple
oscillator shell generalization of the successful Elliott SU(3) model. The symplectic
model with Sp(3,R)-preserving interactions2 have achieved a remarkable reproduc-
tion of rotational bands and transition rates without the need for introducing effective
charges, while only a single Sp(3,R) configuration is used [6,38]. A shell-model study
in a symplectic basis that allows for mixing of Sp(3,R) configurations due to pairing
and non-degenerate single-particle energies above a 16O core [39] has found that using
only seven Sp(3,R) configurations is sufficient to achieve a remarkable reproduction of
the 20Ne energy spectrum (Fig. 3b) as well as of E2 transition rates without effective
charges.

I believe one can safely claim that the summit of the particle-hole, shell model
climb, with James Vary leading the pack, has been realized with the development of
the no-core shell model (NCSM), which, in principle, can straightforwardly accom-
modate any type of inter-nucleon interaction. Specifically, for a general problem, the
NCSM adopts the intrinsic non-relativistic nuclear plus Coulomb interaction Hamil-
tonian defined as follows:

H = Trel + VNN + VNNN + . . .+ VCoulomb, (1)

where the VNN nucleon-nucleon and VNNN 3-nucleon interactions are included along
with the Coulomb interaction between the protons. The Hamiltonian may include
additional terms such as multi-nucleon interactions among more than three nucleons
simultaneously and higher-order electromagnetic interactions such as magnetic dipole-
dipole terms. It adopts the HO single-particle basis characterized by the ~Ω oscillator
strength and retains many-body basis states of a fixed parity, consistent with the Pauli
principle, and limited by a many-body basis cutoff Nmax. The Nmax cutoff is defined
as the maximum number of HO quanta allowed in a many-body basis state above
the minimum for a given nucleus. It divides the space in “horizontal” HO shells
and is dictated by particle-hole excitations (this is complementary to the microscopic
symplectic model, which divides the space in vertical slices selected by collectivity-
driven rules). It seeks to obtain the lowest few eigenvalues and eigenfunctions of
the Hamiltonian (1). The NCSM has achieved remarkable descriptions of low-lying
states from the lightest s-shell nuclei up through 12C, 16O, and 14F, and is further
augmented by several techniques, such as NCSM/RGM [40], Importance Truncation
NCSM [41] and Monte Carlo NCSM [42]. This supports and complements results
of other first-principle approaches, also shown in Table 1, such as Green’s function
Monte Carlo (GFMC) [43], Coupled-cluster (CC) method [44], and Lattice Effective
Field Theory (EFT) [14] (see also, this proceedings volume [45]). For further details
on NCSM, see Vary’s distinguished lecture in this proceedings [46].

We have recently explored a fully microscopic no-core symplectic shell model,
NCSpM (for details, see Sec. 4) that utilizes a Sp(3,R)-preserving Q · Q-type inter-
action plus a symmetry-breaking l ·s interaction. The study has revealed that with
a simple interaction and only a few Sp(3,R) configurations the model can provide a
successful description of the 12C Hoyle state and low-lying states in nuclei from Be to
Si [10, 11] (including energy spectra, E2 transition strengths, quadrupole moments,
and matter rms radii). The key to this outcome is the ability of the model to include
higher-lying HO shells, thereby making large-Nmax calculations feasible.

The next-generation ab initio symmetry-adapted no-core shell model (SA-NCSM)
[2] combines the first-principle concept of the NCSM with symmetry-guided consid-
erations of the collectivity-driven models. The SA-NCSM has revealed the emergence

2An important Sp(3,R)-preserving interaction is 1
2
Q ·Q = 1

2

∑
s qs · (

∑
t qt), as this realizes the

physically relevant interaction of each particle with the total quadrupole moment of the nuclear
system.
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of clear symmetry patterns from first principles [2] — such as the SU(3) and the sym-
plectic Sp(3,R) symmetries inherent to nuclei, and in addition, have demonstrated
the power of using symmetry-dictated subspaces to reach new domains of nuclear
structure currently inaccessible by ab initio calculations. The model and its recent
findings are described in the next section.

3 Ab initio SA-NCSM

The ab initio symmetry-adapted no-core shell model (SA-NCSM) [2] adopts the first-
principle concept and utilizes a many-particle basis that is reduced with respect to the
physically relevant SU(3)⊃SO(3) subgroup chain (for a review, see [21]). This allows
the full model space to be down-selected to the physically relevant space. The signifi-
cance of the SU(3) group for a microscopic description of the nuclear collective dynam-
ics can be seen from the fact that it is the symmetry group of the Elliott model [3], and
a subgroup of the Sp(3,R) symplectic model [4]. The basis states of the SA-NCSM
are based on HO single-particle states and for a given Nmax, are constructed in the
proton-neutron formalism using an efficient construction based on powerful group-
theoretical methods. The SA-NCSM basis states are related to the NCSM basis
states through a unitary transformation (hence, the SA-NCSM results obtained in a
complete Nmax space are equivalent to the Nmax-NCSM results). They are labeled by
the SU(3)⊃SO(3) subgroup chain quantum numbers (λµ)κL, together with proton,
neutron, and total intrinsic spins Sp, Sn, and S. The orbital angular momentum L is
coupled with S to the total orbital momentum J and its projection MJ . Each basis
state in this scheme is labeled schematically as |~γ (λµ)κL; (SpSn)S; JMJ〉. The la-
bel κ distinguishes multiple occurrences of the same L value in the parent irrep (λµ),
and ~γ distinguishes among configurations carrying the same (λµ) and (SpSn)S labels.

3.1 Emergence of a simple structure —
‘Bottom Up’ considerations

The ab initio SA-NCSM results for p-shell nuclei reveal a dominance of configurations
of large deformation (typically large |λ − µ|) in the 0~Ω subspace. For example,
the ab initio Nmax = 6 SA-NCSM results with the bare JISP16 realistic interac-
tion [47] for the 0+ ground state (g. st.), first 2+ and first 4+ states of 12C reveal
the dominance of the 0~Ω component with the foremost contribution coming from
the leading (0 4) S = 0 irrep (Fig. 4). Furthermore, we find that important SU(3)
configurations are then organized into structures with Sp(3,R) symplectic symme-
try, that is, the (0 4) symplectic irrep gives rise to (0 2) and (2 4) configurations in
the 2~Ω subspace and so on (see Fig. 4, inset), and those configurations indeed realize
the major components of the wavefunction in this subspace. This further confirms
the significance of the symplectic symmetry to nuclear dynamics. Similar results are
observed for other p-shell nuclei. The outcome points to the fact that the relevant
model space can be systematically determined by down-selecting to important spin
configurations in lower subspaces while expanded to include a limited set of strongly
deformed configurations in the higher Nmax regime.

In short, the SA-NCSM advances an extensible microscopic framework for studying
nuclear structure and reactions that capitalizes on advances being made in ab initio
methods while exploiting symmetries — exact and partial, known to dominate the
dynamics.
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Figure 4: Probability distribution of the lowest calculated 0+ state for 12C over
deformed subspaces labeled by (λµ) for six of the most important spin components
{Sp, Sn, S} = {0, 0, 0}, {1, 0, 1}, {0, 1, 1}, {1, 1, 1}, {1, 1, 0} and {1, 1, 2}. Labels above
the columns denote SU(3) quantum numbers of states that belong to the leading
(0 4) symplectic Sp(3,R) irrep. The wavefunction was obtained using the Nmax = 6
SA-NCSM with the JISP16 bare interaction and ~Ω = 10 MeV.
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3.2 Symmetries in realistic nucleon-nucleon interactions

The nucleon-nucleon interaction itself possesses a clear structure when its SU(3)
content is studied. This is observed in the decomposition of the NN interaction
into SU(3)× SU(2)S × SU(2)T tensors (isoscalar interactions will be henceforth con-
sidered). This is analogous to the unitary transformation of a V2b two-body interac-
tion represented in a m-scheme harmonic oscillator (HO) basis to a JT -coupled basis,
which renders V2b as only one SU(2)J × SU(2)T tensor of rank J0 = 0 and T0 = 0 (a
scalar with respect to rotations in coordinate and isospin space). For example, the
scalar interaction part of (λ0 µ0) = (0 0) does not mix nuclear deformation in analogy
to the isoscalar part of an interaction that does not mix isospin values. In addition,
the (λ0 µ0) interaction parts with λ0 = µ0 are almost diagonal, that is, connect con-
figurations within a few shells, while interaction parts with a large difference |λ0−µ0|
typically couple low-lying and higher-lying shell-model configurations.

This decomposition organizes the interaction into only a small number of pieces
of information that bring forward important physics. In particular, as a measure of
the strength or “size” of each interaction tensor, we use its Hilbert–Schmidt norm,
which is directly related to the square of the (λ0 µ0)S0 reduced matrix elements. For
example, we find a dominance of the (0 0) scalar part followed by the symplectic-like
modes of (0 2), and equally, the conjugate (2 0), and then tensors as (1 1), (2 2), (3 3),
and etc., which typically dominate for the pairing interaction or contact term (see
Fig. 5 for the bare JISP16, which is used for Nmax = 6 SA-NCSM calculations in
Fig. 4). These results, we find, repeat for various realistic bare and renormalized
interactions.

4 NCSpM model — ‘Top Down’ considerations

The no-core symplectic shell model (NCSpM) is a fully microscopic no-core shell
model that uses a symplectic Sp(3,R) basis and Sp(3,R)-preserving interactions. The
NCSpM employed within a full model space up through a given Nmax coincides with
the NCSM for the same Nmax cutoff. However, in the case of the NCSpM, the
symplectic irreps divide the space into ‘vertical slices’ that are comprised of basis
states of a definite deformation (λµ). Hence, the model space can be reduced to only a
few important configurations that are chosen among all possible Sp(3,R) irreps within
the Nmax model space. The NCSpM, while selecting the most relevant symplectic
configurations, is employed to provide shell model calculations beyond current NCSM
limits, namely, up through Nmax = 20 for 12C, the model spaces we found sufficient
for the convergence of results [10].

We employ a very simple Hamiltonian with an effective interaction derived from
the long-range expansion of the two-body central nuclear force together with a spin-
orbit term,

Heff = H0 +
χ

2

(
e−γQ·Q − 1

)

γ
− κ

A∑

i=1

li ·si. (2)

This includes the spherical HO potential, which together with the kinetic energy

yields the HO Hamiltonian, H0 =
∑A

i=1

(
p2

i

2m +
mΩ2r2i

2

)
, and the Q ·Q quadrupole-

quadrupole interaction not restricted to a single shell. For the latter term, the average
contribution, 〈Q ·Q〉n, of Q ·Q within a subspace of n HO excitations is removed [48],
that is, the trace of Q ·Q divided by the space dimension for a fixed n. Hence, the
large monopole contribution of the Q·Q interaction is removed, which, in turn, helps
eliminate the considerable renormalization of the zero-point energy, while retaining
the Q·Q-driven behavior of the wavefunctions. This Hamiltonian in its zeroth-order
approximation (for parameter γ → 0) and for a valence shell goes back to the estab-
lished Elliott model. We take the coupling constant χ to be proportional to ~Ω and,
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Figure 5: Relative strengths of the T = 1 (left) and T = 0 (right) bare JISP16
interaction tensors labeled by (λ0 µ0)S0 for ~Ω = 15 MeV and Nmax = 6 for p-shell
nuclei.

to leading order, to decrease with the total number of HO excitations, as shown by
Rowe [49] based on self-consistent arguments.

As the interaction and the model space are carefully selected to reflect the most
relevant physics, the outcome reveals a quite remarkable agreement with the ex-
periment [10]. The low-lying energy spectrum and eigenstates for 12C were calcu-
lated using the NCSpM with H of Eq. (2) for ~Ω = 18 MeV given by the em-
pirical estimate ≈ 41/A1/3 = 17.9 MeV and for κ ≈ 20/A2/3 = 3.8 MeV (see,
e. g., [20]). The results are shown for Nmax = 20, which we found sufficient to yield
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Figure 6: Energy spectra calculated by the NCSpM with γ = −1.71×10−4 for (a) 8Be
in an Nmax = 24 model space, (b) 12C in an Nmax = 20 model space, (c) 22Ne and
(d) 22Mg in an Nmax = 12 model space, and compared to experiment (“Expt.”).

convergence. This Nmax model space is further reduced by selecting the most rele-
vant symplectic irreps, namely, the spin-zero (S = 0) 0~Ω 0p-0h (0 4), 2~Ω 2p-2h (6 2),
and 4~Ω 4p-4h (12 0) symplectic bandheads together with the S = 1 0~Ω 0p-0h (1 2)
and all multiples thereof up through Nmax = 20 of total dimensionality of 6.6× 103.
In comparison to the experimental energy spectrum (Fig. 6b), the outcome reveals
that the lowest 0+, 2+, and 4+ states of the 0p-0h symplectic slices calculated
for γ = −1.71× 10−4 closely reproduce the g. st. rotational band, while the cal-
culated lowest 0+ states of the 4~Ω 4p-4h (12 0) and the 2~Ω 2p-2h (6 2) slices are
found to lie close to the Hoyle state and the 10-MeV 0+ resonance (third 0+ state),
respectively. The model successfully reproduces other observables for 12C that are in-
formative of the state structure, such as mass rms radii, electric quadrupole moments
and B(E2) transition strengths (Fig. 6b).

A preponderance of the (0 4) S = 0 configuration and also (1 2) S = 1 configu-
ration is observed for the ground-state rotational band, thereby indicating an oblate
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shape. The Hoyle-state rotational band includes shapes of even larger deformations
but prolate, with the largest contribution of (16 0).

While the model includes an adjustable parameter, γ, this parameter only controls
the decrease rate of the Q ·Q interaction with increasing n. The entire many-body
apparatus is fully microscopic and no adjustments are possible. Hence, as γ varies,
there is only a small window of possible γ values that, for large enough Nmax, closely
reproduces the relative positions of the three lowest 0+ states.

The outcome of the present analysis is not limited to 12C. The model we find is
also applicable to the low-lying states of other p-shell nuclei, such as 8Be, as well as
sd-shell nuclei without any adjustable parameters (Fig. 6). In particular, using the
same γ = −1.71× 10−4 as determined here for 12C, we describe selected low-lying
states in 8Be in an Nmax = 24 model space with only 3 spin-zero 0~Ω (4 0), 2~Ω (6 0),
and 4~Ω (8 0) symplectic irreps. Furthermore, we have successfully applied the
NCSpM without any adjustable parameters to the ground-state rotational band of
heavier nuclei, such as 20Ne, 22,24Ne, 22,26Mg, and 24,26Si (see Fig. 6 for 22Ne and
22Mg). This suggests that the fully microscopic NCSpM model has indeed captured
an important part of the physics that governs the low-energy nuclear dynamics.

5 Conclusion

Symmetries in atomic nuclei that have been long recognized have been recently utilized
and further understood in the framework of the ab initio symmetry-adapted no-core
shell model SA-NCSM as well as of the microscopic no-core symplectic model NCSpM
that combine the shell-model and collectivity-driven concepts. The findings pointed to
a remarkable new insight, namely, understanding the mechanism on how such simple
structures emerge from a fundamental level.

Symmetry-adapted, no-core shell-model calculations with SU(3) the underpinning
symmetry were presented. We showed that employing symmetry considerations is
effective in providing an efficient description of low-lying states. This holds promise to
significantly enhance the reach of ab initio shell models toward heavier nuclear systems
as well as to achieve descriptions of collective and cluster phenomena from underlying
quark/gluon considerations. In addition, the NCSpM study with a schematic many-
nucleon interaction showed how both collective and cluster-like structures emerge out
of a no-core shell-model framework, which extended to and took into account essential
high-lying shell-model configurations.
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Abstract

We report on ab initio no-core shell model calculations in a symmetry-
adapted SU(3)-based coupling scheme that demonstrate that collective modes
in p-shell nuclei emerge from first principles. The low-lying states of 6Li, 6He,
8Be, 8B, 12C, and 16O, are shown to exhibit orderly patterns that favor spa-
tial configurations with strong quadrupole deformation and complementary low
intrinsic spin values, a picture that is consistent with the nuclear symplectic
model. The results also suggest a pragmatic path forward to accommodate
deformation-driven collective features in ab initio analyses when they dominate
the nuclear landscape.

Keywords: No-core shell model; SU(3) coupling scheme; p-shell nuclei

1 Introduction

In the last few years, ab initio approaches to nuclear structure and reactions have
considerably advanced our understanding and capability of achieving first-principle
descriptions of p-shell nuclei [1–3]. These advances are driven by the major progress
in the development of realistic nuclear potential models, such as J-matrix inverse
scattering potentials [4] and two- and three-nucleon potentials derived from meson
exchange theory [5] or by using chiral effective field theory [6], and, at the same time,
by the utilization of massively parallel computing resources [7–9].

The predictive power that ab initio models hold [10, 11] makes them suitable for
targeting short-lived nuclei that are inaccessible by experiment but essential to further
modeling, for example, of the dynamics of X-ray bursts and the path of nucleosynthesis
(see, e. g., Refs. [12, 13]). The main limitation of ab initio approaches is inherently
coupled with the combinatorial growth in the size of the many-particle model space
with increasing nucleon numbers and expansion in the number of single-particle levels
in the model space as illustrated in Fig. 1. This points to the need of further major
advances in many-body methods to access a wider range of nuclei and experimental
observables, while retaining the ab initio predictive power.

These considerations motivate us to develop and investigate a novel model, the ab
initio symmetry-adapted no-core shell model (SA-NCSM) [14], which by taking ad-
vantage of symmetries inherent to the nuclear dynamics [15,16] allows one to truncate
a model space according to correlations indispensable for modeling important modes
of nuclear collective dynamics, thereby overcoming the scale explosion bottleneck of
ab initio nuclear structure computations.

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 62.

http://www.ntse-2013.khb.ru/Proc/Dytrych.pdf.
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Figure 1: The dimensions of positive parity model spaces as functions of Nmax for
selected nuclei. Solid curves show the number of basis states with the projection of
the total angular momentum M = 0. Dashed and dotted curves depict the number
of basis states carrying selected values of the total angular momentum J .

2 Ab initio calculations in a SU(3)-based coupling
scheme

The SA-NCSM joins a no-core shell model (NCSM) theory [2] with a multi-shell,
SU(3)-based coupling scheme [15, 17]. Specifically, the many-nucleon basis states
of the SA-NCSM are decomposed into spatial and intrinsic spin parts, where the
spatial part is further classified according to the SU(3) ⊃ SO(3) group chain. The
significance of the SU(3) group for a microscopic description of the nuclear collective
dynamics can be seen from the fact that it is the symmetry group of the successful
Elliott model [15], and a subgroup of the physically relevant Sp(3,R) symplectic
model [16], which provides a comprehensive theoretical foundation for understanding
the dominant symmetries of nuclear collective motion. The SA-NCSM basis states
are labeled as

|~γ;N(λµ)κL; (SpSn)S; JM〉, (1)

where N signifies the number of harmonic oscillator quanta with respect to the min-
imal number for a given nucleus. Quantum numbers Sp, Sn, and S denote proton,
neutron, and total intrinsic spins, respectively, and (λµ) represent a set of quan-
tum numbers associated with SU(3) irreducible representations, irreps. The label κ
distinguishes multiple occurrences of the same orbital momentum L in the parent
irrep (λµ). The L is coupled with S to the total angular momentum J and its projec-
tion M . The basis states bring forward important information about nuclear shapes
and deformation according to an established mapping [18]. For example, (00), (λ 0)
and (0µ) describe spherical, prolate and oblate shapes, respectively. The symbol ~γ
schematically denotes the additional quantum numbers needed to specify a distribu-
tion of nucleon clusters over the major HO shells and their inter-shell coupling. Specif-
ically, in each major HO shell η with degeneracy Ωη, clusters of protons and neutrons
are arranged into antisymmetric U(Ωη) × SU(2)Sη

irreps [19], with U(Ωη) further
reduced with respect to SU(3). The quantum numbers,

[
f1, . . . , fΩη

]
αη (λη µη)Sη,

along with SU(3) × SU(2)S labels of inter-shell coupling unambiguously determine
SA-NCSM basis states (1). Note that a spatial symmetry associated with a Young
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shape
[
f1, . . . , fΩη

]
is uniquely determined by the imposed antisymmetrization and

the associated intrinsic spin Sη. A multiplicity index αη is required to distinguish
multiple occurrences of SU(3) irrep (λη µη) in a given U(Ωη) irrep. It is important to
note that any model space spanned by a complete set of equivalent SU(3)× SU(2)S
irreps, that is, a space spanned by all configurations carrying a fixed set of Sp Sn S
and (λµ) quantum numbers, permits exact factorization of the center-of-mass motion.

The SA-NCSM implements fast methods for calculating matrix elements of ar-
bitrary (currently up to two-body, but expandable to higher-rank) operators in the
symmetry-adapted basis. This facilitates both the evaluation of the Hamiltonian ma-
trix elements and the use of the resulting eigenvectors to evaluate other experimental
observables. The underlying principle behind the SA-NCSM computational kernel is
an SU(3)-type Wigner–Eckhart theorem, which factorizes interaction matrix elements
into the product of SU(3) reduced matrix elements (rme) and the associated SU(3)
coupling coefficient. The SA-NCSM configurations are constructed by the inter-shell
coupling of a sequence of single-shell nucleon clusters arranged into U(Ω) × SU(2)S ,
with U(Ω) ⊃ SU(3), irreps. Therefore, all the multi-shell rme are constructed from a
set of single-shell rme computed in a configuration space of these irreps. This reduces
the number of key pieces of information required to the single-shell rme, and these
track with the number of U(Ω) × SU(2)S irreps, with U(Ω) ⊃ SU(3), that represent
building blocks of the SA-NCSM approach. It is therefore significant that their num-
ber grows slowly with the increasing nucleon number and Nmax cutoff as this allows
these key pieces of information to be stored in CPU memory.

3 Structure of nuclear wave functions

The expansion of calculated eigenstates in the physically relevant SU(3) basis unveils
salient features that emerge from the complex dynamics of these strongly interacting
many-particle systems. To explore the nature of the most important correlations, we
analyze the probability distribution across Pauli-allowed (Sp Sn S) and (λµ) configu-
rations of the four lowest-lying isospin-zero (T = 0) states of 6Li (1+gs, 3+1 , 2+1 , and 1+2 ),
the ground-state rotational bands of 8Be, 6He and 12C, the lowest 1+, 3+, and 0+ ex-
cited states of 8B, and the ground state of 16O. Results for the ground state of 6Li and
8Be, obtained with the JISP16 and chiral N3LO interactions, respectively, are shown
in Figs. 2 and 3. These figures illustrates a feature common to all the low-energy
solutions considered; namely, a highly structured and regular mix of intrinsic spins
and SU(3) spatial quantum numbers that has heretofore gone unrecognized in other
ab initio studies, and which, furthermore, does not seem to depend on the particular
choice of realistic NN potential.

For a closer look at these results, first consider the spin content. We found that
the calculated eigenstates project at a 99% level onto a comparatively small subset
of intrinsic spin combinations. For instance, the lowest-lying eigenstates in 6Li are
almost entirely realized in terms of configurations characterized by the following in-
trinsic spin (Sp Sn S) triplets:

(
3
2

3
2 3
)
,
(
1
2

3
2 2
)
,
(
3
2

1
2 2
)
, and

(
1
2

1
2 1
)
, with the last one

carrying over 90% of each eigenstate. Likewise, the same spin components as in the
case of 6Li are found to dominate the ground state and the lowest 1+, 3+, and 0+

excited states of 8B (Table 1). The ground state bands of 8Be, 6He, 12C, and 16O are
found to be dominated by many-particle configurations carrying total intrinsic spin
of the protons and neutrons equal to zero and one, with the largest contributions due
to (Sp Sn S) = (0 0 0) and (1 1 2) configurations.

Second, consider the spatial degrees of freedom. Our results show that the mixing
of (λµ) quantum numbers, induced by the SU(3) symmetry breaking terms of realistic
interactions, exhibits a remarkably simple pattern. One of its key features is the
preponderance of a single 0~Ω SU(3) irrep. This so-called leading irrep, according to
the established geometrical interpretation of SU(3) labels (λµ) [18], is characterized
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Figure 2: Probability distributions for proton, neutron, and total intrinsic spin com-
ponents (Sp Sn S) across the Pauli-allowed (λµ) values (horizontal axis) for the cal-
culated 1+ ground state of 6Li obtained for Nmax = 10 and ~Ω = 20 MeV with the
JISP16 interaction. The total probability for each N~Ω subspace is given in the upper
left-hand corner of each histogram. Adapted from Ref. [14].

by the largest value of the intrinsic quadrupole deformation. For instance, the low-
lying states of 6Li project at a 40%–70% level onto the prolate 0~Ω SU(3) irrep (2 0),
as illustrated in Figs. 2 and 3 for the ground state. For the considered states of

Table 1: Probability amplitude of the dominant (Sp Sn S) spin configuration and the
dominant nuclear shapes according to Eq. (2) for the ground state of p-shell nuclei.

Nucleus (Sp Sn S) Prob. [%] (λ0 µ0) Prob. [%]

6Li
(
1
2

1
2 1
)

93.26 (2 0) 98.13
8B

(
1
2

1
2 1
)

85.17 (2 1) 87.94
8Be (0 0 0) 85.25 (4 0) 90.03
12C (0 0 0) 55.19 (0 4) 48.44
16O (0 0 0) 83.60 (0 0) 89.51
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Figure 3: Probability distributions for proton, neutron, and total intrinsic spin com-
ponents (Sp Sn S) across the Pauli-allowed (λµ) values (horizontal axis) for the cal-
culated 0+ ground state of 8Be obtained for Nmax = 8 and ~Ω = 25 MeV with the
chiral N3LO interaction. The total probability for each N~Ω subspace is given in the
upper left-hand corner of each histogram. Adapted from Ref. [14].

8B, 8Be, 12C, and 16O, qualitatively similar dominance of the leading 0~Ω SU(3)
irreps is observed — (2 1), (4 0), (0 4), and (0 0) irreps, associated with triaxial,
prolate, oblate, and spherical shapes, respectively. The clear dominance of the most
deformed 0~Ω configuration within low-lying states of light p-shell nuclei indicates
that the quadrupole-quadrupole interaction of the Elliott SU(3) model of nuclear
rotations [15] is realized naturally within an ab initio framework.

The analysis also reveals that the dominant SU(3) basis states at each N~Ω sub-
space (N = 0, 2, 4, ...) are typically those with (λµ) quantum numbers given by

λ+ 2µ = λ0 + 2µ0 +N (2)

where λ0 and µ0 denote labels of the leading SU(3) irrep in the 0~Ω (N = 0) subspace.
We conjecture that this regular pattern of SU(3) quantum numbers reflects the pres-
ence of an underlying symplectic Sp(3,R) symmetry of microscopic nuclear collective
motion [16] that governs the low-energy structure of both even-even and odd-odd
p-shell nuclei. This can be seen from the fact that (λµ) configurations that satisfy
condition (2) can be determined from the leading SU(3) irrep (λ0 µ0) through a succes-
sive application of a specific subset of the Sp(3,R) symplectic 2~Ω raising operators.
This subset is composed of the three operators, Âzz , Âzx, and Âxx, that distribute
two oscillator quanta in z and x directions, but none in y direction, thereby inducing
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SU(3) configurations with ever-increasing intrinsic quadrupole deformation. These
three operators are the generators of the Sp(2,R) ⊂ Sp(3,R) subgroup [20], and give
rise to deformed shapes that are energetically favored by an attractive quadrupole-
quadrupole interaction [21]. Note that this is consistent with our earlier findings of a
clear symplectic Sp(3,R) structure with the same pattern (2) in ab initio eigensolu-
tions for 12C and 16O [22].

Furthermore, there is an apparent hierarchy among states that fulfill condition (2).
In particular, the N~Ω configurations with (λ0+N µ0), the so-called stretched states,
carry a noticeably higher probability than the others. For instance, the (2+N 0)
stretched states contribute at the 85% level to the ground state of 6Li, as can be
readily seen in Figs. 2 and 3. Moreover, the dominance of the stretched states is
rapidly increasing with the increasing many-body basis cutoff Nmax as illustrated in
Fig. 4. The sequence of the stretched states is formed by consecutive applications
of the Âzz operator, the generator of Sp(1,R) ⊂ Sp(2,R) ⊂ Sp(3,R) subgroup, over
the leading SU(3) irrep. This translates into distributing N oscillator quanta along
the direction of the z-axis only and hence rendering the largest possible deformation.
The important role of the stretched configurations for the description of the rotational
bands in N = Z even-even nuclei was recognized heretofore using a simple microscopic
Hamiltonian [23]. In the present study, for the first time, this structure is clearly and
simply unveiled within the context of a fully microscopic framework starting from
first principles.

4 Efficacy of the SU(3) basis

The observed patterns of intrinsic spin and deformation mixing supports a symmetry-
guided basis selection philosophy referenced above. Specifically, one can take ad-
vantage of dominant symmetries to refine the definition of the NCSM model space,
which is based solely on the Nmax cutoff. A SA-NCSM model space, which we denote
as 〈N⊥

max〉N⊤
max, can be constructed using a symmetry-guided selection that includes

the complete basis up through some N⊥
max ≤ Nmax along with configurations carrying

a restricted set of (λµ) and (Sp Sn S) quantum numbers in the N⊥
max to N⊤

max space.
Ultimately, we aim to achieve N⊤

max ≥ Nmax, where Nmax is the largest value for
which complete-space results can be currently calculated. This concept focuses on
retaining the most important configurations that support the strong many-nucleon
correlations of a nuclear system using the underlying Sp(1,R) ⊂ Sp(2,R) ⊂ Sp(3,R)
symmetry considerations. Within this context, it is important to note that for model
spaces truncated according to (λµ) irreps and intrinsic spins (Sp Sn S), the spurious
center-of-mass motion can be factored out exactly, which represents an important
advantage of this scheme.

The efficacy of the symmetry-guided concept is illustrated for SA-NCSM results
obtained in a model space, which is expanded beyond the complete N⊥

max = 6 (or 8)
space by relatively few dominant intrinsic spin components and quadrupole defor-
mations that satisfy condition (2). We use selected spaces up through N⊤

max = 12,
which allows a comparison to available results obtained in the complete Nmax = 12
space and hence, probes the efficacy of the SA-NCSM symmetry-guided model space
selection concept. For this analysis, a Coulomb plus bare JISP16 NN interaction
for ~Ω values ranging from 17.5 up to 25 MeV is used. SA-NCSM eigenstates are
used to determine spectroscopic properties of low-lying T = 0 states of 6Li for a 〈6〉12
model space and of the ground-state band of 6He for 〈8〉12. We utilize a complete
space of N⊥

max = 6 for 6Li and of N⊥
max = 8 for 6He, as these spaces seem sufficient to

accommodate essential mixing of low-energy HO excitations.
The results indicate that the observables obtained in the symmetry-guided trun-

cated spaces under consideration are excellent approximations to the corresponding
complete-space counterparts. In particular, the ground-state binding energies repre-



6
8

T
.
D
y
try

ch
,
J
.
P
.
D
ra
a
y
er,

K
.
D
.
L
a
u
n
ey,

P
.
M
a
ris,

J
.
P
.
V
a
ry

a
n
d
D
.
L
a
n
g
r

4ÑW

H6 0L 1
2

1
2
1

H2 2L 1
2

1
2
1

H4 1L 1
2

1
2
1

H6 0L 1
2

1
2
3

0

1

2

3

4

5

6

7

8

P
ro

ba
bi

lit
y@
%
D

4 6 8 10 12
Nmax

6ÑW

H8 0L 1
2

1
2
1

H6 1L 1
2

1
2
1

H4 2L 1
2

1
2
1

H8 0L 1
2

1
2
3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
ro

ba
bi

lit
y@
%
D

6 8 10 12
Nmax

(a) (b)

8ÑW

H10 0L 1
2

1
2
1

H6 2L 1
2

1
2
1

H8 1L 1
2

1
2
1

H2 4L 1
2

1
2
3

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y@
%
D

8 10 12
Nmax

10ÑW

H12 0L 1
2

1
2
1

H8 2L 1
2

1
2
1

H10 1L 1
2

1
2
1

H4 4L 1
2

1
2
3

0.0

0.2

0.4

P
ro

ba
bi

lit
y@
%
D

10 12
Nmax

(c) (d)

Figure 4: Probabilities of the most important (λµ) (Sp Sn S) components in 6Li at 4~Ω subspace (a), 6~Ω subspace (b), 8~Ω subspace (c), and 10~Ω
subspace as a function of the model space cutoff Nmax.
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Figure 5: Experimental and theoretical excitation energies: (a) T = 0 states of 6Li,
and (b) the two lowest-lying states of the halo 6He nucleus. Experimental re-
sults [24] are given in the first column. The theoretical results shown are for JISP16
and ~Ω = 20 MeV in the complete Nmax = 12 space (second column), symmetry-
guided truncated model space (third column) and the complete Nmax = 6 or 8 spaces
(last column). Note the relatively large change in the calculated excitation spectrum
of 6Li when Nmax is increased from 6 to 12, and that the 〈6〉12 SA-NCSM results
(third column) track the latter closely.

sent from 98% up to 98.7% of the complete-space binding energy in the case of 6Li,
and reach over 99% for 6He. Furthermore, the excitation energies differ only by 11 keV
to a few hundred keV from the corresponding complete-space results, see Fig. 5, and
the agreement with known experimental data is reasonable over a broad range of ~Ω
values.

As illustrated in Table 2, the magnetic dipole moments for 6Li agree to within 0.3%
for odd-J values, and 5% for µ(2+1 ). Qualitatively similar agreement is achieved
for µ(2+1 ) of 6He, as shown in Table 3. The results suggest that it may suffice to include
all low-lying ~Ω states up to a fixed limit, e. g., N⊥

max = 6 for 6Li andN⊥
max = 8 for 6He,

to account for the most important correlations that contribute to the magnetic dipole
moment.

To explore how close one comes to reproducing the important long-range correla-
tions of the complete Nmax = 12 space in terms of nuclear collective excitations within

Table 2: Magnetic dipole moments µ [µN ] and point-particle rms matter radii rm [fm]
of T = 0 states of 6Li calculated in the complete Nmax = 12 space and the 〈6〉12
subspace for JISP16 and ~Ω = 20 MeV. The experimental value for the 1+ ground
state is known to be µ = +0.822 µN [24].

1+1 0 3+1 0 2+1 0 1+2 0
µ

Full Nmax = 12 0.838 1.866 0.960 0.336
〈6〉12 0.840 1.866 1.015 0.337

rms
Full Nmax = 12 2.146 2.092 2.257 2.373
〈6〉12 2.139 2.079 2.236 2.355
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Table 3: Selected observables for the two lowest-lying states of 6He obtained in the
complete Nmax = 12 space and 〈8〉12 model subspace for JISP16 and ~Ω = 20 MeV.

Nmax = 12 〈8〉12

B(E2; 2+1 → 0+1 ) [e2fm4] 0.181 0.184
Q(2+1 ) [e·fm2] −0.690 −0.711
µ(2+1 ) [µN ] −0.873 −0.817
rm (2+1 ) [fm] 2.153 2.141
rm (0+1 ) [fm] 2.113 2.110

the symmetry-truncated spaces under consideration, we compared observables that
are sensitive to the tails of the wavefunctions; specifically, the point-particle rms mat-
ter radii, the electric quadrupole moments and the reduced electromagnetic B(E2)
transition strengths that, in addition, could hint at rotational features [25]. As Table 3
clearly shows, the complete-space results for these observables are remarkably well re-
produced by the SA-NCSM for 6He in the restricted 〈8〉12 space. Similarly, the 〈6〉12
eigensolutions for 6Li yield results for B(E2) strengths and quadrupole moments that
track very closely with their complete Nmax = 12 space counterparts for all values
of ~Ω (Fig. 6). The B(E2) strengths almost double upon increasing the model space
from Nmax = 6 to Nmax = 12. This result suggests that further expansion of the
model space will be needed to reach convergence [26]. The close correlation between
the Nmax = 12 and 〈6〉12 results is nevertheless impressive. In addition to being in
agreement, the results reproduce the challenging sign and magnitude of the ground-
state quadrupole moment that is measured to be Q(1+) = −0.0818(17) e·fm2 [24].

BHE2;11
+
�31

+L Nmax=12
X6\12
Nmax=6

HaL

4
8

12

B
HE

2L

BHE2;12
+
�11

+LHbL

3

5

7

B
HE

2L

QH11
+L

QH12
+L

QH21
+L

QH31
+L

HcL

-5

-3

-1

Q
HJ
+
L

17.5 20.0 22.5 25.0
ÑW @MeVD

Figure 6: Electric quadrupole transition probabilities in units of e2fm4 [(a) and (b),
as shown], and quadrupole moments in units of e·fm2 (c) as a function of ~Ω
for T = 0 states of 6Li calculated using JISP16 in the complete Nmax = 12 space
(dashed black line), the complete Nmax = 6 space (solid blue line), and symmetry-
truncated 〈6〉12 (solid red line) model spaces. Note that while the Nmax = 6
results differ considerably from their Nmax = 12 counterparts, in all cases the
latter are nearly indistinguishable from the truncated 〈6〉12 results. Experimentally,
B(E2; 1+1 → 3+1 ) = 25.6(20) e2fm4 [24].
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Finally, the results for the rms matter radii of 6Li, listed in Table 2, agree to within 1%.
The differences between truncated-space and complete-space results are found to

be essentially insensitive to the choice of ~Ω and appear sufficiently small as to be
inconsequential relative to the residual dependences on ~Ω and on Nmax (see Fig. 6).
Since the NN interaction dominates contributions from three-nucleon forces (3NFs)
in light nuclei, except for selected cases [27–29], we expect our results to be robust
and carry forward to planned applications that will include 3NFs.

5 Conclusion

We have developed a novel approach that capitalizes on advances being made in ab
initio methods while exploiting exact and partial symmetries of nuclear many-body
system. Using this approach we have demonstrated that the low-lying eigenstates
of 6Li, 8Be, 12C, and 16O, which were obtained using the JISP16 and N3LO NN
interaction, exhibit a strong dominance of few intrinsic spin components and carry
an intriguingly simple pattern of dominant deformations. The results very clearly
underscore the significance of the SU(3) scheme, LS-coupling, and underlying sym-
plectic symmetry in enabling an extension, through symmetry-guided model space
reductions, of ab initio methods to heavier nuclei beyond 16O.

Acknowledgments

This work was supported in part by the US NSF (OCI-0904874, OCI-0904782, PHY-
0904782), the US Department of Energy (DE-SC0005248, DE-SC0008485, DE-FG02-
87ER40371), and the Southeastern Universities Research Association. This research
used computing resources of the Louisiana Optical Network Initiative, LSU’s Center
for Computation & Technology, and the National Energy Research Scientific Com-
puting Center, which is supported by the Office of Science of the US Department of
Energy under Contract No. DE-AC02-05CH11231.

References

[1] S. C. Pieper, R. B. Wiringa and J. Carlson, Phys. Rev. C 70, 054325 (2004);
K. M. Nollett, S. C. Pieper, R. B. Wiringa, J. Carlson and G. M. Hale, Phys.
Rev. Lett. 99, 022502 (2007).
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Nuclear Isospin Violation —

How It Turned out and Where It Is Going

Gerald A. Miller
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Abstract

Nuclear isospin violation is reviewed, with emphasis on nucleon-nucleon scat-
tering. The use of the term charge symmetry breaking and its implications are
reviewed. Recent work on charge symmetry breaking in the nucleon electromag-
netic form factors is outlined.

Keywords: Charge independence; charge dependent forces; charge symmetry
breaking

1 Introduction

I was very happy to attend this NTSE conference in honor of James P. Vary. I first
met James at MIT in the 1970’s. I was a graduate student, working with Arthur
Kerman and James was a post-doc in the Center for Theoretical Physics.

My Ph. D. project was to understand the formation and decays of double isobaric
analog states in the reactions of protons with heavy nuclei. Isobaric analog states
are isospin partners (members of the same multiplet) of stable nuclei that are in the
continuum. A double analog states differs by two units of Tz from the stable state.
My problem was that I could not find a sizable contribution. James made the brilliant
suggestion that I should include pairing contributions in 210Po. This enhanced the
formation matrix element by a factor of 7. I was able to graduate and I am forever
grateful to James Vary.

2 Next steps

Interest in isobaric analog states decayed and the focus changed to isospin violating
nucleon-nucleon forces and their consequences in few-body nuclear reactions. It seems
appropriate to comment in the present venue that the computational tools discussed
at NTSE can lead to a much better treatment of nuclear isospin violations than in
the days of my thesis. For example, in my opinion, the computations of the rate for
nuclear super allowed beta decay, used to test the unitarity of the CKM matrix, could
be improved [1, 2].

A particular focus is charge symmetry (CS) and its breaking. CS is invariance
under a rotation in isospin space of π about the y axis. For example, a u quark is
rotated into a d quark. CS is broken slightly by the light-quark mass difference and by

electromagnetic effects. Isospin invariance or [H, ~T ] = 0 is invariance under all rota-
tions in isospin space. This invariance is also called charge independence (CI), which
refers to invariance amongst states with the same isospin quantum number. Charge
symmetry does not imply isospin invariance. Various aspects of charge symmetry and
its breaking have been reviewed, see, e. g., [3–6].

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 73.

http://www.ntse-2013.khb.ru/Proc/Miller.pdf.

73
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For example, the mass difference between charged and neutral pions exchanged
between nucleons leads to forces that violate CI but not CS. This leads to a difference
between 1S0 scattering lengths for the np and nn systems. The Henley & Miller
classification scheme is reviewed in the Appendix.

In general the size of CSB effects is much smaller than the breaking of isospin
invariance, CIB. The scale of CSB is typified by the ratio of the neutron-proton mass
difference to the proton mass which is about one part in 1000. This is much smaller
than the pion mass difference effect which is one part in 27. The CIB of nucleon-
nucleon scattering lengths was discovered well before 1965, but the measurement of
their CSB had to wait until about 1979. Thus the expectation is that CSB is a
small effect, uncovered only with special effort. The small relative size of CSB effects
compared with those of CIB is a consistent with the power counting of of chiral
perturbation theory [7].

3 Highlights since 1972

I summarize the progress. Measurements of the π−d → nnγ cross section showed
that the 1S0 nn force is more attractive than the pp force. As a result the Nolen–
Schiffer anomaly was explained. Charge symmetry breaking was observed in np elastic
scattering [8–13], the reaction np → dπ0 [14], and in the observation of the reac-
tion dd→ απ0 [15]. More detail is presented in the reviews mentioned above.

4 Parity violating electron scattering and

strangeness electromagnetic nucleon form factors

This subject formed the bulk of the talk. I will only explain the basic idea and an
outline of the result here because the subject has already been written up as another
conference proceeding [16].

The basic idea is that parity violating (PV) electron-proton scattering is sensitive
to nucleon strangeness content [17], and also the value of the weak-mixing angle [18].
So far a convincing signal for strangeness in the nucleon has not been seen.

The relevance of charge symmetry or its breaking to PV electron scattering on
the proton arises from the need to relate the amplitude for Z-boson absorption on
the proton to measured proton and neutron electromagnetic form factors. This can
be done if charge symmetry holds.

The breaking of charge symmetry brings in a correction that cannot be obtained
directly from experimental observations [19–21]. The key question is whether the
uncertainty in obtaining the correction is large compared to current and projected
experimental uncertainties. Experimentalists have stated that charge symmetry is
now limiting the ability to push further on the strange form factors because results
obtained with improved precision would be hard to interpret cleanly in terms of
strangeness or CSB.

We have addressed the question of whether or not CSB really limits the ability
to push further. I wrote a paper in 1997 finding that the CSB corrections are less
than 1% of the size of the electromagnetic form factors GE , GM [20]. When re-
expressed in terms of absolute values of charge symmetry breaking form factors, the
results were very small of order 2×10−3. This is small enough to ignore.

However, I had ignored the effect of charge symmetry breaking arising from the
influence of the neutron-proton mass difference on the pion cloud of the nucleon. This
effect was included by Kubis & Lewis [21]. The effects are not small because of a log
divergence in the loop integrals. In their resonance-saturation procedure the pion
graph is cut off at the mass of the rho meson and rho-omega mixing graphs provide a
finite counter term. The resulting effects can be very large and have much uncertainty.
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The result, the charge symmetry breaking magnetic form factor ranges between 0.01
and 0.04, or about 10 times larger than my result. There is also a large uncertainty
in the results due to lack of knowledge of the ω nucleon strong tensor coupling.

Kubis & Lewis [21] take the strong coupling constants from dispersion analyses
of electromagnetic form factors based on vector meson dominance. Such fits are well
known to be flexible. The strong coupling constants for omega-nucleon coupling are
about seven times larger than used in NN scattering. So there is a conflict.

How can we tell which method (or if either method) is correct? One answer is
that the effects of rho-omega mixing in nucleon-nucleon scattering is constrained. It
is known to give a medium range class III CSB potential (see the Appendix for ter-
minology) that can account for the scattering length difference between nn and pp
systems [4, 22], and a class IV CSB potential that plays an important role in under-
standing CSB in np scattering. The class III potential accounts for the missing binding
energy difference between 3He and 3H [23] and also the Nolen–Schiffer anomaly [24],
see the review [5]. The use of the KL coupling constants gives potentials that are
rather different than the one [23] needed phenomenologically.

We (student M. Wagman has joined me) have made new calculations of the CSB
form factors using relativistic chiral perturbation theory. The use of relativistic chiral
perturbation theory leads to finite and convergent results. The preliminary results
are that the charge symmetry breaking form factors are very small.

5 Tasks ahead

One should use a model that describes GE,M well in the absence of CSB, and then
use those models as a basis for CSB computations. One candidate model is that of
Cloet & Miller [25].

More generally, I wish to address a bias. I did a quark model calculation. Kubis &
Lewis did a chiral perturbation theory calculation. One usually thinks that a theory is
better than a model. However, if an unconstrained counter term is needed to evaluate
the theory, then the model is quite close to a theory.

6 Summary

I obtained small < 0.002 CSB effects in 1998. Kubis & Lewis (KL) obtained a range of
about 0.04. However CSB in NN scattering constrains the strong coupling constants
used in the KL resonance saturation calculation. The actual size of the CSB effect
seems pretty small.
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8 Appendix

We review the CSB and CIB terminology of nucleon-nucleon forces [3].
Class (I): Forces which are isospin independent that commute with all components

of the isospin operator. Such forces, VI have an isoscalar form,

VI = a+ b ~τ(i) · ~τ (j), (1)

where a and b are Hermitian isospin independent operators and i 6= j.
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Class (II): Forces which maintain charge symmetry, but break charge indepen-
dence. These can be written in isotensor form,

VII = c
(
τ3(i)τ3(j)− ~τ (i) · ~τ (j)

)
. (2)

The Coulomb interaction leads to a Class II force as do the effects of the pion mass
difference in pion exchange forces. Effects of charge-dependent coupling constants
may also lead to such a Class II force.

Class (III): Forces which break both charge independence and charge symmetry,
but which are symmetric under the interchange i↔ j in isospin space,

VIII = d
(
τ3(i) + τ3(j)

)
. (3)

A Class III force differentiates between nn and pp systems, but does not cause isospin
mixing in the two-nucleon system because

[VIII , T
2] = 0. (4)

The effects of ρ0-ω mixing yields such a force, as does the Coulomb interaction.
Class (IV): Class IV forces break charge symmetry and therefore charge depen-

dence; they cause isospin mixing. These forces take the form

VIV = e
(
~σ(i)− ~σ(j)

)
· ~L
(
τ3(i)− τ3(j)

)
+ f

(
~σ(i)× ~σ(j)

)
· ~L
(
τ3(i)× τ3(j)

)
, (5)

where ~L is the two-nucleon orbital angular momentum, e and f are Hermitian op-
erators that commute with ~T . Such forces give CSB spin-orbit effects that account
for the np analyzing power differences [8–13] and contribute to nuclear isospin mix-
ing [26]. Effective field theory [7] tells us that the ordering of the strengths is given
by VI > VII > VIII > VIV .
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Abstract

Within a few years’ time, the “Nuclear Physics Pillar” of ELI (Extreme Light
Infrastructure) is expected to produce coherent strong short laser pulses with
several MeV energy per photon. We discuss theoretical expectations for the
nuclear reactions induced by such pulses with medium-weight and heavy nuclei.

Keywords: Statistical nuclear theory; compound-nucleus reactions; gamma-
induced reactions

1 Introduction

This work is motivated by recent developments in laser instrumentation. Within a few
years’ time, coherent laser beams with energies of several MeV per photon and 10−19 s
length in time are expected to become available for the study of laser-induced nuclear
reactions. Three steps are expected to lead towards that goal:

(i) The “Nuclear Physics Pillar” of ELI [1] (Extreme Light Infrastructure) presently
under construction in Romania provides a very-high-intensity but otherwise conven-
tional laser beam.

(ii) Passage of that laser beam through an extremely thin diamond-like Carbon
foil (about 5 nm thick) ejects a “sheet” of relativistic electrons of several 10 MeV
energy.

(iii) That sheet acts like a mirror for the photons of a second (conventional) laser
beam. Compton backscattering of the photons produces a coherent laser pulse with
several MeV energy per photon and ≈10−19 s length in time.

Recent experiments have shown that passage of a laser beam through a thin Car-
bon foil does indeed produce electrons with energies of several 10 MeV, see Fig. 1.
The production of a very thin sheet of electrons and the coherent backscattering of
another laser beam on that sheet are presently under intense investigation [3].

These developments pose a challenge to nuclear theory. What kind of processes
do we expect at which rate when a laser beam with coherent photons of several MeV
per photon and 10−19 s time duration hits a nucleus? What is the difference to the
so far widely studied atom-laser interaction?

2 Reaction mechanisms

To answer these questions, we consider a short strong laser pulse with N = 102−104

coherent photons per pulse, with a mean photon energy EL of 5–10 MeV, and with an
energy spread σ of 10−50 keV corresponding to a length in time of about 10−19 s. Such
a pulse seems extremely strong. But comparison with the atomic case shows that for
nuclei it is still actually rather weak. In atoms, the electric field strength of a strong
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Figure 1: Energy distribution of electrons ejected from two Carbon foils of different
thicknesses by a conventional laser beam. Taken from Ref. [2].

laser pulse distorts the nuclear Coulomb potential. Thus, the field strength is of order
(eV/ Bohr radius) in magnitude. A corresponding field strength in nuclei would have
to be of order (MeV/fm), i. e., about 10 orders of magnitude stronger. That is far more
than what is achieved by a laser pulse with the above-mentioned specifications. Thus,
even such a strong laser pulse provides only a fairly weak perturbation for nuclei. The
difference is due to the fact that nuclei are governed by the strong interaction.

For photons of several MeV energy, the product of wave number and nuclear radius
is small compared to unity, and it is justified to consider only dipole absorption, the
dominant mode of gamma absorption in nuclei. The dipole width Γdip is strongly
energy dependent but, for photon energies of several MeV, has a typical value of
several keV. Because of the large number N of photons in the pulse (and since the
number N0 of photons absorbed from the pulse always obeys N0 ≪ N) we use the
semiclassical approximation throughout the reaction. The characteristic parameter
is then NΓdip ≈ 102−104 keV. The competition between the rate NΓdip/~ for dipole
absorption and the nuclear relaxation rate Γspr/~ (where the spreading width Γspr has
a typical value of 5 MeV) defines three regimes for laser-induced nuclear reactions:

(i) The perturbative regime NΓdip ≪ Γspr. Here, one-step excitation of the Giant
Dipole Resonance (GDR) dominates. Double or multiple excitation via absorption of
several photons turns out to be unlikely.

(ii) The quasi-adiabatic regime NΓdip ≈ Γspr. The rates for photon absorption
and equilibration are about equal. The nucleus remains close to equilibrium during
the entire process. Multiple photon absorption leads to excitation energies up to
several 100 MeV. Equilibration is caused by the residual interaction in nuclei. The
process seems to have no analogue in laser-atom interactions and constitutes a new
regime for the interaction of laser light with matter [4].

(iii) The sudden regime NΓdip ≫ Γspr. The residual interaction is irrelevant.
Nucleons absorb photons individually until their energy exceeds the binding energy
whereupon they are ejected. If the laser pulse lasts long enough, the nucleus com-
pletely evaporates.

In this paper we discuss processes (i) and (ii).
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3 Perturbative regime: collective excitation

In the perturbative regime, excitation of the GDR is the dominant process. In Ref. [5]
the GDR and its harmonics were modeled as doorway states coupled to a large num-
ber of background states. The latter were described in terms of a random-matrix
model. The Brink–Axel hypothesis was used (every excited nuclear state possesses
its own GDR). With these assumptions it was shown that in the perturbative regime,
the GDR is only singly excited. Multiple photon absorption is an unlikely process.

For an even-even target nucleus the GDR is spread over a large number of states
with spin/parity 1−. In medium-weight and heavy nuclei these have typical spac-
ings of 10 eV. A photon with an energy spread σ ≈ 50 keV excites an entire band
of 103−104 such states coherently. Such coherent excitation precludes the observa-
tion of individual excited states. The relevant observable is the decay in time of the
compound nucleus. That decay provides information on amplitude correlations that
are not available otherwise. For photon energies below (right above) neutron thresh-
old, the decay process is exponential (non-exponential) in time. The non-exponential
time dependence is a direct consequence of the Porter–Thomas distribution of neutron
decay widths [6]. Examples are shown in Figures 2 and 3, both taken from Ref. [6].

Figure 2: Decay in time of the compound nucleus excited by photon absorption to
states below neutron threshold with average level spacing d. Time is in units of h/d.
Decay is calculated for 50 gamma decay channels all with the same transmission
coefficients T .

Figure 3: Decay in time of the compound nucleus excited by photon absorption to
states right above neutron threshold with average level spacing d. Time is in units
of h/d. Decay is calculated for 50 gamma decay channels all with the same trans-
mission coefficients Tγ = 0.0016 and a single open neutron channel with transmission
coefficient Tn = 0.4. The index b denotes the exit channel, the index zero denotes the
ground state.
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Figure 4: Distribution of spin values in the compound nucleus after absorption of N0

photons (values in the legend above) versus spin.

4 Quasi-adiabatic regime

The absorption of N0 dipole photons leads to a slow growth ∝ √N0 of the total spin
of the compound nucleus, see Fig. 4. Even the absorption of 100 photons of 5 MeV
each, producing states 500 MeV above the ground state, on average only leads to spin
values around 10. Thus, multiple photon absorption excites states far above the yrast
line, a domain of excitation energies hardly explored so far. In view of these small
spin values we totally neglect spin in what follows. As is usual for compound-nucleus
processes, the reaction is described in terms of rate equations. In addition to the
rates Γdip/~ for dipole absorption and Γspr/~ for internal equilibration, we need the
rates for induced gamma emission, for neutron evaporation, and for gamma-induced
emission of neutrons and protons. These rates typically depend on nuclear level
densities (total density, density of particle-hole states, density of accessible states,
etc.). At excitation energies of several 100 MeV above yrast and for medium-weight
and heavy nuclei, such level densities are huge (values like 1030 or 1040 times the mean
single-particle level density are easily attained), and the reliable and quick calculation
of such densities poses a challenge.

4.1 Level density

In Refs. [7, 8] we have developed a new approach that is specifically tailored to the
problem. In short, the total level density is obtained by distributing A non-interacting
fermions over a finite number of bound single-particle states defined in terms of a
mean-field or a shell-model potential. Here A is the nuclear mass number. For an
arbitrary set of single-particle energies, we derive exact analytical expressions for the
low moments and low cumulants of the total level density. These are used to determine
approximate expressions for the total level density and for particle-hole densities. The
Fermi-gas model is used to calculate the density of accessible states.

The resulting total level density (in units of the inverse single-particle level spac-
ing) for p particles distributed over b = 51 equally spaced single-particle states is
shown in Fig. 5, taken from Ref. [7]. The performance of the approximation used
in our approach is shown for several values of p in Fig. 6 (taken from Ref. [7]) by
comparison with exact numerical calculations. The agreement is good in the center
of the spectrum. Significant differences arise only in the tails. That pattern prevails
for all our calculations.
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Figure 5: Contour plot of the level density for p particles in b = 51 equally spaced
single-particle states as a function of energy ε (in units of the single-particle level
spacing). Because of the exclusion principle, only states within the colored domain
are accessible. The full line depicts the constant level density contour at 1011.

For medium-weight and heavy nuclei, the constant-spacing model is unrealistic.
In the calculations reported in Ref. [8] we have, therefore, used smooth single-particle
level densities that increase linearly or quadratically with energy. Typical results for
the level density for two choices of the single-particle density are shown in Fig. 7,
taken from Ref. [8].

In summary, we have developed an analytic, fast-to-implement approach to the
calculation of the total level density, and to particle-hole densities. The approach
works well for high excitation energies and large particle numbers. It seems desirable,
of course, to develop an approximation that is uniformly good in all parts of the spec-
trum. The huge numbers attained by the nuclear level density (measured in units of
the mean single-particle density) preclude such a possibility: for the constant-spacing
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Figure 6: Relative difference between approximate and exact values of the level density
for a constant-spacing model with b = 51 single-particle states and p fermions.
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Figure 7: Plot of the normalized level density RA(E) versus energy E (in MeV) for
A = 100 particles in B = 148 states for the constant-spacing model (full line) and for
a smooth single-particle level density that rises linearly with energy (dashed line).

model with 100 particles in 200 single-particle states, the level density ranges over 60
orders of magnitude. That is the accuracy with which exact analytical expressions (if
available) would have to be evaluated. This shows that different approximations are
needed in different parts of the spectrum.

4.2 Implications for photon-induced reactions

We consider absorption of photons with energy EL = 5 MeV. For clarity we first
neglect both neutron evaporation and stimulated nucleon emission. The rate for
induced photon emission increases with increasing excitation energy. At the maxi-
mum E0 of the total level density, that rate becomes equal to the rate for photon
absorption: excitation beyond E0 is not possible. The occupation probability of ex-
cited nuclear states is nearly stationary and hovers around E0 while the laser pulse
lasts. With E0 amounting typically to several 100 MeV, excitation of the compound
nucleus to energies several 100 MeV above yrast is a novel feature of laser-induced
photon absorption.

The picture changes when neutron evaporation is taken into account. The use of
the Weisskopf formula and of our results for the total level density shows that the
neutron emission becomes competitive with photon absorption only at high excitation
energies (several 10 MeV below E0). The emitted neutrons have predominantly small
energies around 10 or 20 MeV and populate highly excited states several 10 MeV
below E0 in the daughter nucleus. These in turn undergo photon absorption and
neutron emission, leading to highly excited states in the nucleus having two neutrons
less than the target nucleus. In this way, the reaction traverses a chain of nuclei with
equal proton numbers and ever decreasing neutron numbers. The reaction terminates
after emission of n0 neutrons where n0 is determined by the duration in time of the
laser pulse. This shows that, depending on the length in time of the laser pulse,
laser-induced reactions offer the possibility to generate and study nuclei far off the
valley of stability, differing by n0 neutrons from the target nucleus.

The picture changes once again when emission of nucleons directly induced by
photon absorption is taken into account. The emission produces neutrons and protons
with nearly equal probabilities. That spreads the distribution of final nuclei, filling
the gap between the valley of stability and a nucleus differing by n0 neutrons from
the target nucleus.
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5 Conclusions

Coherent laser beams with photon energies around 5 to 10 MeV and pulse lengths
of 10−19 s are expected to be available within a few years’ time. The nuclear reactions
induced by such short and intense laser pulses differ from laser-atom reactions in two
essential aspects: (i) The nucleus is a strongly interacting system, the laser-nuclear
interaction is, therefore, comparatively weak, and (ii) the nucleus may equilibrate, and
the excitation of a long-lived compound nucleus at excitation energies several 100 MeV
above yrast is possible. That defines a new regime of laser-matter interactions and
opens the possibility to study nuclear level densities at such energies.

The competition between the absorption rate for photons and the nuclear equili-
bration rate defines three regimes. In the perturbative regime, even a strong short
laser pulse only leads to single excitation of the GDR. Multiple photon absorption is
unlikely. Coherent excitation of a broad band of excited states is observable via the
time-decay function. For photon energies larger than neutron threshold, the decay in
time is non-exponential. In the quasi-adiabatic regime, about one photon is absorbed
per nuclear relaxation time. Up to 100 or more photons may be absorbed, with little
angular momentum transfer to the compound nucleus, leading to the large excitation
energies above yrast mentioned above. The decay by neutrons and induced emission
of neutrons and protons produces a distribution of final nuclei that extends from the
valley of stability to a nucleus that differs from the target nucleus by minus n0 neu-
trons. Here n0 is determined by the duration time of the laser pulse. This offers the
possibility to study proton-rich nuclei far from the valley of stability.
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Abstract

Light-Front Hamiltonian theory, derived from the quantization of the QCD
Lagrangian at fixed light-front time τ = x0 + x3, provides a rigorous frame-
independent framework for solving nonperturbative QCD. The eigenvalues of
the light-front QCD Hamiltonian HLF predict the hadronic mass spectrum, and
the corresponding eigensolutions provide the light-front wavefunctions which de-
scribe hadron structure. In the case of mesons, the valence Fock-state wavefunc-
tions of HLF for zero quark mass satisfy a single-variable relativistic equation of
motion in the invariant variable ζ2 = b2⊥x(1− x), which is conjugate to the in-
variant mass squaredM2

qq̄ . The effective confining potential U(ζ2) in this frame-
independent “light-front Schrödinger equation” systematically incorporates the
effects of higher quark and gluon Fock states. Remarkably, the potential has
a unique form of a harmonic oscillator potential if one requires that the chiral
QCD action remains conformally invariant. The result is a nonperturbative rel-
ativistic light-front quantum mechanical wave equation which incorporates color
confinement and other essential spectroscopic and dynamical features of hadron
physics.

Anti-de Sitter space in five dimensions plays a special role in elementary
particle physics since it provides an exact geometrical representation of the con-
formal group. Remarkably, gravity in AdS5 space is holographically dual to
frame-independent light-front Hamiltonian theory. Light-front holography also
leads to a precise relation between the bound-state amplitudes in the fifth di-
mension z of AdS space and the variable ζ, the argument of the boost-invariant
light-front wavefunctions describing the internal structure of hadrons in phys-
ical space-time. The holographic mapping of gravity in AdS space to QCD
with a specific “soft-wall” dilaton yields the confining potential U(ζ2) which
is consistent with conformal invariance of the QCD action and the light-front
Schrödinger equation, extended to hadrons with arbitrary spin J . One thus ob-
tains an effective light-front effective theory for general spin which respects the
conformal symmetry of the four-dimensional classical QCD Lagrangian. The
predictions of the LF equations of motion include a zero-mass pion in the chi-
ral mq → 0 limit, and linear Regge trajectories M2(n,L) ∝ n+L with the same
slope in the radial quantum number n and the orbital angular momentum L.
The light-front AdS/QCD holographic approach thus gives a frame-independent
representation of color-confining dynamics, Regge spectroscopy, as well as the
excitation spectra of relativistic light-quark meson and also baryon bound states
in QCD in terms of a single mass parameter.

We also briefly discuss the implications of the underlying conformal tem-
plate of QCD for renormalization scale-setting and the implications of light-front
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quantization for the value of the cosmological constant.

Keywords: Quantum chromodynamics; light-front quantization; holography;
AdS/QCD correspondence

1 Introduction

The remarkable advantages of using light-front time τ = x0 +x3/c (the “front form”)
to quantize a theory instead of the standard time t = x0 (the “instant form”) was first
demonstrated by Dirac. As Dirac showed [1], the front form has the maximum number
of kinematic generators of the Lorentz group, including the boost operator. Thus the
description of a hadron at fixed τ is independent of the observer’s Lorentz frame,
making it ideal for addressing dynamical processes in quantum chromodynamics.

The quantization of QCD at fixed light-front (LF) time — light-front quantiza-
tion — provides a first-principles method for solving nonperturbative QCD. Given
the Lagrangian, one can determine the LF Hamiltonian HLF in terms of the inde-
pendent quark and gluon fields. The eigenvalues of HLF determine the mass-squared
values of both the discrete and continuum hadronic spectra. The eigensolutions de-
termine the LF wavefunctions required for predicting hadronic phenomenology. The
LF method is relativistic, has no fermion-doubling, is formulated in Minkowski space,
and is frame-independent. The eigenstates are defined at fixed τ within the causal
horizon, so that causality is maintained without normal-ordering. In fact, light-front
physics is a fully relativistic field theory, but its structure is similar to nonrelativis-
tic atomic physics, and the resulting bound-state equations can be formulated as
relativistic Schrödinger-like equations at equal light-front time. Given the frame-
independent light-front wavefunctions (LFWFs) ψn/H , one can compute a large range
of hadronic observables, starting with form factors, structure functions, generalized
parton distributions, Wigner distributions, etc., as illustrated in Fig. 1. For exam-
ple, the “handbag” contribution [3] to the E and H generalized parton distributions
for deeply virtual Compton scattering can be computed from the overlap of LFWFs,
automatically satisfy the known sum rules.

Computing hadronic matrix elements of currents is particularly simple in the light-
front, since they can be written as an overlap of light-front wave functions (LFWFs)
as in the Drell–Yan–West formula [4–6]. For example, a virtual photon couples only
to forward-moving k+ > 0 quarks, and only processes with the same number of initial
and final partons are allowed. In contrast, if one uses ordinary fixed time t, the
hadronic states must be boosted from the hadron’s rest frame to a moving frame —
an intractable dynamical problem. In fact, the boost of a composite system at fixed
time t is only known at weak binding [7, 8]. Moreover, form factors at fixed instant
time t require computing off-diagonal matrix elements as well as the contributions of
currents arising from fluctuations of the vacuum in the initial state which connect to
the hadron wavefunction in the final state. Thus, the knowledge of wave functions
alone is not sufficient to compute covariant current matrix elements in the usual
instant-form framework.

The gauge-invariant meson and baryon distribution amplitudes which control hard
exclusive and direct reactions are the valence LFWFs integrated over transverse mo-
mentum at fixed xi = k+/P+. The ERBL evolution of distribution amplitudes and
the factorization theorems for hard exclusive processes were derived using LF the-
ory [9, 10].

Because of Wick’s theorem, light-front time-ordered perturbation theory is equiv-
alent to covariant Feynman perturbation theory. The higher order calculation of the
electron anomalous moment at order α3 and the “alternating denominator method”
for renormalizing LF perturbation theory is given in Ref. [11].

Quantization in the light-front provides the rigorous field-theoretical realization
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Figure 1: Examples of hadronic observables, including Wigner functions and T -odd
observables which are based on overlaps of light-front wavefunctions. Adopted from
a figure by F. Lorce and B. Pasquini [2].

of the intuitive ideas of the parton model [12,13] which is formulated at fixed t in the
infinite-momentum frame [14, 15]. The same results are obtained in the front form
for any frame; e. g., the structure functions and other probabilistic parton distribu-
tions measured in deep inelastic scattering are obtained from the squares of the boost
invariant LFWFs, the eigensolution of the light-front Hamiltonian. The familiar kine-
matic variable xbj of deep inelastic scattering becomes identified with the LF fraction
at small x.

A measurement in the front form is analogous to taking a flash picture. The image
in the resulting photograph records the state of the object as the front of the light
wave from the flash illuminates it; in effect, this is a measurement within the spacelike
causal horizon ∆xµ

2 ≤ 0. Similarly, measurements such as deep inelastic lepton-
proton scattering ℓH → ℓ′X , determine the LFWF and structure of the target hadron
H at fixed light-front time. For example, the BFKL Regge behavior of structure
functions can be demonstrated [16] from the behavior of LFWFs at small x.

One can also prove fundamental theorems for relativistic quantum field theories
using the front form, including: (a) the cluster decomposition theorem [17] and
(b) the vanishing of the anomalous gravitomagnetic moment for any Fock state of
a hadron [18]; one also can show that a nonzero anomalous magnetic moment of a
bound state requires nonzero angular momentum of the constituents. Stasto and
Cruz-Santiago [19] have shown that the cluster properties [20] of LF time-ordered
perturbation theory, together with Jz conservation, can be used to elegantly derive
the Parke–Taylor rules for multi-gluon scattering amplitudes. The counting-rule [21]
behavior of structure functions at large x and Bloom–Gilman duality have also been
derived in LFQCD as well as from holographic QCD [22].

The physics of diffractive deep inelastic scattering and other hard processes where
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the projectile hadron remains intact is most easily analysed using LF QCD [23]. The
existence of “lensing effects” at leading twist, such as the T -odd “Sivers effect” in
spin-dependent semi-inclusive deep-inelastic scattering, was first demonstrated using
LF methods [24]. QCD properties such as “color transparency” [25], the “hidden
color” of the deuteron LFWF [26], and the existence of intrinsic heavy quarks in
the LFWFs of light hadrons [27, 28] can be derived from the structure of hadronic
LFWFs. It is also possible to compute jet hadronization at the amplitude level from
first principles from the LFWFs [29]. The LFWFs of hadrons thus provide a direct
connection between observables and the QCD Lagrangian.

Light-front quantization is thus the natural framework for the description the
nonperturbative relativistic bound-state structure of hadrons in quantum chromody-
namics. The formalism is rigorous, relativistic and frame-independent. In principle,
one can solve nonperturbative QCD by diagonalizing the light-front QCD Hamilto-
nianHLF directly using the “discretized light-cone quantization” (DLCQ) method [30]
which imposes periodic boundary conditions to discretize the k+ and k⊥ momenta,
or the Hamiltonian transverse lattice formulation introduced in Refs. [31–33]. The
hadronic spectra and light-front wavefunctions are then obtained from the eigenval-
ues and eigenfunctions of the Heisenberg problem HLF |ψ〉 = M2|ψ〉, an infinite set
of coupled integral equations for the light-front components ψn = 〈n|ψ〉 in a Fock
expansion [30]. These nonperturbative methods have the advantage that they are
frame-independent, defined in physical Minkowski space-time, and have no fermion-
doubling problem. The DLCQ method has been applied successfully in lower space-
time dimensions [30], such as QCD(1+1) [34]. It has also been applied successfully
to a range of 1+1 string theory problems by Hellerman and Polchinski [35, 36].

Solving the eigenvalue problem using DLCQ is a formidable computational task
for a non-abelian quantum field theory in four-dimensional space-time because of
the large number of independent variables. Consequently, alternative methods and
approximations are necessary to better understand the nature of relativistic bound-
states in the strong-coupling regime. One of the most promising methods for solving
nonperturbative (3+1) QCD is the “Basis Light-Front Quantization” (BFLQ) method
initiated by James Vary [37] and his collaborators. In the BLFQ method one con-
structs a complete orthonormal basis of eigenstates based on the eigensolutions of the
effective light-front Schrödinger equation derived from light-front holography, in the
spirit of the nuclear shell model. Matrix diagonalization for BLFQ should converge
more rapidly than DLCQ since the basis states have a mass spectrum close to the
observed hadronic spectrum.

An extensive review of light-front quantization is given in Ref. [30]. As we shall
discuss here, light-front quantized field theory in physical 3 + 1 space-time has a
holographic dual with dynamics of theories in five-dimensional anti-de Sitter space,
giving important insight into the nature of color confinement in QCD.

2 What is the origin of the QCD mass scale?

If one sets the masses of the quarks to zero, no mass scale appears explicitly in the
QCD Lagrangian. The classical theory thus displays invariance under both scale
(dilatation) and special conformal transformations [38]. Nevertheless, the quantum
theory built upon this conformal template displays color confinement, a mass gap,
as well as asymptotic freedom. A fundamental question is thus how does the mass
scale which determines the masses of the light-quark hadrons, the range of color
confinement, and the running of the coupling appears in QCD?

A hint to the origin of the mass scale in nominally conformal theories was given in
1976 in a remarkable paper by V. de Alfaro, S. Fubini and G. Furlan (dAFF) [39] in
the context of one-dimensional quantum mechanics. They showed that the mass scale
which breaks dilatation invariance can appear in the equations of motion without
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violating the conformal invariance of the action. In fact, this is only possible if the re-
sulting potential has the form of a confining harmonic oscillator, and the transformed
time variable τ that appears in the confining theory has a limited range.

In this contribution to the NTSE meeting we will review how the application of
the dAFF procedure, together with light-front quantum mechanics and light-front
holographic mapping, leads to a new analytic approximation to QCD — a light-
front Hamiltonian and corresponding one-dimensional light-front (LF) Schrödinger
and Dirac equations which are frame-independent, relativistic, and reproduce crucial
features of the spectroscopy and dynamics of the light-quark hadrons. The predictions
of the LF equations of motion include a zero-mass pion in the chiral mq → 0 limit,
and linear Regge trajectories M2(n, L) ∝ n + L with the same slope in the radial
quantum number n (the number of nodes) and L = max |Lz|, the internal orbital
angular momentum. In fact, we will also show that the effective confinement potential
which appears in the LF equations of motion is unique if we require that the chiral
QCD action remains conformally invariant.

3 Light-front holography

An important analysis tool for QCD is anti-de Sitter space in five dimensions. In par-
ticular, AdS5 provides a remarkable geometric representation of the conformal group
which underlies the conformal symmetry of classical QCD. One can modify AdS space
by using a dilaton factor in the AdS action eϕ(z) to introduce the QCD confinement
scale. However, we shall show that if one imposes the requirement that the action
of the corresponding one-dimensional effective theory remains conformal invariant,
then the dilaton profile ϕ(z) ∝ zs is constrained to have the specific power s = 2,
a remarkable result which follows from the dAFF construction of conformally invari-
ant quantum mechanics [40]. A related argument is given in Ref. [41] The quadratic
form ϕ(z) = ± κ2z2 immediately leads to linear Regge trajectories [42] in the hadron
mass squared.

A simple way to obtain confinement and discrete normalizable modes is to truncate
AdS space with the introduction of a sharp cut-off in the infrared region of AdS space,
as in the “hard-wall” model [43], where one considers a slice of AdS space, 0 ≤ z ≤ z0,
and imposes boundary conditions on the fields at the IR border z0 ∼ 1/ΛQCD. As first
shown by Polchinski and Strassler [43], the modified AdS space, provides a deriva-
tion of dimensional counting rules [44, 45] in QCD for the leading power-law fall-off
of hard scattering beyond the perturbative regime. The modified theory generates
the point-like hard behavior expected from QCD, instead of the soft behavior char-
acteristic of extended objects [43]. The physical states in AdS space are represented

by normalizable modes ΦP (x, z) = e−iP ·xΦ(z), with plane waves along Minkowski
coordinates xµ and a profile function Φ(z) along the holographic coordinate z. The
hadronic invariant mass PµP

µ = M2 is found by solving the eigenvalue problem for
the AdS wave equation.

“Light-front holography” refers to the remarkable fact that dynamics in AdS space
in five dimensions is dual to a semiclassical approximation to Hamiltonian theory in
physical 3+1 space-time quantized at fixed light-front time [46]. The correspondence
between AdS and QCD, which was originally motivated by the AdS/CFT correspon-
dence between gravity on a higher-dimensional space and conformal field theories in
physical space-time [47], has its most explicit and simplest realization as a direct holo-
graphic mapping to light-front Hamiltonian theory [46]. For example, the equation of
motion for mesons on the light-front has exactly the same single-variable form as the
AdS equation of motion; one can then interpret the AdS fifth dimension variable z in
terms of the physical variable ζ, representing the invariant separation of the q and q̄
at fixed light-front time. There is a precise connection between the quantities that
enter the fifth dimensional AdS space and the physical variables of LF theory. The
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Figure 2: Light-front holography: Mapping between the hadronic wavefunctions of
the anti-de Sitter approach and eigensolutions of the light-front Hamiltonian theory
derived from the equality of LF and AdS formula for EM and gravitational current
matrix elements and their identical equations of motion.

AdS mass parameter µR maps to the LF orbital angular momentum. The formulae
for electromagnetic [48] and gravitational [49] form factors in AdS space map to the
exact Drell–Yan–West formulae in light-front QCD [50–52].

The light-front holographic principle provides a precise relation between the bound-
state amplitudes in AdS space and the boost-invariant LF wavefunctions describing
the internal structure of hadrons in physical space-time (see Fig. 2). The result-
ing valence Fock-state wavefunctions satisfy a single-variable relativistic equation of
motion analogous to the eigensolutions of the nonrelativistic radial Schrödinger equa-
tion. The quadratic dependence in the effective quark-antiquark potential U(ζ2, J) =
κ4ζ2 + 2κ2(J − 1) is determined uniquely from conformal invariance. The constant
term 2κ2(J − 1) = 2κ2(S + L− 1) is fixed by the duality between AdS and LF quan-
tization for spin-J states, a correspondence which follows specifically from the sepa-
ration of kinematics and dynamics on the light-front [53]. The LF potential thus has
a specific power dependence-in effect, it is a light-front harmonic oscillator potential.
It is confining and reproduces the observed linear Regge behavior of the light-quark
hadron spectrum in both the orbital angular momentum L and the radial node num-
ber n. The pion is predicted to be massless in the chiral limit [54] — the positive
contributions to m2

π from the LF potential and kinetic energy is cancelled by the
constant term in U(ζ2, J) for J = 0. This holds for the positive sign of the dila-
ton profile ϕ(z) = κ2z2. The LF dynamics retains conformal invariance of the action
despite the presence of a fundamental mass scale. The constant term in the LF poten-
tial U(ζ2, J) derived from LF holography is essential; the masslessness of the pion and
the separate dependence on J and L are consequences of the potential derived from
the holographic LF duality with AdS for general J and L [40,53]. Thus the light-front
holographic approach provides an analytic frame-independent first approximation to
the color-confining dynamics, spectroscopy, and excitation spectra of the relativistic
light-quark bound states of QCD. It is systematically improvable in full QCD using
the basis light-front quantization (BLFQ) method [37] and other methods.

We now give an example of light-front holographic mapping for the specific case
of the elastic pion form factor. In the higher-dimensional gravity theory, the hadronic
transition amplitude corresponds to the coupling of an external electromagnetic
field AM (x, z), for a photon propagating in AdS space, with an extended field ΦP (x, z)
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describing a meson in AdS is [48]

∫
d4x dz

√
g AM (x, z) Φ∗

P ′(x, z)
←→
∂M ΦP (x, z)

∼ (2π)4 δ4(P ′− P − q) ǫµ(P + P ′)µ FM (q2), (1)

where the coordinates of AdS5 are the Minkowski coordinates xµ and z labeled xM =
(xµ, z), with M = 1, ..., 5, and g is the determinant of the metric tensor. The ex-
pression on the right-hand side of (1) represents the space-like QCD electromagnetic
transition amplitude in physical space-time 〈P ′|Jµ(0)|P 〉 = (P + P ′)µ FM (q2). It is
the EM matrix element of the quark current Jµ =

∑
q eq q̄γ

µq, and represents a local
coupling to pointlike constituents. Although the expressions for the transition ampli-
tudes look very different, one can show that a precise mapping of the matrix elements
can be carried out at fixed light-front time [50, 51].

The form factor is computed in the light front formalism from the matrix elements
of the plus current J+ in order to avoid coupling to Fock states with different numbers
of constituents and is given by the Drell–Yan–West expression. The form factor can
be conveniently written in impact space as a sum of overlap of LFWFs of the j =
1, 2, ..., n− 1 spectator constituents [55]

FM (q2) =
∑

n

n−1∏

j=1

∫
dxjd

2b⊥j exp
(
iq⊥ ·

n−1∑

j=1

xjb⊥j

)
×
∣∣ψn/M (xj ,b⊥j)

∣∣2 , (2)

corresponding to a change of transverse momentum xjq⊥ for each of the n− 1 spec-
tators with

∑n
i=1 b⊥i = 0. The formula is exact if the sum is over all Fock states n.

For simplicity, consider a two-parton bound-state. The qq̄ LF Fock state wave-
function for a meson can be written as

ψ(x, ζ, ϕ) = eiLϕX(x)
φ(ζ)√
2πζ

, (3)

thus factoring the longitudinal, X(x), transverse, φ(ζ), and angular dependence ϕ. If
both expressions for the form factor are to be identical for arbitrary values of Q, we
obtain φ(ζ) = (ζ/R)3/2Φ(ζ) and X(x) =

√
x(1 − x) [50], where we identify the trans-

verse impact LF variable ζ with the holographic variable z, z → ζ =
√
x(1− x) |b⊥|,

where x is the longitudinal momentum fraction and b⊥ is the transverse-impact dis-
tance between the quark and antiquark. Extension of the results to arbitrary n follows
from the x-weighted definition of the transverse impact variable of the n−1 spectator
system given in Ref. [50]. Identical results follow from mapping the matrix elements
of the energy-momentum tensor [52].

4 The light-front Schrödinger equation:
A semiclassical approximation to QCD

It is advantageous to reduce the full multiparticle eigenvalue problem of the LF Hamil-
tonian to an effective light-front Schrödinger equation which acts on the valence sector
LF wavefunction and determines each eigensolution separately [56]. In contrast, di-
agonalizing the LF Hamiltonian yields all eigensolutions simultaneously, a complex
task. The central problem then becomes the derivation of the effective interaction U
which acts only on the valence sector of the theory and has, by definition, the same
eigenvalue spectrum as the initial Hamiltonian problem. In order to carry out this
program one must systematically express the higher Fock components as function-
als of the lower ones. This method has the advantage that the Fock space is not
truncated, and the symmetries of the Lagrangian are preserved [56].
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Figure 3: Reduction of the QCD light-front Hamiltonian to an effective qq̄ bound
state equation. The potential is determined from spin-J representations on AdS5

space. The harmonic oscillator form of U(ζ2) is determined by the requirement that
the action remain conformally invariant.

A hadron has four-momentum P = (P−, P+,P⊥), P± = P 0 ± P 3 and invariant

mass P 2 = M2. The generators P = (P−, P+, ~P⊥) are constructed canonically
from the QCD Lagrangian by quantizing the system on the light-front at fixed LF
time x+, x± = x0±x3 [30]. The LF Hamiltonian P− generates the LF time evolution
with respect to the LF time x+, whereas the LF longitudinal P+ and transverse
momentum ~P⊥ are kinematical generators.

In the limit of zero quark masses the longitudinal modes decouple from the invari-
ant LF Hamiltonian equation HLF |φ〉 = M2|φ〉, with HLF = PµP

µ = P−P+ −P2
⊥.

The result is a relativistic and frame-independent light-front wave equation for φ [46]
(see Fig. 3)

[
− d2

dζ2
− 1− 4L2

4ζ2
+ U

(
ζ2, J

)]
φn,J,L(ζ2) = M2 φn,J,L(ζ2). (4)

This equation describes the spectrum of mesons as a function of n, the number of nodes
in ζ, the total angular momentum J , which represent the maximum value of |Jz |, J =
max |Jz|, and the internal orbital angular momentum of the constituents L = max |Lz|.
The variable z of AdS space is identified with the LF boost-invariant transverse-
impact variable ζ [50], thus giving the holographic variable a precise definition in LF
QCD [46, 50]. For a two-parton bound state ζ2 = x(1 − x)b 2⊥. In the exact QCD
theory U is related to the two-particle irreducible qq̄ Green’s function.

The potential in the the light-front Schrödinger equation (4) is determined from
the two-particle irreducible (2PI) qq̄ → qq̄ Greens’ function. In particular, the reduc-
tion from higher Fock states in the intermediate states leads to an effective interac-
tion U

(
ζ2, J

)
for the valence |qq̄〉 Fock state [56]. A related approach for determining

the valence light-front wavefunction and studying the effects of higher Fock states
without truncation has been given in Ref. [57].
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Unlike ordinary instant-time quantization, the light-front Hamiltonian equations
of motion are frame independent; remarkably, they have a structure which matches
exactly the eigenmode equations in AdS space. This makes a direct connection of
QCD with AdS methods possible. In fact, one can derive the light-front holographic
duality of AdS by starting from the light-front Hamiltonian equations of motion for
a relativistic bound-state system in physical space-time [46].

5 Effective confinement from the

gauge/gravity correspondence

Recently we have derived wave equations for hadrons with arbitrary spin J starting
from an effective action in AdS space [53]. An essential element is the mapping of the
higher-dimensional equations to the LF Hamiltonian equation found in Ref. [46]. This
procedure allows a clear distinction between the kinematical and dynamical aspects of
the LF holographic approach to hadron physics. Accordingly, the non-trivial geometry
of pure AdS space encodes the kinematics, and the additional deformations of AdS
encode the dynamics, including confinement [53].

A spin-J field in AdSd+1 is represented by a rank J tensor field ΦM1···MJ
, which

is totally symmetric in all its indices. In presence of a dilaton background field ϕ(z)
the effective action is [53]

Seff =

∫
ddx dz

√
|g| eϕ(z) gN1N

′

1 · · · gNJN
′

J

×
(
gMM ′

DM Φ∗
N1...NJ

DM ′ ΦN ′

1
...N ′

J
− µ2

eff (z) Φ∗
N1...NJ

ΦN ′

1
...N ′

J

)
, (5)

where DM is the covariant derivative which includes parallel transport. The effective
mass µeff (z), which encodes kinematical aspects of the problem, is an a priori un-
known function, but the additional symmetry breaking due to its z-dependence allows
a clear separation of kinematical and dynamical effects [53]. The dilaton background
field ϕ(z) in (5) introduces an energy scale in the five-dimensional AdS action, thus
breaking conformal invariance. It vanishes in the conformal ultraviolet limit z → 0.

A physical hadron has plane-wave solutions and polarization indices along the 3 + 1
physical coordinates ΦP (x, z)ν1···νJ = eiP ·xΦJ(z)ǫν1···νJ (P ), with four-momentum Pµ

and invariant hadronic mass PµP
µ = M2. All other components vanish identically.

The wave equations for hadronic modes follow from the Euler–Lagrange equation for
tensors orthogonal to the holographic coordinate z, ΦzN2···NJ

= 0. Terms in the ac-
tion which are linear in tensor fields, with one or more indices along the holographic
direction, ΦzN2···NJ

, give us the kinematical constraints required to eliminate the
lower-spin states [53]. Upon variation with respect to Φ̂∗

ν1...νJ , we find the equation
of motion [53]

[
−z

d−1−2J

eϕ(z)
∂z

(
eϕ(z)

zd−1−2J
∂z

)
+

(mR)2

z2

]
ΦJ = M2 ΦJ , (6)

with (mR)2 = (µeff (z)R)2 − Jz ϕ′(z) + J(d − J + 1), which is the result found in
Refs. [46, 58] by rescaling the wave equation for a scalar field. Similar results were

found in Ref. [59]. Upon variation with respect to Φ̂∗
N1···z···NJ

we find the kinematical
constraints which eliminate lower spin states from the symmetric field tensor [53]

ηµνPµ ǫνν2···νJ (P ) = 0, ηµν ǫµνν3···νJ (P ) = 0. (7)

Upon the substitution of the holographic variable z by the LF invariant variable ζ

and replacing ΦJ (z) = (R/z)
J−(d−1)/2

e−ϕ(z)/2 φJ (z) in (6), we find for d = 4 the LF
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wave equation (4) with effective potential [60]

U(ζ2, J) =
1

2
ϕ′′(ζ2) +

1

4
ϕ′(ζ2)2 +

2J − 3

2ζ
ϕ′(ζ2), (8)

provided that the AdS mass m in (6) is related to the internal orbital angular mo-
mentum L = max |Lz| and the total angular momentum Jz = Lz + Sz according
to (mR)2 = −(2 − J)2 + L2. The critical value L = 0 corresponds to the lowest
possible stable solution, the ground state of the LF Hamiltonian. For J = 0 the five
dimensional mass m is related to the orbital momentum of the hadronic bound state
by (mR)2 = −4 + L2 and thus (mR)2 ≥ −4. The quantum mechanical stability
condition L2 ≥ 0 is thus equivalent to the Breitenlohner–Freedman stability bound
in AdS [61].

The effective interaction U(ζ2, J) is instantaneous in LF time and acts on the
lowest state of the LF Hamiltonian. This equation describes the spectrum of mesons
as a function of n, the number of nodes in ζ2, the internal orbital angular momen-
tum L = Lz, and the total angular momentum J = Jz, with Jz = Lz + Sz the
sum of the orbital angular momentum of the constituents and their internal spins.
The SO(2) Casimir L2 corresponds to the group of rotations in the transverse LF
plane. The LF wave equation is the relativistic frame-independent front-form analog
of the non-relativistic radial Schrödinger equation for muonium and other hydrogenic
atoms in presence of an instantaneous Coulomb potential. The LF harmonic oscillator
potential could in fact emerge from the exact QCD formulation when one includes
contributions from the effective potential U which are due to the exchange of two
connected gluons; i. e., “H” diagrams [62]. We notice that U becomes complex for
an excited state since a denominator can vanish; this gives a complex eigenvalue and
the decay width. The multi gluon exchange diagrams also could be connected to the
Isgur–Paton flux-tube model of confinement; the collision of flux tubes could give rise
to the ridge phenomena recently observed in high energy pp collisions at RHIC [63].

The correspondence between the LF and AdS equations thus determines the ef-
fective confining interaction U in terms of the infrared behavior of AdS space and
gives the holographic variable z a kinematical interpretation. The identification of
the orbital angular momentum is also a key element of our description of the internal
structure of hadrons using holographic principles.

The dilaton profile exp
(
±κ2z2

)
leads to linear Regge trajectories [42]. For the

confining solution ϕ = exp
(
κ2z2

)
the effective potential is U(ζ2, J) = κ4ζ2+2κ2(J−1)

leads to eigenvalues M2
n,J,L = 4κ2

(
n+ J+L

2

)
, with a string Regge form M2 ∼ n+ L.

A detailed discussion of the light meson and baryon spectrum, as well as the elastic
and transition form factors of the light hadrons using LF holographic methods, is
given in Ref. [58]. As an example the spectral predictions for the J = L + S light
pseudoscalar and vector meson states are compared with experimental data in Fig. 4
for the positive sign dilaton model.

The predictions of the resulting LF Schrödinger and Dirac equations for hadron
light-quark spectroscopy and form factors for mq = 0 and κ ≃ 0.5 GeV are shown in
Figs. 4–7 for a dilaton profile ϕ(z) = κ2z2. A detailed discussion of the computations
is given in Ref. [58].

6 Uniqueness of the confining potential

If one starts with a dilaton profile eϕ(z) with ϕ ∝ zs, the existence of a massless pion in
the limit of massless quarks determines uniquely the value s = 2. To show this, one can
use the stationarity of bound-state energies with respect to variation of parameters.
More generally, the effective theory should incorporate the fundamental conformal
symmetry of the four-dimensional classical QCD Lagrangian in the limit of massless
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Figure 4: I = 1 parent and daughter Regge trajectories for the π-meson family (left)
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Figure 5: Light-front holographic prediction for the space-like pion form factor.
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respectively. All confirmed positive and negative-parity resonances from PDG 2012
are well accounted using the procedure described in [58].



96 S. J. Brodsky, G. de Téramond and H. G. Dosch

0

0.4

0.8

1.2

10 20 300

Q2  (GeV2)

Q
4

 F
p 1

  
(Q

2
) 

 (
G

e
V

4
)

2-2012
8820A18

0

-0.2

10 20 300

Q2  (GeV2)

Q
4

 F
n 1

  
(Q

2
) 

 (
G

e
V

4
)

2-2012
8820A17

0

1

2

0 2 4 6

Q2  (GeV2)

F
np 2
  
(Q

2
)

2-2012
8820A8

-2

-1

0

0 2 4 6

Q2  (GeV2)

F
n 2
  
(Q

2
)

2-2012
8820A7

Figure 7: Light-front holographic predictions for the nucleon form factors normalized
to their static values.

quarks. To this end we study the invariance properties of a one-dimensional field
theory under the full conformal group following the dAFF construction of Hamiltonian
operators described in Ref. [39].

One starts with the one-dimensional action S = 1
2

∫
dt(Q̇2 − g/Q2), which is in-

variant under conformal transformations in the variable t. In addition to the Hamil-
tonian Ht there are two more invariants of motion for this field theory, namely the
dilation operator D and K, corresponding to the special conformal transformations
in t. Specifically, if one introduces the the new variable τ defined through dτ =

dt/(u + v t + w t2) and the rescaled fields q(τ) = Q(t)/(u + v t + w t2)1/2, it then
follows that the the operator G = uHt + v D + wK generates evolution in τ [39].
The Hamiltonian corresponding to the operator G which introduces the mass scale is
a linear combination of the old Hamiltonian Ht, D, the generator of dilations, and K,
the generator of special conformal transformations. It contains the confining poten-
tial (4uw − v2)ζ2/8, that is the confining term in (8) for a quadratic dilaton profile
and thus κ4 = (4uw − v2)/8. The variable tau is related to the variable t for the

case uw > 0, v = 0 by τ = 1√
uw

arctan
(√

w
u t
)
, i. e., τ has only a limited range. The

finite range of invariant LF time τ = x+/P+ can be interpreted as a feature of the
internal frame-independent LF time difference between the confined constituents in
a bound state. For example, in the collision of two mesons, it would allow one to
compute the LF time difference between the two possible quark-quark collisions [40].

7 The Light-Front Vacuum

It is conventional to define the vacuum in quantum field theory as the lowest energy
eigenstate of the instant-form Hamiltonian. Such an eigenstate is defined at a single



Light-front holographic QCD 97

time t over all space ~x. It is thus a causal and frame-dependent. The instant-form
vacuum thus must be normal-ordered in order to avoid violations of causality when
computing correlators and other matrix elements. In contrast, in the front form, the
vacuum state is defined as the eigenstate of lowest invariant mass M . It is defined
at fixed light-front time x+ = x0 + x3 over all x− = x0 − x3 and ~x⊥, the extent of
space that can be observed within the speed of light. It is frame-independent and
only requires information within the causal horizon.

Since all particles have positive k+ = k0 + kz > 0 and + momentum is conserved
in the front form, the usual vacuum bubbles are kinematically forbidden in the front
form. In fact the LF vacuum for QED, QCD, and even the Higgs Standard Model is
trivial up to possible zero modes — backgrounds with zero four-momentum. In this
sense it is already normal-ordered. In the case of the Higgs theory, the usual Higgs
vacuum expectation value is replaced by a classical k+ = 0 background zero-mode
field which is not sensed by the energy momentum tensor [64]. The phenomenology
of the Higgs theory is unchanged.

There are thus no quark or gluon vacuum condensates in the LF vacuum — as first
noted by Casher and Susskind [65]; the corresponding physics is contained within the
LFWFs themselves [66–70], thus eliminating a major contribution to the cosmological
constant. In the light-front formulation of quantum field theory, phenomena such
as the GMOR relation — usually associated with condensates in the instant form
vacuum — are properties of the the hadronic LF wavefunctions themselves. An
exact Bethe–Salpeter analysis shows that the quantity that appears in the GMOR
relation is the matrix element 〈0|ψ̄γ5ψ|π〉 for the pion to couple locally to the vacuum
via a pseudoscalar operator — not a vacuum expectation value 〈0|ψ̄ψ|0〉. In the
front-form 〈0|ψ̄γ5ψ|π〉 involves the pion LF Fock state with parallel q and q̄ spin
and Lz = ±1. This pion Fock state automatically appears when the quarks are
massive.

The frame-independent causal front-form vacuum is a good match to the “void” —
the observed universe without luminous matter. Thus it is natural in the front form
to obtain zero cosmological constant from quantum field theory.

8 The Conformal Symmetry Template
In the case of perturbative QCD, the running coupling αs(Q

2) becomes constant in
the limit of zero β-function and zero quark mass, and conformal symmetry becomes
manifest. In fact, the renormalization scale uncertainty in pQCD predictions can
be eliminated by using the Principle of Maximum Conformality (PMC) [71]. Using
the PMC/BLM procedure [72], all non-conformal contributions in the perturbative
expansion series are summed into the running coupling by shifting the renormaliza-
tion scale in αs from its initial value, and one obtains unique, scale-fixed, scheme-
independent predictions at any finite order. One can also introduce a generalization of
conventional dimensional regularization, the Rδ schemes which illuminates the renor-
malization scheme and scale ambiguities of pQCD predictions, exposes the general
pattern of nonconformal terms, and allows one to systematically determine the argu-
ment of the running coupling order by order in pQCD in a form which can be readily
automatized [73, 74]. The resulting PMC scales and finite-order PMC predictions
are to high accuracy independent of the choice of initial renormalization scale. For
example, PMC scale-setting leads to a scheme-independent pQCD prediction [75] for
the top-quark forward-backward asymmetry which is within one σ of the Tevatron
measurements. The PMC procedure also provides scale-fixed, scheme-independent
commensurate scale relations [76], relations between observables which are based on
the underlying conformal behavior of QCD such as the generalized Crewther rela-
tion [77]. The PMC satisfies all of the principles of the renormalization group: re-
flectivity, symmetry, and transitivity, and it thus eliminates an unnecessary source of
systematic error in pQCD predictions [78].
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9 Summary

The triple complementary connection of (a) AdS space, (b) its LF holographic dual,
and (c) the relation to the algebra of the conformal group in one dimension, is
characterized by a quadratic confinement LF potential, and thus a dilaton profile
with the power zs, with the unique power s = 2. In fact, for s = 2 the mass of
the J = L = n = 0 pion is automatically zero in the chiral limit. The separate depen-
dence on J and L leads to a mass ratio of the ρ and the a1 mesons which coincides
with the result of the Weinberg sum rules [79]. One predicts linear Regge trajectories
with the same slope in the relative orbital angular momentum L and the LF radial
quantum humber n. The AdS approach, however, goes beyond the purely group theo-
retical considerations of dAFF, since features such as the masslessness of the pion and
the separate dependence on J and L are a consequence of the potential (8) derived
from the duality with AdS for general high-spin representations.

The QCD mass scale κ in units of GeV has to be determined by one measure-
ment; e. g., the pion decay constant fπ. All other masses and size parameters are
then predicted. The running of the QCD coupling is predicted in the infrared re-

gion for Q2 < 4κ2 to have the form αs(Q
2) ∝ exp

(
−Q2

4κ2

)
. As shown in Fig. 8, the

result agrees with the shape of the effective charge defined from the Bjorken sum
rule [80], displaying an infrared fixed point [80]. In the nonperturbative domain soft
gluons are in effect sublimated into the effective confining potential. Above this re-
gion, hard-gluon exchange becomes important, leading to asymptotic freedom. The
scheme-dependent scale ΛQCD that appears in the QCD running coupling in any given
renormalization scheme could be determined in terms of κ.

In our previous papers we have applied LF holography to baryon spectroscopy,
space-like and time-like form factors, as well as transition amplitudes such as γ∗γ →
π0, γ∗N → N∗, all based on essentially one mass scale parameter κ. Many other ap-
plications have been presented in the literature, including recent results by Forshaw
and Sandapen [81] for diffractive ρ electroproduction, based on the light-front holo-
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graphic prediction for the longitudinal ρ LFWF. Other recent applications include
predictions for generalized parton distributions (GPDs) [82], and a model for nucleon
and flavor form factors [83].

The treatment of the chiral limit in the LF holographic approach to strongly
coupled QCD is substantially different from the standard approach based on chiral
perturbation theory. In the conventional approach, spontaneous symmetry breaking
by a non-vanishing chiral quark condensate 〈ψ̄ψ〉 plays the crucial role. In QCD sum
rules [84] 〈ψ̄ψ〉 brings in non-perturbative elements into the perturbatively calculated
spectral sum rules. It should be noted, however, that the definition of the condensate,
even in lattice QCD necessitates a renormalization procedure for the operator prod-
uct, and it is not a directly observable quantity. In contrast, in Bethe–Salpeter [85]
and light-front analyses [86], the Gell Mann–Oakes–Renner relation [87] for m2

π/mq

involves the decay matrix element 〈0|ψ̄γ5ψ|π〉 instead of 〈0|ψ̄ψ|0〉.
In the color-confining light-front holographic model discussed here, the vanishing

of the pion mass in the chiral limit, a phenomenon usually ascribed to spontaneous
symmetry breaking of the chiral symmetry, is obtained specifically from the precise
cancellation of the LF kinetic energy and LF potential energy terms for the quadratic
confinement potential. This mechanism provides a viable alternative to the conven-
tional description of nonperturbative QCD based on vacuum condensates, and it elim-
inates a major conflict of hadron physics with the empirical value for the cosmological
constant [66, 67].
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[62] T. Appelquist, M. Dine and I. J. Muzinich, Phys. Lett. B 69, 231 (1977).

[63] J. D. Bjorken, S. J. Brodsky and A. S. Goldhaber, arXiv:1308.1435 [hep-ph]
(2013).

[64] P. P. Srivastava and S. J. Brodsky, Phys. Rev. D 66, 045019 (2002), hep-
ph/0202141 (2002).

[65] A. Casher and L. Susskind, Phys. Rev. D 9, 436 (1974).

[66] S. J. Brodsky and R. Shrock, Proc. Nat. Acad. Sci. 108, 45 (2011),
arXiv:0905.1151 [hep-th] (2009).

[67] S. J. Brodsky, C. D. Roberts, R. Shrock and P. C. Tandy, Phys. Rev. C 82,
022201 (2010), arXiv:1005.4610 [nucl-th] (2010).

[68] L. Chang, I. C. Cloet, J. J. Cobos-Martinez, C. D. Roberts, S. M. Schmidt and
P. C. Tandy, arXiv:1301.0324 [nucl-th] (2013).

[69] L. Chang, C. D. Roberts and S. M. Schmidt, arXiv:1308.4708 [nucl-th] (2013).

[70] S. D. Glazek, Acta Phys. Polon. B 42, 1933 (2011), arXiv:1106.6100 [hep-th]
(2011).

[71] S. J. Brodsky and L. Di Giustino, Phys. Rev. D 86, 085026 (2012),
arXiv:1107.0338 [hep-ph] (2011).

[72] S. J. Brodsky, G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 28, 228 (1983).

[73] M. Mojaza, S. J. Brodsky and X. -G. Wu, Phys. Rev. Lett. 110, 192001 (2013),
arXiv:1212.0049 [hep-ph] (2012).

[74] S. J. Brodsky, M. Mojaza and X. -G. Wu, arXiv:1304.4631 [hep-ph] (2013).

[75] S. J. Brodsky and X. -G. Wu, Phys. Rev. D 85, 114040 (2012), arXiv:1205.1232
[hep-ph] (2012).

[76] S. J. Brodsky and H. J. Lu, Phys. Rev. D 51, 3652 (1995), hep-ph/9405218
(1994).

[77] S. J. Brodsky, G. T. Gabadadze, A. L. Kataev and H. J. Lu, Phys. Lett. B 372,
133 (1996), hep-ph/9512367 (1995).

[78] X. -G. Wu, S. J. Brodsky and M. Mojaza, Progr. Part. Nucl. Phys. 72, 44 (2013),
arXiv:1302.0599 [hep-ph] (2013).

[79] S. Weinberg, Phys. Rev. Lett. 18, 507 (1967).

[80] S. J. Brodsky, G. F. de Teramond and A. Deur, Phys. Rev. D 81, 096010 (2010),
arXiv:1002.3948 [hep-ph] (2010).

[81] J. R. Forshaw and R. Sandapen, Phys. Rev. Lett. 109, 081601 (2012),
arXiv:1203.6088 [hep-ph] (2012).

[82] A. Vega, I. Schmidt, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D 83, 036001
(2011), arXiv:1010.2815 [hep-ph] (2010).

[83] D. Chakrabarti and C. Mondal, arXiv:1307.7995 [hep-ph] (2013).

[84] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 385
(1979).



Light-front holographic QCD 103

[85] P. Maris, C. D. Roberts and P. C. Tandy, Phys. Lett. B 420, 267 (1998), nucl-
th/9707003 (1997).

[86] S. J. Brodsky, C. D. Roberts, R. Shrock and P. C. Tandy, Phys. Rev. C 85,
065202 (2012), arXiv:1202.2376 [nucl-th] (2012).

[87] M. Gell-Mann, R. J. Oakes and B. Renner, Phys. Rev. 175, 2195 (1968).



Modeling Nuclear Parton Distribution Functions

H. Honkanena, M. Strikmana and V. Guzeyb

aThe Pennsylvania State University, 104 Davey Lab, University Park, PA 16802, USA
bNational Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute

(PNPI), Gatchina, 188300, Russia

Abstract

The presence of nuclear medium and collective phenomena which involve sev-
eral nucleons modify the parton distribution functions of nuclei (nPDFs) com-
pared to those of a free nucleon. These modifications have been investigated
by different groups using global analyses of high energy nuclear reaction world
data resulting in modern nPDF parametrizations with error estimates, such as
EPS09(s), HKN07 and nDS. These phenomenological nPDF sets roughly agree
within their uncertainty bands, but have antiquarks for large-x and gluons for
the whole x-range poorly constrained by the available data. In the kinemat-
ics accessible at the LHC this has negative impact on the interpretation of the
heavy-ion collision data, especially for the p+A benchmarking runs. The EMC
region is also sensitive to the proper definition of x, where the nuclear binding
effects have to be taken into account, and for heavy nuclei one also needs to
take into account that a fraction of the nucleus momentum is carried by the
equivalent photons which modifies the momentum sum rule. We study how
these effects affect the predictions for the nuclear modification ratios at the
LHC kinematics using a model where we combine theoretical input for the lead-
ing twist nuclear shadowing (the FGS model) and the EKS98s/EPS09s nPDF
set where the spatial dependence is formulated as a power series of the nuclear
thickness functions TA.

Keywords: Nuclear parton distribution function; LHC; impact parameter; EMC
region

1 Proper definition of x

Nuclear parton distribution functions (nPDFs) are usually defined for each parton
flavor in terms of nuclear modifications RA

i (x,Q2) and the corresponding free proton
PDF fp

i (x,Q2) such that

fA
i (x,Q2) ≡ RA

i (x,Q2) fp
i (x,Q2), (1)

where the Bjorken x = AQ2/(2q · pA), with 0 ≤ x ≤ A. In the collider frame, x is
simply the fraction of the nucleus momentum scaled by the factor A. However, since
these nPDF sets are built “on top” of proton PDF sets, the tail 1 ≤ x ≤ A is usually
ignored.

Phenomenological parametrizations for nuclear modifications, such as EKS98 [1],
EPS09 [2], HKN07 [3], DSZS [4], nCTEQ [5], etc., are largely based on deep inelastic
scattering (DIS) data, which are given as a function of xp = Q2/(2q0mp), which is
independent of the target mass. The difference between xp and x thus originates from
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the nuclear binding (see Refs. [6, 7]1),

xp = x (1 + rAx ), (2)

where

rAx =
1

mp

(
(mn −mp)N/A− ǫA

)
< 0. (3)

As an example, the nuclear binding energy ǫA ≈ 7.88 (7.68) MeV for Pb (C).
In addition to the nuclear binding energy, the fraction of nucleus momentum

carried by equivalent photons has to be taken into account in high energy heavy
nuclear collisions. The fraction of the nucleus momentum carried by the photons is
found to be [7]

ηγ(12C) = 0.11%, ηγ(208Pb) = 0.7%. (4)

Since the gluon nPDFs are least constrained by the DIS and DY data, presence of
the photons in the momentum sum rule mostly affects the overall momentum carried
by gluons. The effect of the equivalent photon field can be taken into account by
rescaling the gluons after Eq. (2) has been applied to satisfy

∑

i

∫ 1

0

dx x fA
i (x,Q2) = 1− ηγ(A). (5)

To apply the “conventional” nPDFs given as a function of xp for the calculation of
the nuclear effects in the ultra-relativistic heavy ion collisions where x is used, one has
to translate to the “conventional” nPDFs, given as a function of xp, by taking into
account the difference between xp and x which from now on we explicitly call xshift,
as follows:

xshift f
A
i (xshift, Q

2) =





xp

1+rAx
fA
i

( xp

1+rAx
, Q2

)
, i = q, q̄

gscale
xp

1+rAx
fA
i

( xp

1+rAx
, Q2

)
, i = g

, (6)

where the scaling factor for gluons, gscale, is determined via Eq. (5). Note that for
a free proton, x = xp = xshift. It follows from Eq. (6) that while the fraction of
the nucleus momentum carried by quarks is invariant with respect to
the xp → xshift conversion, the amount of the nucleus momentum carried by glu-

ons, ηg ≡
∫ 1

0
dxshift xshift gA(xshift, Q

2), decreases by the factor of gscale =
ηg−ηγ(A)

ηg

with the rescaling.

2 Theoretically motivated nPDF model

In this work we combine a small-x theoretical model for the leading twist nuclear
shadowing, the FGS model [6], with the phenomenological EKS98/EPS09 nPDF set.
The FGS model is based on the generalization of the Gribov–Glauber multiple scat-
tering formalism and QCD factorization theorems. Using the picture of high energy
scattering in the laboratory frame2 and the notion of cross section fluctuations of ener-
getic projectiles, multiple interactions are modeled using the effective x-dependent and
flavor-dependent rescattering cross section σi

soft(x,Q
2), which controls the strength of

the resulting nuclear shadowing. In Ref. [6], based on the phenomenological analysis
of cross section fluctuations in virtual photons, two models were suggested: model 1
(here referred to as FGS1) and model 2 (FGS2) corresponding to the upper and lower
bounds on the predicted nuclear shadowing, respectively. Both models were built on
top of CTEQ5 PDFs [8] (given as a function of xp), and we will use this set for the
combined model as well. In this paper, we will work in LO.

1In Ref [7] there is a sign error in the corresponding formula, Eq. (20). For detailed discussion,
see the revised version of [7].

2The equivalent picture can be formulated in the nucleus fast frame [6].
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Table 1: The percentage of nucleus momentum carried by the gluons.

EKS98 FGS1+EKS98 FGS2+EKS98

Pb C Pb C Pb C

xp: 43.98 42.61 44.20 42.58 44.30 42.62

xshift: 43.58 42.54 43.81 42.52 43.91 42.56

In the following the initial scale sea quark and gluon (Q2
0 = 2.5 GeV2) nuclear

modifications for the region 10−4 ≤ x ≤ 0.01, where data practically do not constrain
nPDFs, are taken from the FGS1 and FGS2 parametrizations; for 0.03 ≤ x ≤ 1.0, the
nuclear modifications are taken from the EKS98 parametrization [1] (which in this
region is very similar to the newer set EPS09 [2]). For the valence quarks, the nuclear
modifications are taken from EKS98 for the whole x-range. The two parametrizations
are combined by performing polynomial interpolation between them, and [after being
corrected for the difference in the argument according to Eq. (2)] the gluons are
rescaled as in Eq. (6). The resulting scaling factor at Q2

0 = 2.5 GeV2 for the gluons
is gscale ∼ 0.984 (gscale ∼ 0.997) for Pb (C) nucleus. (The change in the scaling factor
is ∼ 0.4% at Q2 = 100002 GeV2, so in practice a uniform scaling factor can be used
for any scale.) Consequently the amount of the momentum carried by the gluons
decreases by 0.88% (0.14%) for Pb (C). The fraction of the momentum carried by the
gluons for each model is listed in Table 1 (41.80% for the proton in CTEQ5L).
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In Fig. 1 we show how changing the definition of x affects the EKS98 gluon
modification ratio Pb/p at the initial scale Q2

0 = 2.5 GeV2 and how this effect
evolves up to the higher scale Q2 = 1002 GeV2. In this work we use the QCDNUM
DGLAP evolution code [9]. At the initial scale the original EKS98 gluon modification
ratio xpG

Pb(xp)/xpG
p(xp) (solid line) is first modified setting gscale = 1 in Eq. (6)

(dotted-dashed line). As a result, the gluon modification ratio is only essentially mod-
ified at the EMC-region, xp > 0.5, where the (n)PDFs are decreasing rapidly. For the
full conversion with gscale ∼ 0.98 (dotted line), the gluon nPDF is naturally scaled
down over the whole xp-range. When evolved up to Q2 = 1002 GeV2, the differences
persist and spread towards smaller values of xp. Using xshift instead of xp obviously
affects gluons for the whole xp-range due to the rescaling (and at higher scales also
the sea quarks via the DGLAP evolution), but for all the parton flavors the most
prominent effect sets in at the EMC-region, where the parton distribution functions
change quickly. As seen from above, the gluon ratio Pb(xshift)/Pb(xp) (dashed line)
is < 1 for the whole xp-range.

Note in passing that even for the valence quark distributions, the experimental
information on the EMC effect in the region where the leading twist contribution dom-
inates is very limited as the higher twist effects give a large (dominant?) contribution
to the eA scattering cross section for x ≥ 0.5 in the SLAC and JLab kinematics.
Hence, to date, practically no data on the quark modification for x ≥ 0.5 in the
scaling region is available for heavy nuclei such as, e. g., lead.

In Fig. 2 we show the gluon ratio (Pb/d) for the combined models FGS1+EKS98
(dotted-dashed) and FGS2+EKS98 (dotted), together with the EKS98 (solid) gluon
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the combination model FGS1(2)+EKS98.
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modification. At the initial scale above xp > 0.01, the difference between the models
originates only from the different definition of x; below xp ≤ 0.01, the two FGS
nuclear shadowing models span a region considerably smaller than the error band of
EPS09 gluons (see Ref. [2] for details). When evolved up to Q2 = 100002 GeV2, a
relevant scale in the LHC kinematics, it is evident that processes which are sensitive
to the EMC-region are also sensitive to the proper definition of x.

3 Consequences for the LHC

In order to understand the sensitivity of the LHC kinematics to the EMC effect,
we study inclusive π0 production in p + Pb collisions, which schematically can be
expressed as

σp+Pb→π0+X

=
∑

i,j,k=q,q̄,g

fp
i (x1, Q

2)⊗ fPb
j (x2, Q

2)⊗ σ̂ij→k+X (x1, x2, Q
2)⊗Dk→π0(z, µ2

F ), (7)

where the factorization and renormalization scales have been set equal (see, e. g.,
Ref. [10] for the formulae and details). In this work, we choose µF = pT (the outgoing
pion transverse momentum) and Q = qT (partonic transverse momentum).

In Fig. 3 we show the LO invariant cross section E d3σ/dp3 for p+ Pb→ π0 +X
at pT = 3.0, 10.0 and 100.0 GeV as a function of x2 [the momentum fraction carried
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by the parton in Pb, without conversion given in Eq. (6)]. The results have been
computed with the EPS09 nuclear modifications [2], CTEQ6L PDFs [11] and DSS
fragmentation functions [12]. Working in LO the overall normalization of the spectra
is not fixed, but the x2-distribution and the relative normalization are not affected
by this. The upper panel shows the mid-rapidity and the lower panel — the forward
rapidity (at the LHC, the Pb rapidity is positive) π0 production. For each pT value
studied, the mid-rapidity production peaks at an order of magnitude smaller values
of x2 than the forward rapidity results, and remains significant over a wider range
of x2. In the forward direction the pion production is concentrated on a rather narrow
x2-range, making it a more sensitive probe of nuclear effects. In particular, at high-pT ,
the pions are produced exclusively from the EMC-region, making them also sensitive
to the definition of x2.

Figures 4 and 5 show the FGS1(2)+EKS98 results for the minimum bias nuclear
modification ratio,

Rπ0

pPb(pT , η) =
d3σpPb/dp3

d3σpp/dp3
, (8)

at the LHC at
√
s = 5500 GeV. For comparison, the EKS98 results with the CTEQ5L
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5500 GeV and η = 0.0. For comparison, the EKS98 grid result with CTEQ5L PDFs
is also shown. Upper panel on linear scale, lower panel on logarithmic scale.
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Figure 5: Minimum bias FGS1(2)+EKS98 results forRπ0

pPb for the LHC at
√
s = 5500

GeV and η = 3.5. For comparison, the EKS98 grid result with CTEQ5L PDFs is also
shown. The FGS1+EKS98 and FGS2+EKS98 curves are indistinguishable.

PDFs are also shown. In the mid-rapidity (Fig. 4) the difference between the EKS98
and FGS+EKS98 results remain within a few %. As can be seen from Fig. 3 (upper
panel), up to pT ∼ 100 GeV, the pion spectra mostly originate from the gluon distri-
bution dominated x-range below the EMC-region. Therefore the differences between
the models are caused both by the different assumptions about shadowing (see the
lower panel where the small-pT part is shown on a logarithmic scale) and the scaling
of the gluon distribution with gscale < 1. The difference between the models remain
moderate even above pT > 100 GeV.

As seen from Fig. 5, the situation is drastically different in the forward rapidity
pion production. Above pT ∼ 10 GeV, the two FGS-models are indistinguishable, but
start to deviate from the EKS98 result as pT increases. This sizable effect is caused
by the correction to the x-definition alone.

Until now we have discussed the minimum bias results, where the impact param-
eter dependence of the nuclear effects has been spatially averaged. In the FGS model
the transverse position s dependence is naturally built in as functions of TA(s) since
the nuclear shadowing is first calculated for fixed s and next the integral over s is
taken. In the EKS98s/EPS09s model [13], the EKS98 and EPS09 nPDF parametriza-
tions were also assumed to have spatial dependence as a power series of TA(s). With
the centrality classes modeled using the optical Glauber model, the EPS09s results

were found to be consistent with the mid-rapidity PHENIX Rπ0

dAu centrality system-
atics [14]. However, as already seen in Fig. 5, the proper definition of x has a major
effect on the LHC predictions at forward rapidity. In Fig. 6 we applied the procedure

described in Ref. [13] to Rπ0

pPb at η = 3.5 for a selection of different centrality classes,

and compared the EKS98s results (with CTEQ6L PDFs) with and without the x-
corrections. Irrespective of the centrality, the correction causes a clear, measurable
effect.

For an impact parameter dependent theoretically motivated nPDF model it is
also important to pay special attention to the EMC region for another reason. In
Ref. [15] the magnitude of the EMC effect was shown to be linearly related to the
short range correlations (SRC) scale factor measured from electron inclusive scattering
at x ≥ 1. Consequently the impact parameter dependence of the EMC effect should
be proportional to the local density [16] and the EMC effect thus should be strongest
in the center of the nucleus. We will address this issue in Ref. [17], where a full NLO
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impact parameter dependent nPDF set will be released.
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A Study of Generalized Parton Distributions

for the Proton in AdS/QCD
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Abstract

We have evaluated the generalized parton distributions (GPDs) from the
electromagnetic form factors of the nucleons. The light front wave functions of
the nucleons are obtained from soft wall model in AdS/QCD.We have considered
a quark model with SU(6) spin-flavor symmetry. The GPDs in impact parameter
space are compared with a phenomenological model.

Keywords: Parton distributions; AdS/QCD; soft wall model; form factor; light
front wave function

1 Introduction

Generalized parton distributions (GPDs) encode more informations about the hadron
than the ordinary parton distributions (PDFs). The GPDs are functions of three vari-
ables namely, longitudinal momentum fraction x of the quark or gluon, square of the
total momentum transferred (t) and the skewness ζ which represents the longitudinal
momentum transferred in the process and contain lot more informations about the
nucleon structure and spin compared to the ordinary PDFs which are functions of x
only. There are many good review articles on the GPDs [1]. The GPDs appear in
the exclusive processes like Deeply Virtual Compton Scattering (DVCS) or vector
meson productions and are expressed as off-forward matrix elements of bilocal light
front currents. The GPDs reduce to the ordinary parton distributions in the forward
limit and their first moments are related to the form factors and provide interest-
ing informations about the spin and orbital angular momentum of the constituents
as well as the spatial structure of the nucleons. Being off-forward matrix elements,
the GPDs have no probabilistic interpretation. But for zero skewness, the Fourier
transforms of the GPDs with respect to the transverse momentum transfer (∆⊥) give
the impact parameter dependent GPDs which satisfy the positivity condition and can
be interpreted as distribution functions [2]. The impact parameter dependent GPDs
provide us the information about partonic distributions in the impact parameter or
the transverse position space for a given longitudinal momentum (x). The impact
parameter b⊥ gives the separation of the struck quark from the center of momentum.
In the t→ 0 limit, Ji sum rule [3] relates the moment of the GPDs to the angular
momentum contribution to the nucleon by the quark or gluon. Lot of experiments
measured DVCS as well as vector meson production cross sections to gain informa-
tions about the GPDs [4]. Experiments will also be done in JLAB in near future.

Using AdS/QCD, one can extract the light front wave functions (LFWF) for the
hadrons and thus provides an interesting way to calculate the GPDs. Polchinski and
Strassler [5] first used the AdS/CFT duality to address the deep inelastic scattering.
The AdS/QCD for meson and baryon sectors have been developed by several groups
[6–8]. So far this method has been successfully applied to describe many hadron

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 113.
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properties, e. g., hadron mass spectrum, parton distribution functions, meson and
nucleon form factors, structure functions, etc. [9–11]. Recently it has been shown that
the results for ρmeson electroproduction calculated with the light front wave functions
derived from AdS/QCD are in agreement with experimental data [12]. Studies of the
nucleon form factors with higher Fock sectors have been done in Ref. [13]. Vega et
al. [14] proposed a prescription to extract GPDs from the form factors in AdS/QCD
and they have done the GPD calculations using both the hard and soft wall models
in AdS/QCD. Here we provide the results for GPDs using the LFWFs obtained from
the AdS/QCD [15]. We use the formula for the nucleon form factors in the light
front quark model with SU(6) spin flavor symmetry and compare the GPDs in the
impact parameter space with a phenomenological model of the GPDs for the proton.
The GPDs are related to the Dirac and Pauli form factor by sum rules and thus it is
possible to extract the flavor form factors, i. e., individual quark contributions to the
nucleon form factors. Recently, the flavor form factors calculated from the GPDs in
this model are shown to agree remarkably with the experimental data [16].

2 GPDs in AdS/QCD

For the extraction of the nucleon wavefunctions in AdS/QCD we follow Brodsky and
Teramond [6,11]. We know that the AdS/CFT correspondence relates a gravitation-
ally interacting theory in anti de Sitter space AdSd+1 with a conformal gauge theory
in d-dimensions residing at the boundary. Since QCD is not a conformal theory, one
needs to break the conformal invariance of the above duality to generate a bound
state spectrum and to relate with QCD. There are two models in the literature to
do so. One is the hard wall model in which the conformal symmetry is broken by
introducing a boundary at z0 ∼ 1/ΛQCD in the AdS direction where the wavefunction
is made to vanish. While in the soft wall model, the conformal invariance is broken by
introducing a confining potential in the action of a Dirac field propagating in AdSd+1

space.
We will consider the soft model in this paper. The relevant action in soft model

is written as [11]

S =

∫
d4x dz

√
g
( i

2
Ψ̄ eMA ΓADM Ψ− i

2
(DM Ψ̄) eMA ΓA Ψ− µ Ψ̄ Ψ− V (z) Ψ̄ Ψ

)
, (1)

where eMA = (z/R) δMA is the inverse vielbein and V (z) is the confining potential, R
is the AdS radius. The corresponding Dirac equation in AdS is given by

i
(
z ηMN ΓM ∂N +

d

2
Γz

)
Ψ− µRΨ−RV (z) Ψ = 0. (2)

With z identified as the light front transverse impact variable ζ which gives the sepa-
ration of the quark and gluonic constituents in the hadron, it is possible to extract the
lightfront wavefunctions for the hadron. In d = 4 dimensions, ΓA = {γµ,−iγ5}. The
form of the confining potential in the meson sector can be determined by introducing

a dilaton background profile of the form φ(z) = e±κ2z2

. It generates an effective lin-
ear confining potential of U(ζ) = (R/ζ)V (ζ) = κ2ζ in the light front Dirac equation.
For the baryon sector, the dilaton profile can be scaled away by redefinition of the
fields [11]. In the baryon sector, the linear confining potential same as the meson
sector is put in by hand. The nucleon wavefunctions in the soft wall model are given
by [11]

ψ+(z) =

√
2κ2

R2
z7/2 e−κ2z2/2, (3)

ψ−(z) =
κ3

R2
z9/2 e−κ2z2/2. (4)
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The Dirac and Pauli form factors for the nucleons are related to the GPDs by the
sum rules [17]

F p
1 (t) =

∫ 1

0

dx

[
2

3
Hu

v (x, t)− 1

3
Hd

v (x, t)

]
,

Fn
1 (t) =

∫ 1

0

dx

[
2

3
Hd

v (x, t)− 1

3
Hu

v (x, t)

]
,

F p
2 (t) =

∫ 1

0

dx

[
2

3
Eu

v (x, t) − 1

3
Ed

v (x, t)

]
,

Fn
2 (t) =

∫ 1

0

dx

[
2

3
Ed

v (x, t) − 1

3
Eu

v (x, t)

]
.

(5)

Here x is the fraction of the light cone momentum carried by the active quark and
the GPDs for valence quark q are defined as Hq

v (x, t) = Hq(x, 0, t) + Hq(−x, 0, t);
Eq

v(x, t) = Eq(x, 0, t) + Eq(−x, 0, t). The GPDs at −x for quark are equal to the
GPDs at x for antiquark with a minus sign.

A quark model with SU(6) spin-flavor symmetry is constructed by weighting the
different Fock components in the nucleon state by the charge and spin-projections of
the quarks as dictated by the symmetry [11]. The Dirac form factors for the nucleons
in this model are given by

F p
1 (Q2) = R4

∫
dz

z4
V (Q2, z)ψ2

+(z) (6)

Fn
1 (Q2) = −1

3
R4

∫
dz

z4
V (q2, z) (ψ2

+(z)− ψ2
−(z)). (7)

The Pauli form factors requires non-minimal electromagnetic coupling as proposed by
Abidin and Carlson [10] and are given by

F
p/n
2 (Q2) ∼

∫
dz

z3
ψ+(z)V (Q2, z)ψ−(z). (8)

The normalization conditions are given by F
p/n
1 (0) = ep/n, where ep/n represents the

electric charge of proton/neutron and F
p/n
2 (0) = κp/n where κp/n is the anomalous

magnetic moment of the proton/neutron. Using the the above mentioned wavefunc-
tions ψ+ and ψ−, the Pauli form factors fitted to the static values are rewritten as

F
p/n
2 (Q2) = κp/nR

4

∫
dz

z4
V (Q2, z)ψ2

−(z). (9)

The bulk-to-boundary propagator for soft wall model is given by

V (Q2, z) = Γ

(
1 +

Q2

4κ2

)
U

(
Q2

4κ2
, 0, κ2z2

)
, (10)

where U(a, b, z) is the Tricomi confluent hypergeometric function given by

Γ(a)U(a, b, z) =

∫ ∞

0

e−zx xa−1(1 + x)b−a−1 dx. (11)

The above propagator can be written in a simple integral form [11, 18]

V (Q2, z) = κ2z2
∫ 1

0

dx

(1− x)2
xQ

2/(4κ2) e−κ2z2x/(1−x). (12)

We use the integral form of the bulk-to-boundary propagator in the formulas for the
form factors in AdS space to extract the GPDs using the formulas in Eq. (5). In
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Figure 1: The ratio of the Pauli and Dirac form factors for the proton multiplied
by Q2 = −t. The experimental data are taken from Refs. [19–22].

Fig. 1, we show the fit of our result with the experimental proton form factor data.
We found that the best fit to the form factors obtained for κ = 0.4066 GeV. All the
calculations and plots presented here are done with this fixed value of κ.

In Figs. 2 (a) and (b) we have shown the GPD H(x, t) as functions of x for
different −t values for up and down quarks. Except the fact that it falls off faster
for d quark as x increases, the overall nature is the same for both u and d quarks.
Similarly in Figs. 3 (a) and (b) we have shown the GPD E(x, t) as a function of x for
different −t for u and d quark. Unlike H(x, t), the fall off of the GPD E(x, t) with
increasing x is similar for both u and d quark.

3 GPDs in impact parameter space

GPDs in transverse impact parameter space are defined as [23]:

H(x, b) =
1

(2π)2

∫
d2∆ e−i∆⊥·b⊥H(x, t),

E(x, b) =
1

(2π)2

∫
d2∆ e−i∆⊥·b⊥E(x, t).

(13)

The transverse impact parameter b = |b⊥| is a measure of the transverse distance
between the struck parton and the center of momentum of the hadron and satisfies∑

i xibi = 0, where the sum is over the number of partons. An estimate of the size
of the bound state can be obtained from the relative distance between the struck
parton and the centre of momentum of the spectator system and is given by b

1−x [17].
However as the spatial extension of the spectator system is not available from the
GPDs, exact estimation of the nuclear size is not possible. In Figs. 4 (a) and (b), we
have shown the behavior of Hu/d(x, b) in the impact parameter space for fixed values
of x and the similar plots for the GPD Eu/d(x, b) are shown in Fig. 5.

We compare the AdS/QCD results for the GPDs in impact parameter space with
those obtained from a phenomenological model for proton [24]. The GPDs in this
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(a)

(b)

Figure 2: Plots of (a) Hu(x, t) vs x for fixed values of −t. (b) same as in (a) but for
d quark.

model are given by

Hq(x, t) = Gλq

Mq
x
(x, t)x−αq−βq

1(1−x)p1t, (14)

Eq(x, t) = κqG
λq

Mq
x
(x, t)x−αq−βq

2(1−x)p2t, (15)

where the first part is derived from spectator model and modified by Regge term to
have proper behavior at low x. κq in the above equation is the quark contribution
to the anomalous magnetic moment. The parameters are fixed by fitting the form
factors. The details of the functional forms and the values of the parameters can be
found in Ref. [24]. The impact parameter dependent GPDs from this model have
been studied in Ref. [25]. One should remember here that the valence GPDs we have
considered here in AdS/QCD are not exactly the same as GPDs in this model and
so exact agreement is not expected. But one should expect that the valence GPDs
will dominate the overall behavior for the proton GPDs and thus it is interesting to
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(a)

(b)

Figure 3: Plots of (a) Hu(x, t) vs x for fixed values of −t. (b) same as in (a) but for
d quark.

compare and contrast the GPDs from these two models.

In Fig. 6 we have compared the impact parameter dependent proton GPD H(x, b)
from AdS/QCD with the model mentioned above, for both u and d quarks. The
GPDs are fatter in the AdS/QCD compared to the model when plotted against x,
while in the impact parameter space they look almost same except the difference in the
magnitudes. In Fig. 7 we have compared the two models for the proton GPD E(x, b).
The behavior in x for u quark is quite different in the two models while they agree
better for d quark and again the GPDs from AdS/QCD are fatter compared to the
other model. In the model, the behavior of E(x, b) for u and d quarks is quite
different when plotted against x for fixed values of impact parameter b whereas in the
AdS/QCD, it shows almost same behavior for both u and d quarks. As a result, the
GPD E in both models agrees better in impact parameter space for the d quark than
for the u quark. It is interesting to note that in both cases, at small values of impact
parameter b, the the GPD H(x, b) is larger for u quark than for d quark whereas the
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Figure 4: Plots of (a) Hu(x, t) vs b for fixed values of x. (b) same as in (a) but for d
quark.

magnitude of the GPD E(x, b) is marginally larger for d quark than the same for u
quark and thus it is interesting to check with other models whether this is a model
independent result.

4 Conclusions

The main results of this work are the GPDs calculated in a quark model with SU(6)
spin-flavor symmetry in AdS/QCD. The light front wave functions for the nucleons
are evaluated from AdS/QCD. The parameter κ in the model is fixed by fitting the ex-
perimental data on proton form factors. The Pauli form factors require non-minimal
electromagnetic coupling and are fitted to their static values. It was shown [11]
that the electromagnetic form factors for proton and neutron calculated by using the
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Figure 5: Plots of (a) Eu(x, t) vs b for fixed values of x. (b) same as in (a) but for d
quark.

AdS/QCD wave functions fit well with the experimental results. The Dirac and Pauli
form factors for the nucleons are given by the first moments of the GPDs weighted
with proper charge factors. Using these sum rules for the GPDs and exploiting the
integral representation of the bulk-to-boundary propagator in AdS space we evalu-
ate the GPDs for both up and down quarks. The Fourier transform of the GPDs
with respect to the transverse momentum transferred give the GPDs in the impact
parameter space. Though the GPDs don’t have any density interpretation, the im-
pact parameter dependent GPDs for zero skewness are positive definite and related
with the charge and magnetization densities of the nucleons. We have compare the
impact parameter dependent GPDs in the model with the GPDs obtained from a
phenomenological model. It is found that the GPDs from AdS/QCD are fatter than
the other model when compared the behaviors in x space for both u and d quarks. In
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Figure 6: Plots of (a) Hu(x, b) vs x for fixed values of b = |b⊥|. (b) Hu(x, b) vs b for fixed values of x. (c) same as in (a) but for d quark and (d) same
as in (b) but for d quark.
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the AdS/QCD we have only valence GPDs and as we expect that major contributions
to proton GPDs should come from valence quarks, it is interesting to note that their
behaviors in impact parameter space are quite similar to the phenomenological model
for GPDs.
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Nonperturbative Calculations

in the Light-Front Field Theory

V. A. Karmanov

Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia

Abstract

A nonperturbative approach to field theory based on the decomposition of the
state vector in Fock components, and on the covariant formulation of light-front
dynamics, together with the Fock sector dependent renormalization scheme, is
briefly reviewed. The approach is applied to the calculation, in the framework of
three-body Fock space truncation, of the fermion electromagnetic form factors
in the Yukawa model (in particular, of anomalous magnetic moment). Once
the renormalization conditions are properly taken into account, the anomalous
magnetic moment does not depend on the regularization scale when the latter
is much larger than the physical masses.

Keywords: Light-front dynamics; Yukawa model; non-perturbative renormal-
ization; electromagnetic form factors

1 Introduction

In the quantum field theory, due to the particle creation and annihilation, the number
of particles in a system is not fixed and the state vector is a superposition of the states
(Fock sectors) with different numbers of particles:

|p〉 =

∞∑

n=1

∫
ψn(k1, . . . , kn, p) |n〉Dk. (1)

ψn is the n-body wave function and Dk is an integration measure. In the cases when
we can expect that the decomposition (1) converges rapidly enough, we can make
truncation, that is replace the infinite sum in (1) by a finite one. Then, substituting
the truncated state vector in the eigenvector equation

H |p〉 = M |p〉,

we obtain a system of integral equations of finite dimension for the Fock components
ψn which can be solved numerically. With the decomposition (1), the normalization
condition for the state vector 〈p′|p〉 = 2 p0 δ

(3)(p′ − p) writes as

∞∑

n

In = 1, (2)

where In is the contribution of the n-body Fock sector to the norm.
In this way we do not require the smallness of the coupling constant. The approxi-

mate (truncated) solution is non-perturbative. This is the basis of a non-perturbative
approach which we developed, together with J.-F. Mathiot and A. V. Smirnov, in a
series of papers [1–5] (see for review [6]).

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 125.

http://www.ntse-2013.khb.ru/Proc/Karmanov.pdf.
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The main difficulty on this way is to ensure cancellation of infinities. In a per-
turbative approach, for a renormalizable field theory, this cancellation is obtained as
a by-product after renormalization in any fixed order of coupling constant. For the
cancelation it is important to take into account the complete set of graphs in a given
order. Omitting some of these graphs destroys the cancellation and the infinities sur-
vive after renormalization. Namely that happens after the truncation: though the
truncated solution can be decomposed in infinite series in terms of the coupling con-
stant, it does not contain the complete set of perturbative graphs in any given order.
Therefore the standard renormalization scheme does not eliminate the infinities. To
provide cancellation of infinities, the sector-dependent renormalization scheme has
been proposed [7]. This scheme, in which the values of the counter terms are precised
from sector to sector according to unambiguously formulated rules, was developed
in detail in Ref. [3] and applied to calculation of electromagnetic form factors in
Refs. [4, 5]. Below we will give its brief review and present some results obtained in
this approach.

We discuss the convergence of the decomposition (1) in Section 2. The sector
dependent renormalization scheme is briefly described in Section 3. It is applied
to calculation of anomalous magnetic moment of fermion in Yukawa model. The
antifermion degrees of freedom are taken into account in Section 4. The results are
summarized in Section 5.

2 On convergence of the Fock decomposition

We work in the light-front dynamics (LFD) [8–10], more precisely, in its explicitly
covariant version [8, 9]. In four-dimensional space, the state vector (1) is defined on
the light-front plane of a general orientation ω ·x = 0, where ω is an arbitrary four-
vector restricted by the condition ω2 = 0 [8, 9]. The traditional form of LFD [10] is
recovered by using ω = (1, 0, 0,−1).

As mentioned, the truncation of the Fock decomposition can be efficient if the
decomposition (1) converges rapidly enough. The convergence depends, of course, on
the nature of a system under consideration. If this system is dominated by a finite
number of degrees of freedom (like hadrons in quark models), then the decomposi-
tion (1) is determined with a good accuracy by a finite number of the components.
Notice that these “degrees of freedom”, e. g., quarks as basis of decomposition (1),
may be some effective dressed constituents.

The convergence of the Fock decomposition was estimated [11] in the explicitly
solvable Wick–Cutkosky model [12]. This model corresponds to spineless massive
particles with equal massesm interacting by spineless massless exchange. One can find
the two-body Bethe–Salpeter amplitude. The requirement for the electromagnetic
form factor F (Q2 = 0) = 1 fixes the normalization of the Bethe–Salpeter amplitude.
On the other hand, projecting the Bethe–Salpeter amplitude on the light-front plane,
we find the two-body Fock component of the state vector (1). Its normalization
integral is not unity but gives the two-body contribution to the full normalization.
One can also estimate the valence three-body contribution. We chose the parameters
maximally unfavorable for dominance of a few-body sector. Namely, the coupling
constant is very strong, α = 2π, that corresponds to the limiting case when the
binding energy in the Wick–Cutkosky model, Eb = −2m, compensates the full mass
of the system. The strong coupling constant increases contributions of higher orders,
i. e., of many-body components. In addition, since the exchange particles are massless,
they can be easy created. The result for different contributions [11] is given in Table 1.

We see that even in this unfavorable case, the Fock states with 2 and 3 particles
contribute 90% to the normalization integral. This would give the 10% accuracy in
calculation of observables, say, of the electromagnetic form factor.
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Table 1: Contributions of the Fock sectors with the number of particles n = 2, n = 3
and n ≥ 4 (In≥4 =

∑∞
n=4 In) to the full normalization integral I =

∑∞
n=2 In = 1 of

the state vector for M = 0 (α = 2π).

I2 I3 In≥4 I2 + I3 + In≥4

0.643 0.257 0.100 1

3 Fock sector dependent renormalization scheme

We will find the state vector of the Yukawa model Hamiltonian containing the fermion
field ψ and the scalar field φ with the interaction vertex g0ψ̄ψφ. For regularization,
we include in the Hamiltonian the Pauli–Villars fields (one fermion and one boson),
which, after that, appear in the basis of decomposition (1). Since our formalism is
explicitly covariant, the spin structure of the wave function ψn is easy found. It
should incorporate the ω-dependent components. Therefore the spin structure of the
two-body component in the Yukawa model reads:

ū(k1) Γ2u(p) = ū(k1)

[
b1 +

M 6ω
ω ·p b2

]
u(p). (3)

where 6 ω = ωµγ
µ. The coefficients b1 and b2 are scalar functions determined by

dynamics. In LFD they depend on well-known variables k⊥, x: b1,2 = b1,2(k⊥, x).
System of equations for the Fock components in the truncation N = 3 is graph-

ically shown in Fig. 1. One can exclude the three-body component and obtain a
reduced system of equations which includes the one- and two-body components only.
It is shown in Fig. 2. In comparison to the equations of Fig. 1, we included in the
equations of Fig. 2 another counter term Zω discussed below in this section. Namely
this reduced system of eight equations for two two-body spin components, for physical
and Pauli–Villars fermions and bosons (2 × 2 × 2 = 8), was solved numerically. It
contains also a one-body component Γ1, but it is a constant which can be found from
the normalization condition. The limit of the fermion Pauli–Villars mass m1 → ∞
was taken analytically, whereas the limit of the boson Pauli–Villars mass µ1 → ∞
was taken numerically.

The renormalization condition, as always, means that one should express the bare
coupling constant g0 and the fermion mass counter term δm via the physical coupling

.m
2

g
03

+

11

=

g02g02

22
2
1

22
11

+

3

=

Figure 1: System of equations for the Fock components in the truncation N = 3.
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Figure 2: Equation for the two-body component.

constant and mass. In perturbation theory, as mentioned, this leads, as a by-product,
to cancellation of infinities. In the non-perturbative approach the strategy is, in
principle, the same, however, because of truncation, the infinities are not cancelled.
Therefore we use the sector-dependent renormalization scheme [3]. The fermion mass
counter term δm, and the bare coupling constant g0, are thus extended to a sequence:

g0 → g0l, (4)

δm → δml, (5)

The index l runs through the Fock sectors with l = 1, 2, ... , N . The quantities g0l
and δml are calculated by solving the systems of equations for the vertex functions
in the N = 1, N = 2, N = 3, ... approximations successively. That is, we start
with the first non-trivial case N = 2 and find g02, δm2. In the case N = 3, the
parameters g0, δm0 may appear in two ways. Namely: (i) Via the two-body sector
which enters the three-body equations, as it happens, for example, in the last line in
Fig. 1. In this case we use for them already found values of g02 and δm2. (ii) Via
the one-body sector which also enters the three-body equations, as it happens, for
example, in the first line in Fig. 1. Then these parameters are the new ones: g03,
δm3, which did not appear in the previous N = 2 truncation. They are found from
the renormalization conditions in the three-body sector. This procedure continues for
increasing N . As an example, system of equations for the next N = 4 truncation is
shown in Fig. 3.

The renormalization condition for the coupling constant g0 is a relation between
the two-body components Γ2 (containing g0) and the physical coupling constant g. In
order to fix this relationship, one needs to take into account the normalization factors
of the external legs of the two-body vertex function. These normalization factors do
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Figure 3: System of equations for the Fock components in the truncation N = 4.
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also depend on the order of truncation of the Fock space. In the Yukawa model, this
relationship reads [6]:

Γ
(N)
2 (s2 = M2) = g

√
I
(N−1)
1 . (6)

Here Γ
(N)
2 is the two-body Fock component found in the truncation N whereas I

(N−1)
1

is the one-body normalization integral (for the fermion state) calculated in the pre-
vious N − 1 truncation. We omit the corresponding boson factor since we do not
consider here fermion loops and the boson self-energy (quenched approximation).

The condition (6) has an important consequence: the two-body vertex function,
depending according to Eq. (3) on ω, at the value s2 = M2 should be independent
of the orientation ω of the light-front plane. With the spin decomposition (3), this
implies that the component b2 at s2 = M2 should be identically zero:

b
(N)
2 (s2 = M2) ≡ 0. (7)

If Eq. (7) is satisfied, Eq. (6), in the quenched approximation, turns into

b
(N)
1 (s2 = M2) ≡ g

√
I
(N−1)
1 . (8)

While the property (7) is automatically fulfilled in the case of the two-body Fock
space truncation provided one uses a rotationally invariant regularization scheme [6],
this is not guaranteed for higher order truncations. The ω-dependence of the off-shell
vertex Γ2, Eq. (3), is allowed even for the exact solution, but it must completely
disappear on the energy shell. Because of approximations, the latter does not happen
automatically.

Another consequence of the truncation of the Fock space is the fact that the
components b1,2(s2 = M2) are not constants. Indeed, b1,2 depend on two kinematical
variables k⊥, x. The on-shell condition

s2 ≡
k2⊥ +m2

1− x +
k2⊥ + µ2

x
= M2 (9)

can be used to fix one of the two variables, say k⊥, in the non-physical domain
(for M = m):

k⊥ = k∗⊥(x) ≡ i
√
x2m2 + (1− x)µ2, (10)

so that b1,2(s2 = M2) ≡ b1,2(k∗⊥(x), x) depends on x, whereas the conditions (7)
and (8) should be valid identically, i. e. for any value of x.

In order to enforce the condition (7), we introduce an appropriate counterterm
which depends explicitly on the four-vector ω. It is shown by cross in the first line of
Fig. 2. It originates from the following additional term introduced in the interaction
Hamiltonian:

δHint
ω = −Zωψ̄

′ m 6ω
iω ·∂ ψ

′ϕ′, (11)

where Zω is just the new counterterm, ψ′(ϕ′) is the fermion (scalar boson) field being
a sum of the corresponding physical and Pauli–Villars components: ψ′ = ψ + ψPV

and similarly for ϕ′; 1/(iω·∂) is the reversal derivative operator. The enforcement of
the condition (7) for any x by an appropriate choice of the counterterm Zω implies
that Zω should a priori depend on x, i. e. Zω = Zω(x). It induces also an unique
dependence of g0N = g0N (x) as a function of the kinematical variable x.

The fact that, in order to satisfy the renormalization conditions, the bare parame-
ters must depend on the kinematical variable x, is crucial to obtain results which are
finite after the renormalization procedure in the truncated Fock space. The stability
of our results relative to the value of the regularization scale, if the latter reasonably
exceeds the physical masses, is confirmed numerically with high precision (see Fig. 4
below).
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At first glance, the x-dependence of the bare parameters seems unusual. However,
it is a natural consequence of the truncation. Of course, the bare parameters in the
fundamental non-truncated Hamiltonian are true constants. After truncation, the
initial Hamiltonian is replaced by a finite matrix which acts now in a finite Fock
space. But it turns out that the modification of the Hamiltonian is not restricted
to a simple truncation. Indeed, to preserve the renormalization conditions, the bare
parameters in this finite matrix become x-dependent. This x-dependence cannot be
derived from the initial Hamiltonian. It appears only after the Fock space truncation.

Our truncated Hamiltonian with the x-dependent bare parameters is a self-con-
sistent approximation to the initial fundamental Hamiltonian. One expects that the
approximation becomes better when the number of Fock components increases. At
the same time, the x-dependence of the bare parameters should become weaker. An
indication of this behavior, when one adds the antifermion contribution, is found
in Ref. [5] and is demonstrated below in Section 4. We emphasize that there is no
any ambiguity in finding the bare parameters, in spite of their x-dependence. These
functions of x are completely fixed by the renormalization conditions.

Using this scheme, in the three-body truncation (up to 1 fermion + 2 bosons),
we calculated [4, 5] the fermion electromagnetic form factors F1(Q2) and F2(Q2). In
all computations, we used the physical particle masses m = 0.938 and µ = 0.138
reflecting the characteristic nuclear physics mass scales. Each physical quantity was
calculated for three values of the physical coupling constant α = g2/4π = 0.5, 0.8,
and 1.0.

The value F2(0) is the anomalous magnetic moment (AMM). It is shown in Fig. 4
as a function of the Pauli–Villars boson mass µ1. Each of the two- and three-body
Fock sector contributions to the AMM essentially depends on µ1, while their sum is
stable as µ1 becomes large enough. Note that using x-dependent bare parameters
removes µ1-dependence of the AMM observed in Ref. [4] already for α ∼ 0.5, even for
larger coupling constants.

As it was explained, we took the limit m1 → ∞ analytically and then the limit
of large µ1 numerically. For a test of stability of our calculations, we compare in
Table 2 the numerical results for AMM obtained in two different orders of limits of
large Pauli–Villars masses. The AMM is considered as a function of the Pauli–Villars
mass which is kept finite (m1, if the limit µ1 → ∞ has been taken, and vice versa).
For convenience of the comparison, we took the same sets of finite mass values for
Pauli–Villars boson and fermion.

If each of the finite Pauli–Villars masses is much larger than all physical masses,
the values of the AMM, obtained in both limits, coincide within the computational
accuracy (about 0.2%), as it should be if the renormalization procedure works prop-
erly. We can thus choose any convenient order of the infinite Pauli–Villars mass
limits. Since the equations for the Fock components are technically simpler in the

Table 2: The anomalous magnetic moment calculated for α = 0.8 in the two different
limits of the Pauli–Villars masses.

Pauli–Villars mass kept AMM when AMM when
finite (µ1 or m1) m1 →∞ µ1 →∞

5 0.1549 0.1454
10 0.1641 0.1630
25 0.1690 0.1704
50 0.1702 0.1715
100 0.1706 0.1716
250 0.1708 0.1714
500 0.1709 0.1713
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Figure 4: The anomalous magnetic moment in the Yukawa model as a function of
the Pauli–Villars mass µ1, for three different values of the coupling constant, α = 0.5
(upper plot), 0.8 (middle plot) and α = 1.0 (lower plot). The dashed and long-dashed
lines are, respectively, the two- and three-body contributions, while the solid line is
the total result.

limit m1 → ∞, we continue to work with the vertex functions and the electromag-
netic vertex taken in this limit. The independence of physical results of the order in
which the infinite Pauli–Villars mass limit is taken and, hence, on the way we use
to get rid of the bare parameters, is a strong evidence of the self-consistency of our
renormalization scheme.

The AMM of electron was calculated non-perturbatively, in the N = 2 truncation
and with the oscillator basis, in Ref. [13] (see Ref. [14] for the review).
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Figure 5: Graphical representation of the equation for the two-body vertex function
including the contribution of antifermion d.o.f. in the quenched approximation.

4 Antifermion degrees of freedom

We extend the Fock decomposition of the fermion state vector by introducing the
antifermion d.o.f. In the lowest (also three-body) approximation this corresponds
to adding the ff f̄ Fock sector to those previously introduced (f , fb, and fbb). In
the three-body approximation, this new Fock component is easily expressed through
the two-body component, as the fbb one. As a result, we obtain a closed (matrix)
equation for the two-body vertex function, as given, in the quenched approximation,
by Fig. 5. It differs from the equation in the f + fb + fbb approximation, shown in
Fig. 2, by an additional term on the right-hand side (the last diagram in Fig. 5).

It turns out that the antifermion contribution makes a week influence on values
of form factors, but these values are now obtained with the parameters g03(x), Zω(x)
which are much more flat functions of x than without the antifermion.

In Figs. 6 and 7 these bare parameters are shown as a function of x, each for
α = 0.5, 0.8, and 1.0, at a typical value µ1 = 100. In Fig. 6 the relative value of g′03
with respect to its mean value ḡ′03 over the interval 0 ≤ x ≤ 1 is shown, i. e. we plot
the quantity

δg′03(x) = [g′03(x) − ḡ′03]/ḡ′03,

where ḡ′03 =
∫ 1

0
g′03(x) dx. The “prime” indicates that g′03(x) and Z ′

ω(x) include some
factors precised in Ref. [5]. For comparison, we show also in these plots the same
functions calculated without antifermion contributions. The most interesting fact
is that the function g′03(x), which exhibits strong x-dependence in the f + fb+ fbb
approximation, becomes almost a constant if the ff f̄ Fock sector is included. Con-
cerning the function Z ′

ω(x), it shows a similar tendency as well, with a bit stronger
x-dependency than g′03(x). In addition, the magnitude of Z ′

ω(x) is reasonably smaller
than that calculated in the f + fb+ fbb truncated Fock space.

5 Conclusion

We have developed a non-perturbative approach to field theory based on the Fock
decomposition and its truncation. It includes also the non-perturbative renormaliza-
tion. The approach is applied to calculations of electromagnetic form factors in the
Yukawa model. Truncating the Fock space up to the three-body sector fbb and then
including ff f̄ , we calculated anomalous magnetic moment of fermion. It is rather
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Figure 6: x-dependence of the bare coupling constant g′03 calculated for µ1 = 100
relatively to its mean value over the interval x ∈ [0, 1] for α = 0.5 (upper plot),
α = 0.8 (middle plot) and α = 1.0 (lower plot). The solid (dashed) lines correspond
to the results obtained with (without) the ff f̄ Fock sector contribution.

stable relative to the increase of the regulator — the Pauli–Villars meson mass µ1,
that indicates that in this way we find the convergent results. Due to the trunca-
tion, the bare parameters in the truncated Hamiltonian depend on the kinematical
variable x. This dependence becomes weaker when the ff f̄ sector is included.

The numerical results for the N = 3 truncation presented above were obtained by
a laptop. In order to go further, one should certainly use supercomputers which open
wide perspectives for the non-perturbative calculations in the field theory. This can
make an alternative to the lattice calculations. For a review of this field, applications
to the light-front Hamiltonian dynamics and the results of ab initio calculations in
nuclear physics see Refs. [14, 15]. It would be very important, as the next step, to
carry out calculations for the four-body truncation (to solve the equations shown in
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Figure 7: The same as Fig. 6 but for the x-dependence of the counterterm Z ′
ω.

Fig. 3) in order to check a possible convergence relative to the number of incorporated
Fock sectors. From the Yukawa model which serves as a testing area for development
of methods, one should go over to a realistic field theory.
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Approach to QCD Bound State Problems
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Abstract

Basis Light-Front Quantized Field Theory (BLFQ) is an ab initio Hamilto-
nian approach that adopts light-cone gauge, light-front quantization and state-
of-the-art many-body methods to solve non-perturbative quantum field theory
problems. By a suitable choice of basis, BLFQ retains the underlying symme-
tries to the extent allowed within light-front coordinates. In this talk, we outline
the scheme for applying BLFQ to QCD bound state problems. We adopt a 2D
harmonic oscillator with 1D plane wave basis that corresponds to the AdS/QCD
soft-wall solution. Exact treatment of the symmetries will be discussed.

Keywords: Light-front; harmonic oscillator basis; QCD; non-perturbative; sym-
metry

1 Introduction

Solving bound state problems arising in quantum chromodynamics (QCD) is the
key to understand a series of important questions in physics. The solutions will
provide consistent descriptions of the structure of mesons, baryons and also particles
with “exotic” quanta beyond the scope of the constituent quark model. One salient
challenge is to predict the spin content of the baryons. Furthermore, it could also
help to explain the nature of confinement and dynamical chiral symmetry breaking.
QCD bound states are strong coupling non-perturbative solutions that cannot be
generated from perturbation theory. Among various non-perturbative methods, light-
front Hamiltonian quantization within a basis function approach has shown significant
promise by capitalizing on both the advantages of light-front dynamics as well as the
recent theoretical and computational achievements in quantum many-body theory.
We begin with an overview of the light-front quantum field theory. We will then
introduce the Basis Light-Front Quantized Field Theory (BLFQ) and its application
to bound state problems in quantum field theory.

2 Light-front quantum field theory

The idea of quantization on a light-front surface was first considered by Paul Dirac
in 1949 in his famous investigation of forms of relativistic dynamics [1]. Light-front
quantum field theory is quantized on a light-front plane x+ ≡ x0 + x3 = 0 and
evolves according to light-front time x+. It is convenient to define light-front vari-
ables x± = x0 ± x3, x⊥ = (x1, x2), where x+ is the light-front time, x− is the longi-
tudinal coordinate. The light-front momentum p± = p0 ± p3, p⊥ = (p1, p2), where
the p+ is the longitudinal momentum and p+ = 1

2
p− is the light-front energy. For

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 136.

http://www.ntse-2013.khb.ru/Proc/YLi.pdf.
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positive energy states, p+ and p− are positive. An important consequence of this is
that the light-front vacuum state is trivial [2, 3].

Let Mµν , Pµ be the generators of the Poincaré symmetry. Jk = 1
2
ǫijkM ij ,

Ki = M0i, (i, j, k = 1, 2, 3) are the equal-time angular momentum and boost genera-
tors respectively. The light-front rotation and boost generators are F− ≡M12 = J3,
F i ≡ εijM j− = J i + εijKj, (i, j = 1, 2) and E− ≡ 1

2
M+− = K3, Ei ≡ M+i =

Ki + εijJj , (i, j = 1, 2). According to Dirac, in light-front dynamics the number of
kinematic operators of the Poincaré algebra is maximal: {P+,P⊥, E−,E⊥, F−}. The
kinematic feature of the the light-front boost generatorsE−, E⊥ provides convenience
in evaluating matrix elements of certain experimental observables where the initial
and final states differ by a boost. Note however that the total angular momentum
operator is dynamic in light-front dynamics.

Irreducible representations can be identified with mutually commuting operators
or compatible operators. It is customary to take the set of compatible operators
as {P 2,W 2, P+,P⊥,J 3}, where Wµ = − 1

2ε
µνκλMνκPλ is the Pauli–Lubanski

vector, J 3 ≡ W+

P+ = J3 + εij EiP j

P+ is the longitudinal projection of the light-front
spin [3]. Note that in relativistic dynamics, the total angular momentum
operator J2 = J2

1 + J2
2 + J2

3 is generally different from the total spin operator1

J 2 = J 2
1 + J 2

2 + J 2
3 = −W 2/P 2 [3, 4]. In light-front dynamics, P 2 ≡ PµP

µ,
W 2 ≡WµW

µ are dynamical. They have to be diagonalized simultaneously at x+ = 0:

P 2 |M ,J 〉 = M
2 |M ,J 〉, (1a)

W 2 |M ,J 〉 = −M
2J (J + 1) |M ,J 〉. (1b)

It is conventional to call P 2 the “light-cone Hamiltonian”, Hlc ≡ P 2. It is convenient
to express this light-cone Hamiltonian in terms of kinetic energy and potential energy,

Hlc = H
(0)
lc + Vint. The kinetic energy, H

(0)
lc , resembles the non-relativistic kinetic

energy,

H
(0)
lc = 2P+P

(0)
+ − P⊥2

=
∑

a

p⊥a
2

+m2
a

xa
− P⊥2

, (2)

where “a” represents the quark or gluon constituent and P⊥ =
∑

a p
⊥
a is the to-

tal transverse Center-of-Mass (CM) momentum while xa =
p+
a

P+ is the longitudinal
momentum fraction carried by each constituent.

The triviality of the Fock space vacuum provides a strong appeal for the Fock
space representation of the quantum field theory [2]. The Fock space expansion of an
eigenstate in a plane-wave basis reads,

|Ψ ;P 〉 =

∞∑

n=0

∑

σ1,···σn

∫
d3k1

(2π)32k+1
θ(k+1 ) · · · d3kn

(2π)32k+n
θ(k+n )

× 2P+(2π)3 δ3(k1 + · · ·+ kn − P )Ψσ1,···,σn
n (k1, · · ·, kn) a†σ1

(k1) · · · a†σn
(kn) |0〉, (3)

where d3k = d2k⊥dk+, δ3(p1−p2)=δ(p+1 −p+2 ) δ2(p⊥1 −p⊥2 ) and Ψσ1,···,σn
n (k1, k2, · · ·, kn)

is called the light-front wavefunction (LFWF). LFWFs are boost-invariant, namely
frame independent, following the boost-invariance of the light-cone Hamiltonian and
the pure kinematic character of the light-front boosts. In practice, a non-perturbative
diagonalization of the Hamiltonian can only be achieved in a finite-truncated Fock
space. The Tamm–Dancoff approximation (TDA) introduces a truncation based on
Fock sectors. The rationale of the TDA is founded on the success of the constituent
quark model, according to which the hadrons can be approximated by a few particles
as in the leading Fock space representation [6]. However, there are also new challenges

1Note that the total spin J is the observable quantity quoted as “J” in the Particle Data Group
compilations [5].
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in light-front TDA. Fock sector truncation breaks rotational symmetry. As a result,
the total spin J in a truncated calculation is no longer a good quantum number.

3 Basis light-front quantized field theory

BLFQ is an ab initio Hamiltonian approach to light-front quantum field theory that
adopts a complete set of orthonormal single-particle basis functions for field expan-
sions resulting in Fock space basis states |φi〉 expressed in terms of these single-particle
basis states [7]. In the Fock space basis, the Hamiltonian and eigenstates become,

Hij = 〈φi| Hlc |φj〉, |Ψ〉 =
∑

i

ci |φi〉. (4)

The system of equations (1a) is reformulated as a standard eigenvalue problem,
∑

j

Hijcj = λci, (5)

which is then truncated and solved numerically. The full field theory is restored in the
continuum limit and the complete Fock sectors limit of the Hamiltonian many-body
dynamics.

In principle, the choice of the basis functions is arbitrary but subject to the con-
ditions of completeness and orthonormality. Basis functions preserving the kinematic
symmetries can dramatically reduce the dimensionality of the problem for a specific
accuracy. Basis functions emulating the correct asymptotic behavior of the solu-
tion can accelerate the convergence. BLFQ adopts a light-front basis comprised of
plane-wave functions in the longitudinal direction and 2D harmonic oscillator (HO)
functions in the transverse direction. The transverse HO basis states are generated
by the following operator [8],

P ho

+ =
∑

a

p⊥a
2

2p+a
+

Ω2

2
p+a r

⊥
a

2
, (6)

where r⊥a ≡ x⊥
a = −E⊥

a

p+
a

(at x+ = 0) is the transverse position operator2. The

adoption of the BLFQ basis exploits known similarity between light-front dynamics
and non-relativistic dynamics, and is consistent with the recent development of the
AdS/QCD [9, 10]. In momentum space, the single-particle basis functions are given
in terms of the generalized Laguerre polynomials Lα

n by

〈
p+,p⊥|n,m, x

〉
= N eimθ

(
ρ√
x

)|m|
e−

ρ2

2x L|m|
n (ρ2/x) δ(p+ − xP+)

≡ 1√
x

Ψm
n

(
p⊥

√
x

)
2π2p+δ(p+ − xP+), ρ =

|p⊥|√
P+Ω

, θ = argp⊥, (7)

which are associated with the HO eigenvalues En,m = (2n + |m| + 1)Ω. x is the
longitudinal momentum fraction. We can identify the HO energy scale parameter
b =
√
P+Ω comparing with b =

√
MΩ used in the non-relativistic HO basis [11–13].

The orthonormality of the basis functions reads

〈n,m, x|n′,m′, x′〉 = 2π2x δ(x− x′) δn,n′ δm,m′ . (8)

To introduce a finite truncation, BLFQ selects a particular finite subset of the
basis space. In the longitudinal direction, we confine the longitudinal coordinate
−L ≤ x− ≤ +L with periodic boundary condition for bosons and anti-periodic bound-
ary condition for fermions. Thus the longitudinal momentum p+ is discretized as,

p+ =
2πk

L
, k =

{
0, 1, 2, 3, · · · for bosons,
1
2 ,

3
2 ,

5
2 ,

7
2 , · · · for fermions,

(9)

2Recall the transverse light-front boost at x+ = 0: Ei = M+i = x+P i − xiP+ = −xiP+.
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where L is the length of the longitudinal box. We omit the zero-modes for the bosons
in the calculations that follow. In the transverse direction, we select the Fock space
basis states by ∑

a

(2na + |ma|+ 1) ≤ Nmax. (10)

Let P denote the projection operator for the truncated basis space. Then for a
basis state |α〉 ≡ |n1,m1, x1, n2,m2, x2, · · ·〉, P |α〉 = θ(Nmax −Nα) |α〉 where Nα =∑

a(2na + |ma|+ 1). The continuum limit is achieved by taking L→∞, Nmax →∞.
A symmetry may be broken by the basis truncation. For example, let A be a con-

served operator and [Hlc, A] = 0. Then in the truncated basis space, the commutator
becomes

[PHlcP ,PAP ] = P [[P , Hlc], [P , A]]P .
For the transverse truncation, the commutation relation survives if [A,P ho

+ ] = 0. The
proof is as following: [A,P ho

+ ] = 0 ⇒ A |α〉 =
∑

α′ Cα′δNα,Nα′
|α′〉. Then

PA |α〉 = P
∑

α′

Cα′ δNα,Nα′
|α′〉 =

∑

α′

Cα′ δNα,Nα′
θ(Nmax −Nα′) |α′〉

= θ(Nmax −Nα)
∑

α′

Cα′ δNα,Nα′
|α′〉 = AP |α〉 ,

⇒ [P , A] = 0,

⇒ [PHlcP ,PAP ] = 0.

Among all generators of the Poincaré symmetry, a complete set of compatible
operators (including the Hamiltonian) is particularly useful for solving Eq. (5), as
the Hamiltonian is block diagonal with respect to the mutual eigenstates. A distin-
guishing feature of the BLFQ basis with the finite truncation is that it preserves the

set of compatible kinematic operators. We define P cm
+ = 1

2P+

(
P⊥2

+ Ω2E⊥2
)

=

1
2P+P

⊥2
+ Ω2

2 P
+R⊥2

. With some effort, one can show that {Hlc, P
+, P cm

+ , J3,J 3}
is a set of mutually commuting operators and [P+, P ho

+ ] = [J3, P ho

+ ] = [P cm

+ , P ho

+ ] =

[J 3, P ho

+ ] = 0, where J 3 = J3 + εij

P+E
iP j = J3 − εijRiP j . Therefore in the finite

basis space the truncated operators,

{PHlcP ,PP+P ,PP cm

+ P ,PJ3P ,PJ 3P}, (11)

still form a set of compatible operators.
For simplicity, we will omit the projection operator when there is no danger of

confusion. For example, the compatible operators in the finite-truncated basis space
will be denoted as {Hlc, P

+, P cm

+ , J3,J 3}. The compatible operators allow us to
further fix the total longitudinal momentum and the angular momentum projection
of the system from the kinematic construction:

P+ =
2πK
L

⇒
∑

a

ka = K;

J3 = Mj ⇒
∑

a

(ma + σa) = Mj,
(12)

where σa is the spin projection of the a-th constituent. Due to the boost invariance,
the light-cone Hamiltonian depends on the longitudinal momentum fractions xa = ka

K
instead of p+a . Therefore, for a fixed L, the continuum limit is also achieved by taking
K →∞, Nmax →∞.

We also take advantage of the internal symmetries to fix the charge Q =
∑

aQa,
baryon number B =

∑
aBa, color projection and the total color, that is, color con-

figurations are restricted to color-singlet configurations.
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Figure 1: Using Lagrange multiplier method to lift the CM excitations. The cal-
culation is performed in the Fock sectors |e+e−〉 and |e+e−γ〉 with Mj = 0,

K = Nmax = 8,
√
P+Ω = 0.3me (See Section 4 for details). The vertical axis shows

the eigenvalues of the light-cone Hamiltonian Hlc. States with different Ecm are col-
ored differently. We show spectra with the lowest 50 states for three cases: λcm = 0,
λB = 0; λcm = 0.5, λb = 0 and λcm = 0.5, λb = 0.05. In the last case, degeneracies
caused by CM excitations are lifted.

Let HO states |N,M〉 be the mutual eigenstates of P cm
+ and L3 ≡ J3 − J 3 =

R1P 2 − R2P 1 associated with the eigenvalues Ecm = EN,M ≡ (2N + |M | + 1)Ω
and M , respectively. Then the eigenvalue Mj of the light-front spin projection J 3

can be expressed in terms of the eigenvalues of J3 and L3 as Mj = Mj −M . The
eigenstates of P 2 can be identified with the eigenvalues of the compatible opera-
tors as |M 2, 2πKL , EN,M ,Mj ,Mj

〉
. They can also be identified in terms of N , M

as |M ,K,Mj , N,M〉 ≡ |ϕintr〉⊗|Φcm〉, where |ϕintr〉 = |M ,K,Mj〉, |Φcm〉 = |N,M〉.
Therefore, the finite BLFQ basis admits an exact factorization of the center-of-mass
motion [14].

The light-cone Hamiltonian Hlc = H
(0)
lc + Vint only acts on the intrinsic part of

the wavefunction. So different CM states are degenerate. It is useful to introduce
Lagrange multipliers in the Hamiltonian [15]:

P+ → P+ + λcm(P cm

+ − Ω) + λbΩL3, (13)

where λcm > 0 and |λb| < λcm. The eigenvalues of the light-cone Hamiltonian be-
come λ = M 2+2λcm(2N+ |M |)P+Ω+2λbMP+Ω. The CM excitations are driven to
high energy with sufficiently large λcm. Fig. 1 shows the use of Lagrange multipliers
to lift the degeneracies of the states in a numerical calculation of a positronium model.

To separate the CM part and the intrinsic part in the basis functions in single-
particle coordinates, we introduce the generalized 2D Talmi–Moshinsky (TM) trans-
formation [16],

Ψm1

n1

(
p1√
x1

)
Ψm2

n2

(
p2√
x2

)
=

∑

NMnm

(NMnm|n1m1n2m2)|ξ δε1+ε2,E+ǫ δM+m,m1+m2
ΨM

N

(
p1+p2√
x1+x2

)
Ψm

n

(
p√
x

)
,

(14)
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where εi = 2ni + |mi| + 1, E = 2N + |M | + 1, ǫ = 2n + |m| + 1, ξ = arctan
√

x2

x1
,

x =
√

x1x2
x1+x2

and p = x2

x1+x2
p1− x1

x1+x2
p2 is the intrinsic momentum. The sum is finite

due to the Kronecker delta δE1+E2,E+ε. The coefficients (NMnm|n1m1n2m2)|ξ are
called the generalized 2D TM coefficients. They can be computed analytically within
a closed form (See appendix A).

4 Basis light-front quantization applied to QED

In recent applications to QED, Honkanen et al. and Zhao et al. calculated the electron
anomalous magnetic moment and obtained high precision results [11, 12]. Here we
present an application of BLFQ to a highly regularized model of positronium in the
Fock sectors |e−e+〉 and |e−e+γ〉 which complements the treatment of positronium
presented in Ref. [13].

We adopt a light-cone gauge A+ = 0 for QED. The light-front QED interactions
are shown in Fig. 2 which include the e→ eγ vertex,

P
(e→eγ)
+ = g

∫
dx+d2x⊥ ψ̄(x) γµ ψ(x)Aµ(x)

∣∣∣∣
x+=0

, (15)

and two instantaneous vertices,

P
(eγ→eγ)
+ = 1

2g
2

∫
dx+d2x⊥ ψ̄(x) γµA

µ(x)
γ+

i∂+
γν A

ν(x)ψ(x)

∣∣∣∣
x+=0

,

P
(ee→ee)
+ = 1

2g
2

∫
dx+d2x⊥ ψ̄(x) γ+ ψ(x)

1

(i∂+)2
ψ̄(x) γ+ ψ(x)

∣∣∣∣
x+=0

.

(16)

In this model, we take the coupling constant α = g2

4π = 0.2 and the basis energy

scale b =
√
P+Ω = 0.3me, where me = 0.511 MeV is the mass of the electron.

We adopt a regulator for the light-front small-x singularity, 1
(x1−x2)2

→ 1
(x1−x2)2+ε

with ε = 0.01 [8, 17]. We then construct the light-cone Hamiltonian matrix H
(pos)
lc .

Fig. 3 shows the number of nonzero matrix elements compared to the total number
of matrix elements. The Hamiltonian matrix is a large sparse matrix. We diagonalize
the matrix with the Lanczos method implemented by the ARPACK software [18],
which is particularly suitable for solving large sparse matrix eigenvalue problems.

We obtain the positronium spectrum directly from the diagonalization. Fig. 4(a)
shows the positronium bound-state spectrum for light-front spin projections Mj =
0, 1, 2 from the numerical calculations with Nmax = K = 12, Mj = 0, 1, 2, 3;
λcm = 5, λb = 0. Some of the states in the figure are nearly degenerate. We have
put a label n to the left of each bar to indicate the existence of n states around each
bar in Fig. 4(a). In the light-front TDA, the total spin J is only approximate. We
can identify the total spin by counting the approximate degeneracy of particles with

(a) e→ eγ vertex (b) eγ → eγ vertex (c) ee→ ee vertex

Figure 2: The relevant light-front QED vertices for positronium in the Fock sectors
|e−e+〉 and |e−e+γ〉.
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Figure 3: The sparsity of the light-cone Hamiltonian matrix H
(pos)
lc . The horizontal

axis is the dimensionality N of the basis space. The square dots show the number
of nonzero matrix elements. A power-law fitting suggests the number of nonzero
elements is proportional to ∼N1.485.

different Mj [3]. Fig. 4(b) shows the states with Mj = 0 identified by their total
spin J . The energy splitting between the singlet state (J = 0,Mj = 0) and the triplet
state (J = 1,Mj = 0) is the fine splitting [shown in Fig. 4(a)]. The non-relativistic
quantum mechanics gives a fine splitting for the ground state Etriplet − Esinglet =
1
3α

4me ≃ 5.33× 10−4me [19]. In our calculation, the fine splitting is 2.77× 10−4me,
which is the correct order of magnitude and is reasonable given that we have a rela-
tivistic treatment (important for strong coupling) and our implementation of regula-
tors.

(a) (b)

Figure 4: The positronium spectrum for (a) spin projection Mj = 0, 1, 2; (b) total
spin J = 0, 1, 2, Mj = 0 identified from plot (a). For Mj = 3, there is no
state within the range of the plot. The numbers to the left of the bars in plot (a)
label the multiplicity of the states around each bar. Plot (a) also shows the fine
splitting between the lowest J = 0, Mj = 0 and J = 1, Mj = 0 states. The total
spin J in plot (b) is obtained by counting the approximate degeneracy of states with
different Mj .
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5 Conclusions and outlook

We have introduced the Basis Light-Front Quantization (BLFQ) approach to the
QCD bound-state problem and analyzed the symmetries of the finite basis space.
BLFQ converts the field theory problem into a form where we can take advantage of
the recent advances in quantum many-body problems and the state-of-the-art meth-
ods developed for large sparse matrix eigenvalue problem. The compatible operators
provide a means to identify states. We have shown the exact factorization of the
center-of-mass motion in the finite basis space. They also allow us to reduce the
dimensionality of the problem dramatically for a given level of accuracy, as we have
demonstrated in the positronium model. BLFQ has retained the kinematic symme-
tries of the underlying Hamiltonian. We also introduced a generalized 2D Talmi–
Moshinsky transformation to relate internal motions to a fixed coordinate system.
Finally we have applied BLFQ to QED and obtained the positronium bound-state
spectrum.

To obtain physical results, one must perform renormalization. There are three
types of divergences existing in the light-front quantized field theory: the ultra-
violet divergence, the infrared divergence and the spurious small-x divergence. Various
schemes have been developed to address these issues (see, for example,
Refs. [13, 17, 20, 21]).

As a non-perturbative ab initio Hamiltonian approach to QFT, BLFQ requires
major computational efforts. Thanks to the rapid advances in supercomputing, we
foresee promising applications of BLFQ to understanding the structure of QCD bound
states.
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Appendix A: Talmi-Moshinsky transformation

Consider the exponential generating function of the 2D HO wavefunctions Ψm
n (q),

e−
1
2
q2+2q·z−z2

=

∞∑

n=0

∞∑

m=−∞

(−1)n√
4π(n+ |m|)!n!

Ψm
n (q) e−imθ z2n+|m|, (17)

where q = p√
x

, z = |z|/
√
P+Ω, θ = arg z. If we define

Q = q1 cos ξ + q2 sin ξ, q = q1 sin ξ − q2 cos ξ,

Z = z1 cos ξ + z2 sin ξ, z = z1 sin ξ − z2 cos ξ,
(18)

where ξ = arctan
√

x2

x1
, Q = p1+p2√

x1+x2
, q = x2p1−x1p2√

x1x2(x1+x2)
, then there exists an identity

(
− 1

2q
2
1 + 2q1 · z1 − z21

)
+
(
−1

2q
2
2 + 2q2 · z2 − z22

)

=
(
− 1

2Q
2 + 2Q ·Z −Z2

)
+
(
−1

2q
2 + 2q · z − z2

)
. (19)
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Thanks to Eq.(17),

∑

n1,m1,n2,m2

(−1)n1+n2 Ψm1
n1

(q1) Ψm2
n2

(q2)

4π
√

(n1 + |m1|)!n1!(n2 + |m2|)!n2!
e−im1θ1−im2θ2 z

2n1+|m1|
1 z

2n2+|m2|
2

=
∑

N,M,n,m

(−1)N+n ΨM
N (Q) Ψm

n (q)

4π
√

(N + |M |)!N !(n+ |m|)!n!
e−iMΘ−imθ Z2N+|M| z2n+|m|, (20)

where zi = |zi|, Z = |Z|, z = |z|, θi = arg zi, Θ = argZ, θ = argz. We can express Z,
z, eiΘ, eiθ in terms of z1, z2, e

iθ1 , eθ2 and identify the corresponding coefficients.

Ψm1

n1
(q1) Ψm2

n2
(q2)

≡
∑

NMnm

(NMnm|n1m1n2m2)|ξ δε1+ε2,E+ǫ δm1+m2,M+m ΨM
N (Q) Ψm

n (q),

where E = 2N + |M |+ 1, ǫ = 2n+ |m|+ 1, εi = 2ni + |mi|+ 1 and the coefficients are

(N1M1N2M2|n1m1n2m2)|ξ
= (−1)N1−n1−n2+ 1

2
(|M2|−M2) (sin ξ)2n2+|m2| (cos ξ)2n1+|m1|

×
√

(n1 + |m1|)!(n2 + |m2|)!n1!n2!

(N1 + |M1|)!(N2 + |M2|)!N1!N2!

v1∑

γ1=0

v2∑

γ2=0

γ1∑

β1=0

γ2∑

β2=0

V2∑

β3=0

M2∑

β=0

(− tan ξ)β1−β2+β+M2

×
(
M1

χ

)(
M2

β

)(
V2

β1, β2, β3, β4

)(
v1 + v2 − V2

γ1 − β1, γ2 − β2, v1 − γ1 − β3, β5

)
, (21)

where vi = ni+
1
2 (mi−|mi|), Vi = Ni+

1
2 (Mi−|Mi|), i = 1, 2, χ = v1−v2+m1+γ2−

γ1 − β, ξ = arctan
√

x2

x1
. The multinomial coefficients

(
n

m1,m2,··· ,mk

)
= n!

m1!m2!···mk!

satisfy m1+m2+ · · ·+mk = n, 0 ≤ mi ≤ n, i = 1, 2, ... , k. So, β4 = V2−β1−β2−β3,

β5 = v2−γ2−β4. The generalized binomial coefficients satisfy
(
n
m

)
= n(n−1)···(n−m+1)

m! ,

m ≥ 0 and
(
n
0

)
= 1.
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Positronium in Basis Light-Front Quantization

Paul W. Wiecki, Yang Li, Xingbo Zhao, Pieter Maris

and James P. Vary

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

Abstract

We present a calculation of the mass spectrum of positronium within the
framework of the recently developed Basis Light-Front Quantization approach
to non-perturbative quantum field theory. In this calculation, we employ a two-
body effective interaction for the photon exchange, neglecting self-energy effects.
We demonstrate the cancellation of Light-Front small-x divergences within our
non-perturbative approach. The resulting spectrum is compared to both non-
relativistic quantum mechanics and previous work in Discretized Light-Cone
Quantization.

Keywords: Light-front dynamics; non-perturbative; bound state; positronium

1 Introduction

The ab initio calculation of hadron mass spectra and other hadron observables remains
an outstanding theoretical question. Recent observations of “tetraquark” states in the
quarkonium spectrum point to the pressing need for theoretical methods which can
address such systems. In the current “supercomputing era”, the computational tools
necessary for such large-scale calculations are now readily available.

The recently developed Basis Light-Front Quantization (BLFQ) [1] approach is a
promising tool for tackling hadron problems. BLFQ combines the well-known advan-
tages of Light-Front Dynamics [2, 3] with modern developments in ab initio nuclear
structure calculations, such as the No-Core Shell Model (NCSM) [4]. The similarity
of the Light-Front Hamiltonian formulation to non-relativistic quantum mechanics
allows the quantum field theoretical bound state problem to be formulated as large,
sparse matrix eigenvalue problem. State-of-the-art methods developed for NCSM
calculations can then brought to bear on the hadron problem.

BLFQ has so far been applied to the problem of a free electron in QED. Honkanen
[5] and Zhao [6] calculated Schwinger’s electron anomalous magnetic moment to high
precision within the BLFQ approach. More recently, BLFQ has been applied to time-
dependent problems in non-perturbative quantum field theory, such as non-linear
Compton scattering [7].

Here, we present the first application of BLFQ to a bound state problem, using the
positronium system as a test case. We develop a two-body effective interaction that
acts only on the two-particle sector of the basis. Our calculation is thus equivalent to
a ladder truncation on the Light Front.

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 146.

http://www.ntse-2013.khb.ru/Proc/Wiecki.pdf.
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2 Basis Light-Front Quantization

In BLFQ, hadron observables are calculated by solving the equation

PµPµ|Ψ〉 = M2|Ψ〉, (1)

where Pµ is the energy-momentum 4-vector operator. Using Light-Cone Gauge, the
operator P 2 can be constructed. This operator plays the role of the Hamiltonian
in NCSM calculations, and is often referred to as the “Light-Cone Hamiltonian”
HLC ≡ P 2 [2]. One can then calculate the matrix elements of this operator in a
basis to produce a matrix, which can be diagonalized to find the mass eigenvalues
(squared) and Light-Front amplitudes. The approach is thus non-perturbative. Since
the basis is infinite dimensional, it must be truncated for the problem to be tractable
on a computer. Three separate truncations are made in BLFQ.

The first is truncation on the number of Fock sectors. Since we are solving a
quantum field theory, the basis must, in principle, contain “sectors” with all possible
numbers and species of particles that can be generated by the interactions within P 2.
The operator P 2 contains terms which change particle number and thus couples the
sectors. For example, the “physical” positronium state, could be expressed schemat-
ically as
∣∣e+e−

〉
phys

= a
∣∣e+e−

〉
+ b
∣∣e+e−γ

〉
+ c
∣∣e+e−γγ

〉
+ d|γ〉+ f

∣∣e+e−e+e−
〉

+ · · · . (2)

In order to have a finite basis, then, we must truncate the Fock sectors at some point.
This truncation will be made by physical considerations. For the moment we restrict
ourselves to the |e+e−〉 and |e+e−γ〉 sectors. This should be sufficient for generating
the Bohr spectrum of positronium. We do not yet make any attempt to examine the
limit of increasing the number of Fock sectors.

Secondly, we need a truncation on the Light-Front longitudinal modes. We dis-
cretize the longitudinal momentum by putting our system in a longitudinal box of
length L and applying periodic boundary conditions (BCs). Specifically, we choose
periodic BCs for bosons and anti-periodic BCs for fermions. Thus

p+ =
2π

L
j, (3)

where j is an integer for bosons, or a half-integer for fermions. For bosons, we exclude
the “zero modes”, i. e. j 6= 0. In the many-body basis, we select the value of the total
longitudinal momentum P+ =

∑
i p

+
i , where the sum is over particles. We then

parameterize this using a dimensionless variable K =
∑

i ji such that P+ = 2π
L K.

For a given particle i, the longitudinal momentum fraction x is defined as

xi =
p+i
P+

=
ji
K
. (4)

Due to the positivity of longitudinal momenta on the Light Front [8], fixing K
serves as a Fock space cutoff and makes the number of longitudinal modes finite [9].
It is easy to see that K determines our “resolution” in the longitudinal direction, and
thus our resolution on parton distribution functions. Real physics corresponds to the
limit K →∞.

Finally, in the Light-Front transverse direction we employ a 2D Harmonic Oscil-
lator (HO) basis. That is, the basis functions are the eigenfunctions of the potential
V = 1

2MΩ2r2. Each value of the oscillator energy parameter b =
√
MΩ determines

a unique complete basis. Convergence rates depend upon b but the final converged
results should not. The basis is made finite by restricting the number of allowed
oscillator quanta according to

∑

i

(2ni + |mi|+ 1) ≤ Nmax, (5)
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where n and m are the radial and orbital quantum numbers of the 2D Harmonic
Oscillator, respectively. Of course, real physics is obtained in the continuum limit
of Nmax → ∞. Furthermore, we use an M -scheme basis. That is, our many-body
basis states have a well-defined value of

MJ =
∑

i

(mi + si), (6)

where s is the helicity. These basis states do not, however, have a well-defined value
of total J .

Since our basis is constructed in single-particle coordinates, the center-of-mass
(CM) motion of the system is contained in our solutions. This problem is also faced in
NCSM calculations. The use of the HO basis combined with the Nmax truncation is a
great advantage here since it allows for the exact factorization of the wavefunction into
“intrinsic” and “CM” components, even within a truncated basis. The CM motion can
then be removed from the low-lying spectrum by introducing a Lagrange multiplier
proportional to HCM (also known as the Lawson term) to the Hamiltonian [10]. The
extra term essentially makes CM excitations very costly energetically and thus forces
the CM part of the wavefunction to be the ground state of CM motion. In this way,
spurious CM excitations are removed from the spectrum of interest.

It is important to note that, in NCSM calculations, the exact factorization only
happens if the isoscalar kinetic energy is used. That is, the proton and neutron mass
are treated as the same. On the Light Front, the kinetic energy can be written as

P+P− =
∑

i

p2
i +m2

xi
. (7)

Comparing to the non-relativistic form
∑

i
p2

i

2m we see that, on the Light Front, the
longitudinal momentum fraction x is analogous to mass. Thus the equivalent to using
the isoscalar kinetic energy in the NCSM is for the particles to have equal longitudinal
momentum splitting. For two fermions, this situation corresponds to K = 1 (similarly
K = 3

2 for three fermions). Indeed, in initial applications of BLFQ it was found
that CM factorization only occurred when the total longitudinal momentum was split
equally among the constituents. In order to generalize the factorization, the following
alternate coordinates were introduced [11]:

q ≡ p√
x
,

s ≡ √x r.
(8)

When the Hamiltonian is expressed in these coordinates, exact CM factorization is
obtained for all eigenstates even in a basis with arbitrary distributions of longitudinal
momenta as well as an arbitrary numbers of sectors. An illustration of the exact CM
factorization in BLFQ is given in Refs. [11, 12].

3 Two-Body effective interaction

We truncate the Fock space to include only |e+e−〉 and |e+e−γ〉 states. We wish
to formulate an effective potential acting only in the |e+e−〉 space that includes the
effects generated by the |e+e−γ〉 space. In the formalism of effective potentials, we
consider the P space to be the |e+e−〉 space and Q space to be the |e+e−γ〉 space.
Let P be the operator that projects onto the P space, and Q be the operator that
projects onto the Q space.

We choose the Bloch form of the effective Hamiltonian. The Bloch form of the
effective Hamiltonian has several advantages compared to the traditional Tamm–
Dancoff effective Hamiltonian used in previous studies of positronium on the Light
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Front [13]. The Bloch effective Hamiltonian has only unperturbed energies in the
energy denominators, as opposed to an energy eigenvalue which then needs to be found
in a self-consistent manner. The Bloch Hamiltonian is also automatically Hermitian.
The Bloch Hamiltonian is given by:

〈f |Heff|i〉 = 〈f |PHP|i〉+ 1

2

∑

n

〈f |PHQ|n〉〈n|QHP|i〉
[

1

ǫi − ǫn
+

1

ǫf − ǫn

]
. (9)

Here, H = HLC = P 2 is the Light-Cone Hamiltonian introduced above. States i
and f are states in P space (|e+e−〉), while state n is in the Q space (|e+e−γ〉). ǫi
is the unperturbed energy of state i, etc. Note that if i = f this reduces to the
usual formula from second-order energy shift in perturbation theory. Furthermore,
note that, due to the definition of HLC , both the “Hamiltonian” and the “energy”
have mass-squared dimensions. The mass eigenvalues are thus the square root of the
eigenvalues of HLC . The derivation of (9), based on a perturbative expansion of the
Okubo–Lee–Suzuki effective Hamiltonian [14–19], is given in Ref. [20].

PHP is the part of the Hamiltonian that acts within the two-particle space. It
contains two pieces. First, it contains the two-particle kinetic energy. Secondly, it
contains the Light-Front instantaneous photon exchange interaction. Thus it can be
expressed as

PHP = P (H0 +Hinst)P . (10)

The instantaneous photon exchange interaction Hinst contains a singularity of the
form 1

(x1−x′

1)
2 , where x1 (x′1) is the longitudinal momentum fraction of the incoming

(outgoing) fermion. This singularity is not physical and must be cancelled.

Since we are interested in primarily the effects of repeated photon exchange, we
will only include those combinations of terms in PHQ and QHP which generate
the photon exchange. We neglect the combinations which result in the photon being
emitted and absorbed by the same fermion. That is, we do not incorporate the
fermion self-energy, and therefore no fermion mass renormalization is necessary in
this model. In addition, we work with unit-normalized eigenstates and a fixed value
of the coupling constant.

In Light-Front S-matrix perturbation theory i = f . In momentum space, the sum
in (9) reduces to a sum over the polarization states of the photon:

∑

λ

ǫµ (k, λ) ǫ∗ν (k, λ) = −gµν +
kµην + kνηµ

kκηκ
, (11)

where ηµ =
(
η+, η−, η⊥

)
= (0, 2,0) is a unit null vector. The second term in (11)

generates a term identical to the instantaneous photon exchange term of the Light-
Front Hamiltonian, but opposite in sign. That is, a piece of the second term on
the RHS of (9) cancels the instantaneous exchange piece [Hinst in (10)] of the first
term on the RHS of (9), leaving the effective interaction free of Light-Front small-x
divergences [2, 8].

In our non-perturbative calculation i 6= f and the cancellation of small-x singular-
ities does not occur in general. This leaves the effective potential with an unphysical
singularity, and the resulting interaction is unstable with increasing K. The numer-
ical calculation, as a result, does not converge to a finite number in the continuum
limit.

To cure this pathology, we introduce a counterterm of the form

〈f |Hct|i〉 = −
∑

n

〈f |PHQ|n〉 〈n|QHP|i〉
[

(a− b)2
2ab (a+ b))

]
, (12)
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where a = ǫi − ǫn and b = ǫf − ǫn. The resulting effective potential is

〈f |Hnew
eff |i〉 = 〈f |(Heff +Hct)|i〉 = 〈f |PHP|i〉+

∑

n

〈f |PHQ|n〉〈n|QHP|i〉
1
2 [(ǫi − ǫn) + (ǫf − ǫn)]

. (13)

In this form the cancellation of the instantaneous diagram does occur, and Hnew
eff

is free of unphysical Light-Front small-x singularities. We note that our choice of
counterterm is equivalent to the prescription used in previous work in Light-Front
effective potentials [13].

By substituting in the terms from the LFQED Hamiltonian, along with the free-
field momentum-space mode expansions, the effective potential can be easily derived,
and the cancellation of the instantaneous diagram verified. The sum over intermediate
states is performed in momentum space, before translating the result back to the HO
basis.

The result, after canceling the instantaneous interaction, is

〈f |Hnew
eff |i〉 = 〈f |PH0P |i〉+ α

δ
x′

1+x′

2

x1+x2

K

√
x1x2x′1x

′
2

∫
d2q1

(2π)2
d2q2

(2π)2
d2q′1
(2π)2

d2q′2
(2π)2

×
Ψm1

n1
(q1) Ψm2

n2
(q2) Ψ

m′

1∗
n′

1
(q′1) Ψ

m′

2∗
n′

2
(q′2) ū(1′) γµ u(1) v̄(2) γµ v(2′)

x1−x′

1

2 [(ǫi − ǫn) + (ǫf − ǫn)]

× (2π)
2
δ(2)
(√

x1q1 +
√
x2q2 −

√
x′1q

′
1 −

√
x′2q

′
2

)
, (14)

where u and v are the 4-component Dirac spinors and

ǫi − ǫn =
x1q

2
1 +m2

x1
− x′1q

′2
1 +m2

x′1
−
(√
x1q1 −

√
x′1q

′
1

)2
+ µ2

x1 − x′1
,

− (ǫf − ǫn) =
x2q

2
2 +m2

x2
− x′2q

′2
2 +m2

x′2
−
(√
x2q2 −

√
x′2q

′
2

)2
+ µ2

x2 − x′2
.

(15)

(µ is a fictitious photon mass; see below.) The integral is evaluated using repeated 2D
Talmi–Moshinsky (TM) transformations [21]. With the help of these TM transfor-
mations, the integral can be reduced down to a single 2D integral, which is evaluated
numerically. The details of the calculation will be presented elsewhere [22].

The effective potential Hnew
eff has one remaining singularity we have not yet dis-

cussed. In the event that x1 = x′1 and µ = 0, the integrations diverge in the low
transverse-momentum limit. The singularity thus corresponds to the case where the
photon has zero momentum. The exact same singularity was found within the context
of a Bloch Hamiltonian on the Light Front in Ref. [20]. The integral has no singularity
if µ 6= 0. This is why we have introduced µ as a regulator for this physical infrared
divergence. Thus, in addition to examining the limits K → ∞ and Nmax → ∞, we
must also consider the limit µ→ 0.

4 Numerical results

In non-relativistic Quantum Mechanics, the hyperfine splitting between the 1S0

and 3S1 states of positronium scales as α4, where α is the fine structure constant.
At physical coupling, the expected hyperfine splitting and even the binding energy
are then uncomfortably small relative to the precision of our numerical integrals.
Since we would like to use the hyperfine splitting to test our BLFQ results, we use
a large coupling of α = 0.3 to exaggerate both the binding energy and the hyperfine
splitting. We then compare our results not to experiment, but to the predictions of
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Figure 1: Convergence of the ground state energy with respect to K for various values
of Nmax. The parameters used are α = 0.3, b = 0.5mf and µ = 0.1mf . Ground state
energy below 2 fermion mass units represents a bound state.

non-relativistic Quantum Mechanics at this unphysical value of α. This value of α
also allows a direct comparison to the Discretized Light-Cone Quantization (DLCQ)
results of Ref. [13].

The numerical results were obtained using the Hopper Cray XE6 at NERSC.
ScaLAPACK software [23] was used for the diagonalization. In this particular imple-
mentation of BLFQ, the resulting matrix is quite dense. However, in future applica-
tions involving multiple Fock sectors, the matrix will be extremely sparse.

Figure 1 shows the convergence of the ground state energy as a function of K
for various values of Nmax. In this plot, the basis energy parameter is chosen to
be b = 0.5m, where m is the fermion mass. We also take µ = 0.1m. The same plot
made with a different value of µ would look qualitatively similar, but with differing
absolute energies. The ground state energy is also expressed in fermion mass units.
Thus a ground state energy below 2 indicates a bound state. The ground state energy
is seen to converge rapidly with increasing K. The fitting function used to make the
extrapolations is

E = a+ be−c
√
K . (16)

The parameter a is taken to be the result at infinite K for a given Nmax.
We can then plot these extrapolated values as a function of Nmax. The result is

shown in Fig. 2. The four curves represent different values of our infrared regulator µ.
The ground state energy shows a converging trend as a function of Nmax, although
the convergence is slow. In addition, the binding becomes deeper as we decrease the
infrared cutoff µ. For each µ, the curve is fit to the function

E = a+ be−c
√
Nmax . (17)

The value of a is then taken to be the ground state energy in the limit K → ∞
and Nmax →∞ for a given value of µ.

Next we must examine the limit µ → 0. The results for the limit K → ∞
and Nmax → ∞ are plotted as a function of

√
µ in Fig. 3 as the circles. A linear fit

is obtained. The diamonds represent values for the first excited state, calculated in
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Figure 2: Convergence of the ground state energy with respect to Nmax for various
values of infrared regulator µ (α = 0.3 and b = 0.5mf ). Each point has already been
extrapolated to the K →∞ limit as shown in Fig. 1.

exactly the same fashion as the ground state curve. We will compare the splitting
between these states to the expected hyperfine splitting.

While we cannot yet calculate the total angular momentum of these states, our
identification of the ground state being a J = 0 state and the first excited state
being a J = 1 state is strongly suggested by the following argument. When we do
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Figure 3: Converged (with respect to Nmax and K) spectrum as a function of
√
µ

for α = 0.3. Lowest line is the ground state of MJ = 0 sector, middle line is the
ground state of MJ = ±1 sector and upper line is the ground state of MJ = ±2
sector.
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Figure 4: Comparison of BLFQ results to other methods. Quantum Mechanics results
are from Ref. [24]. Results reported for DLCQ (Ref. [13]) are the result of a Padé
extrapolation of a non-converging trend (see Outlook). Dotted lines are only to guide
the eye; we have not calculated total J for these states in BLFQ (see text).

the calculation for MJ = 0, we see these two states. If we then do the calculation
at MJ = ±1, the lower state disappears and the remaining state is nearly (but not
identically) degenerate with the higher state in the MJ = 0 calculation. Furthermore,
both states have disappeared at MJ = ±2. This suggests that our ground state
has J = 0 and the first excited state has J = 1, but we cannot yet prove this
statement.

The squares in Fig. 3 represent the ground state of our MJ = ±2 calculation.
This state disappears when we go up to MJ = ±3. This again suggests that this
state has J = 2, but we cannot yet prove it. We will then compare this state to the
lowest J = 2 state of the postironium system, which is the 3P2 state. The curve is fit
to a second order polynomial.

The intercepts of the curves in Fig. 3 with the vertical axis (at µ = 0) thus repre-
sent the energies in the limit K →∞, Nmax →∞ and µ→ 0 and can be compared to
the predictions of non-relativistic Quantum Mechanics, and other non-perturbative
schemes. This comparison is made in Fig. 4. The BLFQ results are seen to be
qualitatively similar to the NRQM expectations, but with a significant overbinding.
The hyperfine splitting is well reproduced. The BLFQ results are also compared to
the DLCQ results of Ref. [13]. Those authors also find an overall overbinding, and a
hyperfine splitting of the correct order of magnitude. They do not report a numerical
result for the J = 2 state.

5 Summary and outlook

We have calculated the spectrum of the positronium system in the non-perturbative
Basis Light-Front Quantization approach. Instead of tackling the problem directly
with a dynamical photon, we have introduced a two-body effective interaction, which
implements the effects of photon exchange, but not the fermion self-energy. Thus no
mass renormalization was necessary in this calculation. The final converged results
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agree qualitatively with the expectations of NRQM and previous work in DLCQ, with
a tendency toward overbinding.

We note that previous authors [13, 25] who have worked on ladder truncation of
positronium on the Light Front have seen a slight dependence on the ultraviolet cutoff
of the theory. These authors claim that the divergence they see will be cancelled when
crossed ladder graphs are included in the interaction kernel. While currently we see
no evidence of such a divergence, we accept that it is present and believe that we
are simply not yet at high enough Nmax to be sensitive to it. These issues will be
explored in future work.

Our two-body effective potential model should also be applicable to heavy quarko-
nia if we include a confining potential, such as the one motivated by “soft wall”
AdS/QCD [26–28]. The effective interaction implemented here could then be inter-
preted as providing a first correction to the basic AdS/QCD spectrum.

Implementation of the problem with one or more dynamical photons in the basis
requires the implementation of a non-perturbative renormalization scheme, such as the
Fock Sector dependent scheme of Karmanov et al. [29]. In addition, the cancellation
of unphysical Light-Front singularities would need to occur numerically within the
matrix diagonalization, and not analytically as is done here. The full potential of
BLFQ will be realized only when these difficulties are overcome.
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Abstract

A century of coherent experimental and theoretical investigations have un-
covered the laws of nature that underly nuclear physics. The standard model of
strong and electroweak interactions, with its modest number of input parame-
ters, dictates the dynamics of the quarks and gluons — the underlying building
blocks of protons, neutrons, and nuclei. While the analytic techniques of quan-
tum field theory have played a key role in understanding the dynamics of matter
in high energy processes, they encounter difficulties when applied to low-energy
nuclear structure and reactions, and dense systems. Expected increases in com-
putational resources into the exa-scale during the next decade will provide the
ability to numerically compute a range of important strong interaction processes
directly from QCD with quantifiable uncertainties using the technique of lattice
QCD. These calculations will refine the chiral nuclear forces that are used as in-
put into nuclear many-body calculations, including the three- and four-nucleon
interactions. I discuss the state-of-the-art lattice QCD calculations of quantities
of interest in nuclear physics, progress that is expected in the near future, and
the impact upon nuclear physics.

Keywords: Nuclear forces; lattice QCD

1 Introduction

A nucleus is at the heart of every atom, and loosely speaking, is a collection of pro-
tons and neutrons that interact pairwise, with much smaller, but significant, three-
body interactions. We are fortunate to know that the underlying laws governing the
strong interactions result from a quantum field theory called quantum chromody-
namics (QCD). It is constructed in terms of quark and gluon fields with interactions
determined by a local SU(3) gauge-symmetry and, along with quantum electrodynam-
ics (QED), underpins all of nuclear physics when the five relevant input parameters,
the scale of strong interactions ΛQCD, the three light-quark masses mu, md and ms,
and the electromagnetic coupling αe, are set to their values in nature. It is remark-
able that the complexity of nuclei emerges from “simple” gauge theories with just five
input parameters. Perhaps even more remarkable is that nuclei resemble collections
of nucleons and not collections of quarks and gluons. By solving QCD, we are ex-
pecting to predict, with arbitrary precision, nuclear processes and the properties of
multi-baryon systems.

The fine-tunings observed in the structure of nuclei, and in the interactions be-
tween nucleons, are peculiar and fascinating aspects of nuclear physics. For the values
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of the input parameters that we have in our universe, the nucleon-nucleon (NN) inter-
actions are fine-tuned to produce unnaturally large scattering lengths in both s-wave
channels [described by non-trivial fixed-points in the low-energy effective field the-
ory (EFT)], and the energy levels in the 8Be-system, 12C and 16O are in “just-so”
locations to produce enough 12C to support life, and the subsequent emergence and
evolution of the human species. At a fundamental level it is important for us to
determine the sensitivity of the abundance of 12C to the light-quark masses and to
ascertain the degree of their fine-tuning.

Being able to solve QCD for the lightest nuclei, using the numerical technique of
lattice QCD (LQCD), would allow for a partial unification of nuclear physics. It would
be possible to “match” the traditional nuclear physics techniques — the solution of
the quantum many-body problem for neutrons and protons using techniques such as
No-Core Shell Model (NCSM), Green’s Function Monte Carlo (GFMC), and others,
to make predictions for the structure and interactions of nuclei for larger systems than
can be directly calculated with LQCD. By placing these calculations on a fundamental
footing, reliable predictions with quantifiable uncertainties can then be made for larger
systems.

2 Chiral nuclear forces

During the 1990’s, the nuclear forces were systematized by the hierarchy emerging
from the spontaneously broken chiral symmetries of QCD. The resulting small expan-
sion parameters are powers of the external momenta and powers of the light-quark
masses normalized to the scale of chiral symmetry breaking, as pioneered by Wein-
berg, first in the meson sector and then the multi-nucleon sector [1–3]. In addition to
generating nuclear forces that are consistent with QCD, this construction provides the
calculational advantage of parametric estimates of the systematic uncertainty intro-
duced by the truncation of the nuclear interactions at a given order in the expansion.
The actual ordering of contributions remains a subject of debate even today, with
Weinberg’s chiral expansion of the potential having its peculiar difficulties, as does
the KSW expansion of scattering amplitudes [4,5]. Calculations are being performed
at a sufficiently high order where the size of truncation errors is quite small. Wein-
berg’s ordering of operators based upon a chiral expansion of the n-body potentials
between nucleons has been carried out to N3LO, which includes contributions to the
three-body (starting at N2LO) and the leading four-body interactions (starting at
N3LO) (for a recent review see Ref. [6]).

During the last several years, nuclear structure calculations have been performed
with the chiral nuclear forces, leading to both postdictions and predictions for nuclei
to a given order in the expansion, and compared with experiment, e. g., see Fig. 1.
The nuclear forces that are presently used in such calculations are constrained by ex-
perimental measurements of NN scattering and light nuclei. As the desired precision
increases, which requires working to higher orders in the expansion, the number of
required experimental constraints increases. Eventually, there are too few experimen-
tal constraints to practically reduce the systematic uncertainty below some level in
any given calculation. However, LQCD calculations are expected to provide a way to
constrain the nuclear forces beyond what is possible with experiment, and hence to
further reduce the systematic uncertainties in nuclear structure calculations. Beyond
providing direct calculations of important quantities, LQCD calculations of the light
nuclei and nuclear forces can

1. verify experimental constraints and/or reduce the uncertainties in the con-
straints imposed by experiment,

2. constrain components of the nuclear forces that are inaccessible to experiment,



158 Martin J. Savage

Figure 1: NCSM calculations of lowest-lying levels in 7Li and 8B using chiral nuclear
forces [7]. Image is reproduced with the permission of P. Maris.

for instance the light-quark mass dependences which dictates some of the multi-
pion vertices, and multi-neutron forces,

3. constrain counterterms at higher orders in the expansion to further reduce the
systematic uncertainties.

3 Lattice QCD

LQCD is a technique in which space-time is discretized into a four-dimensional grid
and the QCD path integral over the quark and gluon fields at each point in the grid is
performed in Euclidean space-time using Monte Carlo methods. A LQCD calculation
of a given quantity will deviate from its value in nature because of the finite volume
of the space-time (with L3 × T lattice points) over which the fields exist, and the
finite separation between space-time points (the lattice spacing, b). However, such
deviations can be systematically removed by performing calculations in multiple vol-
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umes with multiple lattice spacings, and extrapolating using the theoretically known
functional dependences on each. Supercomputers are needed for such calculations
due to the number of space-time points and the Monte Carlo evaluation of the path
integral over the dynamical fields. In order for a controlled continuum extrapola-
tion, the lattice spacing must be small enough to resolve structures induced by the
strong dynamics, encapsulated by bΛχ ≪ 1 where Λχ is the scale of chiral symme-
try breaking. Further, in order to have the hadron masses, and also the scattering
observables, exponentially close to their infinite-volume values, the lattice volume
must be large enough to contain the lightest strongly interacting particle, encapsu-
lated by mπL & 2π where mπ is the mass of the pion and L is the extent of the
spatial dimension of the cubic lattice volume (this, of course, can be generalized to
non-cubic volumes). Effective field theory (EFT) descriptions of these observables
exist for bΛχ . 1 [the Symanzik action and its translation into chiral perturbation
theory (χPT) and other frameworks] and mπL & 2π (the p-regime of χPT and other
frameworks). The low-energy constants in the appropriate EFT are fit to the results
of the LQCD calculations, which are then used to take the limit b → 0 and L → ∞.
Computational resources devoted to LQCD calculations are becoming sufficient to be
able to perform calculations at the physical values of the light quark masses in large
enough volumes and at small enough lattice spacings to be relevant, but the majority
of present day calculations are performed with pion masses of mπ & 200 MeV. There-
fore, most calculations require the further extrapolation of mq → mphys

q , but do not
yet include strong isospin breaking or electromagnetism. In principle, the gauge-field
configurations that are generated in LQCD calculations can be used to calculate an
enormous array of observables, spanning the range from particle to nuclear physics.
In practice, this is becoming less common, largely due to the different scales relevant
to particle physics and to nuclear physics. Calculations of quantities involving the
pion with a mass of mπ ∼ 140 MeV are substantially different from those of, say, the
triton with a mass of M(3H) ∼ 3 GeV, and with the typical scale of nuclear exci-
tations being ∆E ∼ 1 MeV. Present day dynamical LQCD calculations of nuclear
physics quantities are performed with mπ ∼ 400 MeV, lattice spacings of b ∼ 0.1 fm
and volumes with spatial extent of L ∼ 4 fm.

LQCD calculations are approached in the same way that experimental efforts use
detectors to measure one or more quantities — the computer is equivalent to the
accelerator and the algorithms, software stack, and parameters of the LQCD calcu-
lation(s) are the equivalent of the detector. The parameters, such as lattice spacing,
quark masses and volume, are selected based upon available computational resources,
and simulations of the precision of the calculation(s) required to impact the physical
quantity of interest, i. e. simulations of the LQCD Monte Carlos are performed. The
size of the computational resources required for cutting edge calculations are such that
you only get “one shot at it”. A typical work-flow of a LQCD calculation consists
of three major components. The first component is the production of an ensemble
of gauge-field configurations which contain statistically independent samplings of the
gluon fields resulting from the LQCD action. The production of gauge-fields requires
the largest partitions on the leadership class computational facilities, typically requir-
ing & 128K compute cores. Present-day calculations have nf = 0, 2, 2+1, 3, 2+1+1
dynamical light-quark flavors and use the Wilson, O(b)-improved-Wilson, staggered
(Kogut–Susskind), domain-wall or overlap discretizations, each of which have their
own “features”. It is the evaluation of the light-quark determinant (the determinant of
a sparse matrix with dimensions & 108×108) that consumes the largest fraction of the
resources. Roughly speaking, & 104 Hybrid Monte Carlo (HMC) trajectories are re-
quired to produce an ensemble of 103 decorrelated gauge fields, but in many instances
this is an under estimate. For observables involving quarks, a second component of
production is the determination of the light-quark propagators on each of the config-
urations. The light-quark propagator from a given source point (an example of which
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Figure 2: An example of (the real part of one component of) a light-quark propagator.
The (blue) “wall” corresponds to the anti-periodic boundary conditions imposed in
the time direction. Image is reproduced with the permission of R. Gupta.

is shown in Fig. 2) is determined by an iterative inversion of the quark two-point
function, using the conjugate-gradient (CG) algorithm or variants thereof such as
BiCGSTAB, or the most recently developed multi-grid (MG). During the last couple
of years, the propagator production codes have been ported to run on GPU machines
in parallel. GPU’s can perform propagator calculations faster than standard CPU’s
by an order of magnitude, and have led to a major reduction in the statistical un-
certainties in many calculations. There have been numerous algorithm developments
that have also reduced the resources required for propagator production, such as the
implementation of deflation techniques and the use of multi-grid methods. The third
component of a LQCD calculation is the production of correlation functions from the
light-quark propagators. This involves performing all of the Wick contractions that
contribute to a given quantity. The number of contractions required for computing a
single hadron correlation function is small. However, to acquire long plateaus in the
effective mass plots (EMPs) that persist to short times, Lüscher–Wolff type methods
involve the computation of a large number of correlation functions resulting from
different interpolating operators, and the number of contractions can become large.
In contrast, the naive number of contractions required for a nucleus quickly becomes
astronomically large (∼ 101500 for uranium), but symmetries in the contractions, and
new algorithms (e. g. Ref. [8]) greatly reduce the number of operations that must be
performed. A further consequence of the hierarchy of mass scales is that there is an
asymptotic signal-to-noise problem in nuclear correlation functions. The ratio of the
mean value of the correlation function to the variance of the sample from which the
mean is evaluated degrades exponentially at large times. However, this is absent at
short and intermediate times and the exponential degradation of the signal-to-noise
in the correlation functions can be avoided.

4 Cold nuclear physics with lattice QCD

Capability computing resources provided by leadership class computing facilities are
used to produce ensembles of gauge-field configurations, while capacity computing re-
sources, both those operated by USQCD and elsewhere are used to perform observable-
dependent calculations of correlation functions using these configurations. Thus the
capability resources enable a multitude of physics calculations to be accomplished
with the capacity resources. In the area of cold nuclear physics there is currently a
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well-defined set of goals, and a program in place to accomplish these goals, as de-
scribed in one of the 2013 USQCD Whitepapers [9]: Hadron Structure, Hadron
Spectroscopy, Hadronic Interactions, Nuclear Forces and Nuclei, and Fun-
damental Symmetries.

4.1 The spectra and structure of the hadrons

Before calculations of nuclei can be sensibly undertaken, the mass and structure
of the nucleon must be reproduced in LQCD calculations. The spectrum of the
lowest-lying hadrons calculated with LQCD is shown in Fig. 3, from which we observe
that indeed LQCD is postdicting all of the light-hadron masses within uncertainties.
Beyond its mass, one property of the nucleon that is well known experimentally is
the forward-matrix element of the isovector axial current, gA. Significant effort has
been put into calculating gA with LQCD, a summary of which is shown in Fig. 4, but
the extrapolated LQCD value has consistently been smaller than the experimental
value. With calculations beginning to be performed at the physical pion mass, the
community is focused on understanding and quantifying the systematic uncertainties
in these calculations.

A central element of the physics program at JLab is to determine the excited spec-
tra of mesons and baryons, including searching for exotic states that are beyond the
naive nonrelativistic quark model of hadrons, but arise naturally in QCD. A critical
component of this program is the LQCD calculations of the spectra. They will play a
central role in interpreting and understanding the experimental measurements. The
spectra of such states is complicated by the presence of open multi-hadron channels
and significant formal developments remain to be put in place before rigorous state-
ments about the spectra can be made. Calculations at unphysical pion masses have
been performed by the JLab LQCD group, examples of which are shown in Fig. 5,
and remarkable progress has been made in the identification of states in these calcu-
lations. The aim is to have LQCD predict the exotic spectra of hadrons before, or at
the same time as, the GlueX experiment at JLab runs, targeting the 2018 milestone
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Figure 4: A summary of LQCD calculations of gA [12]. Image is reproduced with the
permission of H.-W. Lin.

4.2 Meson-meson scattering

Multi-hadron LQCD calculations are significantly more challenging than single-hadron
calculations for a number of reasons, and systems involving baryons are even more
challenging. Meson-meson systems are the simplest multi-hadron systems, and im-
pressive progress has been made in the recent past, particularly when the LQCD
calculations are combined with χPT. There is little or no signal-to-noise problem
in such calculations and therefore highly accurate LQCD calculations of stretched-
isospin states can be performed with modest computational resources. Moreover,
the EFTs which describe the low-energy interactions of pions and kaons, including
lattice-spacing and finite-volume effects, have been developed to non-trivial orders
in the chiral expansion. The I = 2 pion-pion (π+π+) scattering length serves as a
benchmark calculation with an accuracy that can only be aspired to in other systems.
The scattering lengths for ππ scattering in the s-wave are uniquely predicted at LO
in χPT [14]:

mπ+aI=0
ππ = 0.1588, mπ+aI=2

ππ = −0.04537. (1)

While experiments do not directly provide stringent constraints on the scattering
lengths, a determination of s-wave ππ scattering lengths using the Roy equations has
reached a remarkable level of precision [15, 16]:

mπ+aI=0
ππ = 0.220± 0.005, mπ+aI=2

ππ = −0.0444± 0.0010. (2)

The Roy equations [17] use dispersion theory to relate scattering data at high energies
to the scattering amplitude near threshold. At present, LQCD can compute ππ
scattering only in the I = 2 channel with precision as the I = 0 channel contains
disconnected diagrams which require large computational resources. It is of great
interest to compare the precise Roy equation predictions with LQCD calculations,
and Fig. 6 summarizes theoretical and experimental constraints on the s-wave ππ
scattering lengths [16]. This is clearly a strong-interaction process for which theory
has somewhat out-paced the challenging experimental measurements.

Mixed-action nf = 2 + 1 LQCD calculations, employing domain-wall valence
quarks on a rooted staggered sea and combined with mixed-action χPT, have
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Figure 6: Constraints on threshold s-wave ππ scattering [16]. Image in the upper
panel is reproduced with the permission of H. Leutwyler.

predicted [18]
mπ+aI=2

ππ = −0.04330± 0.00042 (3)

at the physical pion mass. The agreement between this result and the Roy equation
determination is a striking confirmation of the lattice methodology, and a powerful
demonstration of the constraining power of chiral symmetry in the meson sector.
However, LQCD calculations at one or more smaller lattice spacings, and with dif-
ferent discretizations, are required to verify and further refine this calculation. The
ETM collaboration has performed a nf = 2 calculation of the I = 2 ππ scattering
length [19], producing a result extrapolated to the physical pion mass of

mπ+aI=2
ππ = −0.04385± 0.00028± 0.00038. (4)
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It is interesting to compare the pion mass dependence of the meson-meson scatter-
ing lengths to the current algebra predictions. In Fig. 7 (upper panel) one sees that
the I = 2 ππ scattering length is consistent with the current algebra result up to pion
masses that are expected to be at the edge of the chiral regime in the two-flavor sec-
tor. While in the two-flavor theory one expects fairly good convergence of the chiral
expansion and, moreover, one expects that the effective expansion parameter is small
in the channel with maximal isospin, the LQCD calculations clearly imply a degree
of cancellation between chiral logs and counterterms. However, as one sees in Fig. 7
(lower panel), the same phenomenon occurs in K+K+ where the chiral expansion is
governed by the strange quark mass and is therefore expected to be much more slowly
converging. This remarkable conspiracy between chiral logs and counterterms for the
meson-meson scattering lengths remains mysterious.

LQCD calculations of the meson-meson scattering phase-shifts are much less ad-
vanced than of the scattering length. This is because the calculation of the phase



166 Martin J. Savage

ææææ
à

à

à

à

à

à

ò

ò

ò

ò

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ææ

àà

òò

ìì

L � bs= 16

L � bs= 20

L � bs= 24

L � bs= 32

0.0 0.5 1.0 1.5 2.0
-60

-50

-40

-30

-20

-10

0

k2�mΠ2

∆
Hd

eg
re

esL

ææææ

àà

òò

ì

ì

ì

ì

0.00 0.05 0.10 0.15 0.20

-8

-6

-4

-2

0

s

L/b  = 16

0

L/b  = 20
L/b  = 24

s
s

0

−4

−8

0 0.1 0.2

L/b  = 32

−20

−40

−60
0 1 2

s

δ
(d

eg
re

es
)

k2/m2
π

à

à

à

à

à
à

à

à

à

à

à
à

ô

ô

ô

ô
ô

ô

æ

æ

æ

æ

æ

æ

ì

ì

ì

ì

ì
ì

ì

ì

ì

àà

ôô

ææ

ìì

àà

Hoogland et al '77
Cohen et al '73
Durosoy et al '73
Losty et al '74
NPLQCD '11

0.0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

k2 HGeV2L

∆
Hd

eg
re

esL

0 0.2 0.4

Hoogland et al ’77
Cohen et al ’73
Durosoy et al  ’73
Losty et al  ’74
NPLQCD  ’11

−20

0

−40

δ
(d

eg
re

es
)

k2 (GeV2)

Figure 8: The π+π+ scattering phase-shift. The left panel shows the results of
the LQCD calculations below the inelastic threshold (|k|2 = 3m2

π) at a pion mass
of mπ ∼ 390 MeV [22]. The vertical (blue) line denotes the start of the t-channel
cut. The shaded region in the right panel shows the results of the LQCD calcula-
tion extrapolated to the physical pion mass using NLO χPT, while the points and
uncertainties corresponds to the existing experimental data. The vertical (red) line
corresponds to the inelastic threshold.

shift, δ(E), at a given energy, E, requires a LQCD calculation of the two-meson corre-
lation function at the energyE. Generally speaking, a given calculation can determine
the lowest few two-hadron energy eigenvalues for a given momentum of the center-
of-mass, and that multiple lattice volumes will allow for additional values of E at
which to determine δ(E). The first serious calculation of the s-wave (l = 0) I = 2 ππ
phase-shift was done by the CP-PACS collaboration with nf = 2 at a relatively large
pion mass [20], and more recently two groups have performed calculations at lower
pion masses [21, 22], the results of which are shown in Fig. 8. Further, in some nice
work by the Hadron Spectrum Collaboration (HSC), the first efforts have been made
to extract the d-wave (l = 2) I = 2 ππ phase shift [21]. One of the more exciting
recent results is the mapping out of the ρ-resonance at mπ ∼ 390 MeV from the π+π0

energy-levels using Lüscher’s method, as shown in Fig. 9 [23].
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4.3 Nuclear interactions

Calculations of the nucleon-nucleon scattering lengths have been successfully under-
way for the last decade [24–37] for a range of pion masses. Recently, LQCD cal-
culations have been performed at mπ ∼ 800 MeV that also provide the effective
ranges [38], the results of which are shown in Fig. 10. Also shown are fits to the ef-
fective range expansion (ERE), including the shape parameter. The scattering length
and effective range in the 3S1 channel determined from the NLO fit to the ERE are

mπa
(3S1) = 7.45+0.57

−0.53
+0.71
−0.49 , mπr

(3S1) = 3.71+0.28
−0.31

+0.28
−0.35 ,

a(
3S1) = 1.82+0.14

−0.13
+0.17
−0.12 fm, r(

3S1) = 0.906+0.068
−0.075

+0.068
−0.084 fm.

(5)

The shape parameter obtained from the NNLO fit to the ERE expansion is: Pm3
π =

2+5
−6

+5
−6. An interesting aspect of this result is that the ratio of scattering length to

effective range, a measure of the naturalness of the system, is ∼2, which is to be
compared with ∼3 at the physical quark masses. This leads one to speculate that
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the deuteron might be unnatural over a large range of quark masses and not just
close to the physical values, indicating that it is not finely tuned. This speculation
requires precise calculations at lighter quark masses to determine if this is, in fact,
the situation.

4.4 Nuclei

Perhaps some of the most important LQCD calculations of late are those of the ground
states of the light nuclei, including the deuteron, 3He, 4He and light hypernuclei.
Fig. 11 shows the binding energy of the deuteron, 3He and 4He [34, 36, 37] as a
function of the pion mass. Not only is it exciting to see nuclei emerge from QCD for a
range of the light-quark masses, such calculations are crucial in dissecting and refining
the chiral nuclear forces. However, it is clear that calculations at lighter pion masses
are required, including at the physical pion mass. A summary of the energy-levels
at the flavor SU(3) symmetry point found in the s-shell nuclei and hypernuclei [36]
is shown in Fig. 12. These energy levels are elements of SU(3) irreps which allowed,
in some cases, e. g., the H-dibaryon, the hypertriton and 4

ΛΛHe, for distinct energy
levels with the same spin and parity to be determined. Such calculations will become
somewhat more complicated at lighter quark masses when the up and down quarks
are not degenerate with the strange quark.

The calculations of NPLQCD and those of Yamazaki et al. are already shedding
light on how the ground-state energies of the light nuclei approach their values at the
physical light-quark masses. They are all bound at the heavier light-quark masses
and become less bound as the quarks become lighter. In the case of the dineutron,
which is bound at mπ ∼ 800 MeV, it becomes unbound at some intermediate value
of the pion mass, giving rise to a neutron-neutron system with an infinite scattering
length.
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panel) binding energies from nf = 2 + 1 LQCD calculations [34, 36, 37].



Nuclear forces from lattice QCD 169

−80

−120

2−body
3−body
4−body

−200

−160

0

−40

replacemen

1+

1+

1+

0+

0+

0+

0+

0+0+

0+

1
2

+

1
2

+1
2

+

3
2

+

3
2

+

s = 0 s = −1 s = −2

−
B

(M
eV

)

d nn 3He 4He nΣ 3
ΛH 3

ΛHe 3
ΣHe 4

ΛHe H-dib nΞ 4
ΛΛHe

Figure 12: A compilation of the energy levels in light nuclei and hypernuclei in the
limit of flavor SU(3) symmetry (with spin and parity Jπ) calculated by NPLQCD [36]
at a pion mass of mπ ∼ 800 MeV.

One of the interesting aspects of the nuclear forces to explore is the tensor inter-
action, responsible for the mixing between the S-wave and D-wave channels in the
deuteron channel. There is a series of LQCD calculations that can be performed
that will permit an extraction of the SD mixing parameter, ǫ1, using Lüscher’s
method [39–41], see Ref. [42].

4.4.1 Roadblocks of the past

It is important to understand how a few of the past roadblocks to progress in this area
have been recently overcome. One of the roadblocks of the past was/is the “signal-
to-noise problem” that afflicts states other than the pion. This problem is seen most
simply in the single-nucleon correlation function, generated with a three-quark source
and a three-quark sink. The variance of this correlation function is dictated by a 3-
quark 3-anti-quark source and a 3-quark 3-anti-quark sink, which overlaps with both
the NN and 3π intermediate states (and all others with the appropriate quantum
numbers). At large times, the variance correlation function is dominated by the 3π
intermediate state, while the single nucleon correlation function is dominated by the
single nucleon, giving rise to an exponentially degrading signal. However, at interme-
diate times, the behavior of the “signal-to-noise” is determined by the overlap of the
variance sinks and sources onto the intermediate hadronic states. The momentum
projection onto single nucleon blocks, that NPLQCD is currently using, provides a
volume suppression of the 3π intermediate state compared to the NN state. Thus,
there is an intermediate time interval in which the signal-to-noise ratio is not expo-
nentially degrading. It is in this time interval, dubbed the “Golden Window”, that
plateaus for the low-lying energy levels in light nuclei can be identified. Unfortu-
nately, the window shrinks as the number of nucleons is increased, and so further
developments will be required to go to much larger nuclei.

A second roadblock that inhibited progress in LQCD calculations of nuclei was the
number of Wick contractions required to form a correlation function. A system con-
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taining Nu up quarks and Nd down quarks requires Nu!Nd! Wick contractions, which
is a rapidly growing number as one moves beyond the nucleon. It was recognized that
recursion relations relating the Wick contractions in systems with N mesons can be
related to those with N − 1 mesons [43]. Further, somewhat more sophisticated algo-
rithms [8, 44] have been developed for the multi-baryon systems that greatly reduce
the computing resources required to perform the contractions. These have led to very
efficient calculations of the s-shell nuclei and hypernuclei, moving beyond the s-shell
requires extensions of these works, and new ideas are required to calculate heavier
nuclei.

4.5 The bridge between LQCD and nuclear structure

One of the points of discussion that came up during this presentation was how to
optimally couple the results of LQCD calculations to nuclear structure calculations.
Given the expertise in the nuclear structure community, it makes little sense for
LQCD theorists to “go it alone” and attempt to calculate the entire periodic table.
It makes much more sense for the LQCD theorists to produce sets of quantities that
can be handed to the nuclear structure theorists who use them in their machinery to
determine the periodic table. The question is what are the optimal quantities to pass
along from LQCD.

It seems that the minimal set of quantities that could be passed along are the
energy eigenvalues for a given system. LQCD calculations of the energy spectrum of
an A-nucleon system could be performed in multiple lattice volumes, with multiple
lattice spacings and at multiple light-quark masses, and handed to the the nuclear
structure theorists who in turn reproduce the energies by tuning the chiral interac-
tions. These tuned interactions are then used to calculate processes in the contin-
uum. This methodology was used to calculate the nΣ− interactions at the physical
pion mass using χPT [45]. The chiral interactions were tuned to reproduce the finite-
volume energy levels determined in a series of LQCD calculations, and then used to
calculate the scattering phase shift at the physical pion mass. Progress in this di-
rection is starting to be made, as demonstrated in recent calculations by Nir Barnea
and collaborators [46], by using the ground state energies of the deuteron, dineutron
and 3He at mπ ∼ 800 MeV to reproduce the 4He ground state using the pionless
EFT.

5 Summary and final comments

I have summarized the rapid progress that is being made in developing LQCD into
a reliable calculational tool for low-energy nuclear physics. It holds the promise to
directly connect the structure and properties of nuclei with QCD, and to enable a
refinement of the chiral nuclear forces that are used as input into nuclear structure
calculations. At present, the ground states of the s-shell nuclei and hypernuclei are
being calculated at unphysically heavy light-quark masses, but within the next few
years, such calculations at mπ ∼ 140 MeV will be performed (if hardware and soft-
ware resources increase as expected). Within the next five years, the spectrum and
interactions of the lightest nuclei and hypernuclei will be postdicted or predicted with
fully-quantified uncertainties.

It is worth emphasizing that the LQCD effort in the US relies heavily on SciDAC
funding to support the scientists who develop and optimize the software to run on the
rapidly evolving computational hardware, e. g., GPU-accelerated compute nodes that
comprise Titan at ORNL, or the BG/Qs at ANL and LLNL. Further, the effort re-
quires ongoing access to both capability computing resources on leadership-class com-
puting facilities, and capacity computing obtained from NERSC, XSEDE, through
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Figure 13: Multigrid is a recent algorithmic development to be implemented in LQCD
calculations [47]. The horizontal (orange) cost estimates (that I have added to the
original figure) provide one example of what is possible for a given production scenario.
Parts of this image [48] are reproduced with the permission of B. Joo.

USQCD and at local compute clusters. Ongoing software (see Fig. 13) and hardware
support are critical to progress in this area.

Ideally, one would start with a LQCD calculation and predict all of the quantities
of interest in low-energy nuclear physics. Presently, we are not in a position to do
this, even if significantly more computing resources were provided to the program.
While Lüscher provided the formalism to relate the two-body S-matrix directly to
two-particle energy levels inside a cubic volume with the fields subject to periodic
boundary conditions [39, 40], which has since been understood and generalized to
the two-nucleon systems, e. g. Ref. [41], such formalism is complicated to apply in
coupled-channels systems [49–51]. Further, the formalism is not in place for the three-
and higher-body sectors, but progress is being made in such systems [52, 53].

In closing, great progress is being made to reliably determine and refine the nuclear
forces directly from QCD using lattice QCD.

Happy Birthday James: James Vary is one of the first nuclear theorists I met
when I arrived in the United States to enter the PhD program at Caltech in the mid
1980’s. I recall James taking the time to talk physics with me during his stay. His
detailed knowledge of, and passion for, important problems of the day left a lasting
impression on me. Despite having been able to chat with, and even collaborate with,
James since that time, when I learned that this conference was in part to celebrate
James’s 70th birthday, I was taken aback as it seems like yesterday that he was in his
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early 40’s (and I was in my early 20’s), and he has retained the same passion and
energy for science. I should also add that James is responsible for me remembering
the value of ~c! Happy 70th!!
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Hot Nuclear Matter in Intense Magnetic Field
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Abstract

Collision of two relativistic heavy ions produces highly intense electromag-
netic field. Exact solution of Maxwell equations indicates that the field strength
reaches ∼m2

π at RHIC and ∼10m2
π at LHC. Moreover, time-evolution of this

field in electrically conducting nuclear matter is much slower than in vacuum.
This fact has many important phenomenological consequences, two of which
are discussed in detail: J/ψ dissociation in background magnetic field and syn-
chrotron photon radiation by quark-gluon plasma.

Keywords: Heavy-ion collisions; magnetic field; synchrotron radiation, J/ψ
production

1 Origin of magnetic field

Electromagnetic field of two relativistic heavy-ions can be estimated using elementary
arguments. Suppose that each ion has radius R, electric charge Ze and collide at
impact parameter b. According to the Biot and Savart law they create magnetic
field that in the center-of-mass frame has magnitude B ∼ γZeb/R3 and directed
perpendicular to the collision plane, where γ =

√
sNN/2mN is the Lorentz factor. At

RHIC heavy-ions are collided at 200 GeV per nucleon, hence γ = 100. Using Z = 79
for Gold and b ∼ RA ≈ 7 fm we estimate eB ≈ m2

π ∼ 1018 G. To appreciate how
strong is this field, compare it with the following numbers: the strongest magnetic
field created on Earth in a form of electromagnetic shock wave is ∼107 G, magnetic
field of a neutron star is estimated to be 1010−1013 G, that of a magnetar up to 1015 G.

It has been known for a long time that classical electrodynamics breaks down at the
critical (Schwinger) field strength F = m2

e/e. In cgs units the corresponding magnetic
field is 1013 G. Because mπ/me = 280, electromagnetic fields created at RHIC and
LHC are well above the critical value. This offers a unique opportunity to study
the super-strong electromagnetic fields in laboratory. In the next section I present a
classical solution to the problem of electromagnetic field in heavy-ion collisions. I then
consider two phenomenological applications: Lorentz ionization of J/ψ in Section 3,
and synchrotron photon radiation in Section 4.

2 Solution of Maxwell equations

In relativistic heavy-ion collisions, production of valence quarks in the central rapid-
ity region – the baryon stopping – is suppressed. Hence Z valence quarks of each
nucleus continue to travel after heavy-ion collision along the straight lines in opposite
directions. These valence quarks carry total electric charge 2Ze that creates electro-
magnetic field in the interaction region. Unlike the valence quarks, gluons and sea
quarks are produced mostly in the central rapidity region, i. e. in a plane perpen-
dicular to the collision axis. It has been suggested by Landau long ago [1, 2] that
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high multiplicity events in heavy-ion collisions can be effectively described using rela-
tivistic hydrodynamics. In particular, matter produced in heavy-ion collisions can be
characterized by a few transport coefficients. This approach has enjoyed a remarkable
phenomenological success (see, e. g., Ref. [3]). Since sea quarks carry electric charge,
electromagnetic field created by valence quarks depends on the permittivity ǫ, per-
meability µ and conductivity σ of the produced matter.

Consider electromagnetic field created by a point charge e moving along the pos-
itive z-axis with velocity v. It is governed by Maxwell equations:

∇ ·B = 0, ∇×E = −∂B
∂t

, (1)

∇ ·D = e δ(z − vt) δ(b), ∇×H =
∂D

∂t
+ σE + evẑ δ(z − vt) δ(b), (2)

where r = zẑ + b (such that b · ẑ = 0) is the position of the observation point.
Introducing Fourier transforms of field components

E(t, r) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dkz
2π

∫
d2k⊥
(2π)2

e−iωt+ikzz+ik⊥·bEωk, etc., (3)

we can write the solution as follows:

Hωk = −2πiev
k × ẑ

ω2ǫ̃µ− k2 δ(ω − kzv), Eωk = −2πie
ωµvẑ − k/ǫ
ω2ǫ̃µ− k2 δ(ω − kzv), (4)

where ǫ̃ = ǫ+ iσ/ω and ǫ, µ are functions of ω that depend on matter properties.
Later time dependence of electromagnetic field is determined by a singularity of

Eq. (4) in the plane of complex ω that has smallest imaginary part. To obtain a
conservative estimate of the matter effect we assume that the leading singularity is
determined by electrical conductivity. Therefore, we adopt a simple model ǫ = µ = 1,
i. e. neglect polarization and magnetization response of nuclear matter, but take into
account its finite electrical conductivity. Plugging (4) into Eq. (3) we take first trivial
kz-integral. Integration over ω for positive values of x− = t − z/v is done by closing
the integration contour over the pole in the lower half-plane of complex ω. In the
relativistic limit γ = 1/

√
1− v2 ≫ 1 the result is [4, 5]

H(t, r) = H(t, r)φ̂ =
e

2πσ
φ̂

∫ ∞

0

J1(k⊥b) k2⊥√
1 +

4k2
⊥

γ2σ2

exp





1

2
σγ2x−


1−

√
1 +

4k2⊥
γ2σ2





dk⊥,

(5)

Ez(t, r) =
e

4π

∫
k⊥ J0(k⊥b)

1−
√

1 +
4k2

⊥

γ2σ2

√
1 +

4k2
⊥

γ2σ2

exp





1

2
σγ2x−


1−

√
1 +

4k2⊥
γ2σ2





dk⊥,

(6)

E⊥(t, r) = H(t, r)r̂, (7)

where r̂ and φ̂ are unit vectors of polar coordinates in transverse plane x, y. Electro-
magnetic field is a function of r − r′, where r and r′ = vtẑ are the positions of the
observation point and the moving charge correspondingly. In fact, it depends only on
distances z − vt = −vx− and b.

Equations (5)–(7) have two instructive limits depending on the value of parame-
ter γσb that appears in the exponents once we notice that k⊥ ∼ 1/b. If γσb ≪ 1,
then, after a simple integration, Eqs. (5)–(7) reduce to the boosted Coulomb potential
in free space:

E =
eγ

4π

b− vx−ẑ
(b2 + γ2v2x2−)3/2

, H =
eγ

4π

vφ̂

(b2 + γ2v2x2−)3/2
. (8)
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Figure 1: Time evolution of magnetic field created by a point unit charge at z = 0,
b = 7.4 fm, γ = 100 and (a) σ = 5.8 MeV, (b) σ = 0.01 MeV. Black solid line is
numerical computation of Eq. (5), red dashed line is “diffusion” approximation (9),
blue dash-dotted line is a solution in free space.

This is the solution discussed in Ref. [6]. In the opposite limit γσb ≫ 1, we expend
the square root in Eqs. (5), (6) and derive

Er = Hφ =
e

2π

bσ

4x2−
e
− b2σ

4x− , Ez = − e

4π

x− − b2σ/4
γ2x3−

e
− b2σ

4x− . (9)

This is the solution suggested in Ref. [7]. Notice that the electromagnetic field in
Eq. (8) drops as 1/x3− at late times, whereas in conducting matter only as 1/x2−. At
RHIC γ = 100, σ ≈ 5.8 MeV [8–10]. For b = 7 fm we estimate γσb = 19, hence the
field is given by the “diffusive” solution (9). This argument is augmented by numerical
calculation presented in Fig. 1. In Fig. 1(a) we plot the result of numerical integration
in Eq. (5) for σ ≈ 5.8 MeV and compare it with the asymptotic solutions (8) and (9).
It is seen that solution (9) completely overlaps with the exact solution at all times,
except at t < 0.1 fm (not seen in the figure). To illustrate what happens at γσb≪ 1,
we plotted in Fig. 1(b) the same formulas as in Fig. 1(a) calculated at artificially
reduced conductivity σ ≈ 0.01 MeV. One can clearly observe that at early time
matter plays little role in the field time-evolution which follows Eq. (8), whereas at
later time Foucault currents eventually slow down magnetic field decline, which then
follows Eq. (9).

To obtain the total electromagnetic field of two colliding ions one needs to sum over
all electric charges, which can be approximated by convolution (5)–(7) with nuclear
densities. The resulting time dependence of total magnetic field is shown in Fig. 2.

2 4 6 8 10
t H fmL10-7

10-5

0.001

0.1

10
eF�mΠ

2

Figure 2: Time dependence of total electromagnetic magnetic field F at mid-
rapidity z = 0, γ = 100, B = 7 fm, t = 2 fm. Solid line: F = Hy at x = y = 0, dashed
line F = −Hx at x = y = 1 fm, dashed-dotted line F = −Ey at x = y = 1 fm.
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As expected late time dependence of all components is the same and governed by
Eq. (9).

Transverse coordinate structure of electromagnetic field was investigated in Ref. [4]
were it was observed that the space variation of Hy is mild. Other transverse compo-
nents vary more significantly as they are required to vanish at either x = 0 or y = 0
by symmetry. When averaged over the transverse plane, only Hy component survives.
In the following section we will consider phenomenological effect of constant magnetic
field B = Bŷ = Hyŷ.

3 J/ψ in magnetic field

Strong magnetic field created in heavy-ion collisions generates a number of remarkable
effects on quarkonium production.

1. Lorentz ionization. Consider quarkonium traveling with constant velocity in
magnetic field in the laboratory frame. In quarkonium comoving frame, we
find mutually orthogonal electric and magnetic fields given by Eqs. (10). In
the presence of electric field quark and antiquark have a finite probability to
tunnel through the potential barrier thereby causing quarkonium dissociation.
We discuss this effect at length below.

2. Zeeman effect. Magnetic field lifts degeneration of quarkonium states with re-
spect of the total angular momentum projection Jy. The corresponding splitting

is of the order ∆M =
eB0

2m gJy, where Jy = −J,−J + 1, ... , J , m is quark mass

and g is Landé factor. For example, J/ψ state with spin S = 1, orbital an-
gular momentum L = 0 and total angular momentum J = 1 has g ≈ 2 and
splits into three states with Jy = ±1, 0 with mass difference ∆M = 0.15 GeV
at eB0 = 15m2

π. Thus, the Zeeman effect leads to the emergence of new quarko-
nium states in plasma.

3. Distortion of the quarkonium potential in magnetic field. This effect arises
in higher order perturbation theory and becomes important at field strengths
of order B ∼ 3πm2/e3 [11]. This is 3π/α times stronger than the critical
Schwinger’s field. Therefore, this effect can be neglected at the present collider
energies.

In this section I focus on Lorentz ionization, which contributes to J/ψ suppression
in heavy-ion collisions [12, 13]. Before we proceed to analytical calculations it is
worthwhile to discuss the physics picture in more detail in two reference frames: the
quarkonium proper frame and the lab frame. In the quarkonium proper frame the
potential energy of, say, antiquark (with e < 0) is a sum of its potential energy in
the binding potential and its energy in the electric field −eEx, where x is the electric
field direction. Since |e|Ex becomes large and negative at large and negative x (far
away from the bound state) and because the quarkonium potential has finite radius,
this region opens up for the motion of the antiquark. Thus there is finite quantum
mechanical probability to tunnel through the potential barrier formed on one side
by the vanishing quarkonium potential and on the other by increasing absolute value
of the antiquark energy in electric field. Of course, the total energy of antiquark
(not counting its mass) is negative after tunneling. However, its kinetic energy grows
proportionally to eEx as it goes away. By picking up a light quark out of vacuum it
can hadronize into a D-meson.

If we now go to the reference frame where E = 0 and there is only magnetic
field B (we can always do so since E < B), then the entire process looks quite
different. An energetic quarkonium travels in external magnetic field and decays into
quark-antiquark pair that can late hadronize into D-mesons. This happens in spite
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of the fact that J/ψ mass is smaller than masses of two D-mesons due to additional
momentum eA supplied by the magnetic field. Similarly, a single photon can decay
into electron-positron pair in external magnetic field.

Consider a J/ψ traveling with velocity V in constant magnetic fieldB0 (subscript 0
indicates the laboratory frame). Let B and E be magnetic and electric fields in the
comoving frame, and let subscripts ‖ and ⊥ denote field components parallel and
perpendicular to V correspondingly. Then,

E‖ = 0, E⊥ = γL V ×B0, (10a)

B‖ =
B0 · V
V

, B⊥ = γL
(V ×B0)× V

V 2
, (10b)

where γL = (1 − V 2)−1/2. Clearly, in the comoving frame B · E = 0. We choose y
and x axes of the comoving frame such that B = Bŷ and E = Ex̂. A convenient
gauge choice is A = −Bx ẑ and ϕ = −Ex. The relative strength of electric and
magnetic fields in comoving frame is ρ = E/B. This parameter is always in the
range 0 ≤ ρ ≤ 1 because B2−E2 = B2

0 ≥ 0. When J/ψ moves perpendicularly to the
magnetic field B0, ρ = V .

The force binding q and q̄ in J/ψ is short-range in the sense that (Mεb)
1/2R≪ 1,

where εb and M are binding energy and mass of J/ψ and R is the nuclear force
range. This approximation enables us to calculate the dissociation probability w
with exponential accuracy regardless of the precise form of the J/ψ wave function.
This is especially important since solutions of the relativistic two-body problem for
quarkonium are not readily available.

It is natural to study quarkonium ionization in the comoving frame [12]. Quark
energy ε0 (ε0 < m) in electromagnetic field can be written as

ε0 =
√
m2 + (p− eA)2 + eϕ =

√
m2 + (pz + eBx)2 + p2x + p2y − eEx. (11)

In terms of ε0, quarkonium binding energy is εb = m − ε0. Ionization probability of
quarkonium equals its tunneling probability through the potential barrier. The later
is given by the transmission coefficient

w = e−2
∫ y1
0

√
−p2

ydy ≡ e−f . (12)

In the non-relativistic approximation one can also calculate the pre-exponential factor,
which appears due to the deviation of the quark wave function from the quasi-classical
approximation. The result of the calculation reads [12]:

f

m2
=

√
−ǫ20 + 1 + q2 (ǫ0E − qB)

e(B2 − E2)

− (ǫ0E − qB)2 − (B2 − E2)(−ǫ20 + 1 + q2)

e(B2 − E2)3/2

× ln

{
ǫ0E − qB +

√
(B2 − E2)(−ǫ20 + 1 + q2)√

(ǫ0E − qB)2 − (B2 − E2)(ǫ20 + 1 + q2)

}
, (13)

where ǫ0 = ε0/m and q = pz/m.
For different q’s function w = e−f gives the corresponding ionization probabilities.

The largest probability corresponds to smallest f , which occurs at momentum qm
determined by equation [14]

∂f(qm)

∂qm
= 0. (14)

Using Eq. (13) we find [12]

ρ(ǫ0 − ρqm)

1− ρ2 ln

{
ǫ0ρ− qm +

√
1− ρ2

√
−ǫ20 + 1 + q2m√

(ǫ0 − ρqm)2 − 1 + ρ2

}
=

√
−ǫ20 + 1 + q2m√

1− ρ2
. (15)
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Figure 3: Dissociation rate of J/ψ at eB0 = 15m2
π, φ = π/2 (in the reaction

plane), η = 0 (midrapidity) as a function of J/ψ transverse momentum in the Lab
frame p⊥.

This is an implicit equation for the extremal momentum qm = qm(ǫ0, ρ). Substitut-
ing qm into Eq. (13) one obtains f = f(ǫ0, ρ), which by means of Eq. (12) yields the
ionization probability. The quasi-classical approximation that we employed in this
section is valid inasmuch as f(qm)≫ 1.

In the non-relativistic approximation we get a familiar result

f(qm) =
2m2(2ǫb)

3/2

3eE
g(γ), (16)

where g(γ) is the Keldysh function

g(γ) =
3τ0
2γ

[
1− 1

γ

(
τ20
γ2
− 1

)1/2]
, (17)

and γ =

√
2ǫb

ρ is the adiabaticity parameter.

It is shown in Ref. [12] that the non-relativistic limit provides a very good approx-
imation to the dissociation rate. It also allows one to calculate the pre-exponential
factor [14–16]. The final result is depicted in Fig. 3 [13]. We also show the dis-
sociation rate of J/ψ for several values of the electric field E0 possibly induced by
the Chiral Magnetic Effect [6]. Note, that typical size of the medium traversed by
a J/ψ in magnetic field can be estimated very conservatively as a few fm. There-
fore, w ∼ 0.3−0.5 fm−1 corresponds to complete destruction of J/ψ’s. This means
that in the magnetic field of strength eB0 ∼ 15m2

π all J/ψ’s with p⊥ & 0.5 GeV are
destroyed independently of the strength of E0.

Angular distribution of J/ψ’s was discussed in detail in Ref. [13]. In the absence
of electric field E0, the dissociation probability peaks in the direction perpendicular
to the direction of magnetic field B0, i. e. in the reaction plane. Dissociation rate
vanishes in theB0 direction. The shape of the azimuthal distribution strongly depends
on quarkonium velocity: while at low V the strongest dissociation is in the direction
of the reaction plane, at higher V the maximum shifts towards small angles around
the B0 direction.
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4 Synchrotron radiation

As a second example, consider electromagnetic radiation by quark and anti-quarks
in plasma. QGP is transparent to the emitted electromagnetic radiation because its
absorption coefficient is suppressed by α2. Electromagnetic radiation by quarks and
antiquarks of QGP moving in external magnetic field originates from two sources:
(i) synchrotron radiation and (ii) quark and antiquark annihilation. It is argued in
Ref. [17] that contribution of annihilation channel is negligible, hence we focus on syn-
chrotron radiation. In strong magnetic field it is essential to account for quantization
of fermion spectra. Indeed, spacing between the Landau levels is of the order eB/ε (ε
being quark energy), while their thermal width is of the order T . Spectrum quanti-
zation is negligible only if eB/ε≪ T which is barely the case at RHIC and certainly
not the case at LHC (at least during the first few fm’s of the evolution).

Synchrotron radiation is a process of photon γ radiation by a fermion f with
electric charge ef = zfe in external magnetic field B: f(ef , j, p)→ f(ef , k, q) + γ(k),
where k is the photon momentum, p, q are the momentum components along the
magnetic field direction and indices j, k = 0, 1, 2, ... label the discrete Landau levels
in the reaction plane. The Landau levels are given by

εj =
√
m2 + p2 + 2jefB, εk =

√
m2 + q2 + 2kefB. (18)

In constant magnetic field only momentum component along the field direction is
conserved. Thus, the conservation laws for synchrotron radiation read

εj = ω + εk, p = q + ω cos θ, (19)

where ω is the photon energy and θ is the photon emission angle with respect to the
magnetic field. Spectral intensity of angular distribution of synchrotron radiation by
a fermion in the j’th Landau state is given by [18]

dIj

dωdΩ
=
∑

f

z2fα

π
ω2

j∑

k=0

Γjk

{
|M⊥|2 + |M‖|2

}
δ(ω − εj + εk), (20)

where Γjk = (1 + δj0)(1 + δk0) accounts for the double degeneration of all Landau
levels except the ground one. The squares of matrix elements M, which appear in
Eq. (20) can be found in Ref. [18] (our notations follow Ref. [19]).

In the context of heavy-ion collisions the relevant observable is the differential
photon spectrum. For ideal plasma in equilibrium each quark flavor gives the following
contribution to the photon spectrum:

dN synch

dtdΩdω
=
∑

f

∫ ∞

−∞
dp

efB(2Nc)V

2π2

∞∑

j=0

j∑

k=0

dIj

ωdωdΩ
(2− δj,0) f(εj) [1− f(εk)], (21)

where 2Nc accounts for quarks and antiquarks each of Nc possible colors, and (2−δj,0)
sums over the initial quark spin. Index f indicates different quark flavors. V stands
for the plasma volume. f(ε) is a statistical factor. The δ-function appearing in
Eq. (20) yields a constraint on the quark’s momentum

p∗± =

{
cos θ (m2

j −m2
k + ω2 sin2 θ)

±
√[

(mj +mk)2 − ω2 sin2 θ
][

(mj −mk)2 − ω2 sin2 θ
]}/

(2ω sin2 θ), (22)

where m2
j = m2 + 2jefB, m2

k = m2 + 2kefB. Inspection of Eq. (22) reveals that this

equation has a real solution only in two cases

(i) mj −mk ≥ ω sin θ, or (ii) mj +mk ≤ ω sin θ. (23)
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Figure 4: Spectrum of synchrotron radiation by u quarks at eB = m2
π, y = 0, φ = π/3:

contribution of 10 lowest Landau levels j ≤ 10; several cutoff frequencies are indicated.
Adopted from Ref. [17].

The first case is relevant for the synchrotron radiation while the second one for the
one-photon pair annihilation. Accordingly, allowed photon energies in the j → k
transition satisfy

ω ≤ ωs,jk ≡
mj −mk

sin θ
=

√
m2 + 2jefB −

√
m2 + 2kefB

sin θ
. (24)

No synchrotron radiation is possible for ω > ωs,jk (see Fig. 4). In particular, when
j = k, ωs,jk = 0, i. e. no photon is emitted. The reason is clearly seen in the frame
where p = 0: since εj ≥ εk, constraints (18) and (19) hold only if ω = 0.

Substitution of (20) into Eq. (21) yields the spectral distribution of the synchrotron
radiation rate per unit volume

dN synch

V dtdΩdω
=
∑

f

2Ncz
2
fα

π3
efB

∞∑

j=0

j∑

k=0

ω(1 + δk0)ϑ(ωs,ij − ω)

∫
dp
∑

±

δ(p− p∗±)∣∣ p
εj
− q

εk

∣∣

×
{
|M⊥|2 + |M‖|2

}
f(εj)[1 − f(εk)], (25)

where ϑ is the step-function.
The natural variables to study the synchrotron radiation are the photon energy ω

and its emission angle θ with respect to the magnetic field. However, in high en-
ergy physics particle spectra are traditionally presented in terms of rapidity y (which
for photons is equivalent to pseudo-rapidity) and transverse momentum k⊥. k⊥ is a
projection of three-momentum k onto the transverse plane. These variables are not
convenient to study electromagnetic processes in external magnetic field. In particu-
lar, they conceal the azimuthal symmetry with respect to the magnetic field direction.
The change of variables is performed using formulas

ω = k⊥ cosh y, cos θ =
sinφ

cosh y
. (26)

Because dy = dkz/ω the photon multiplicity in a unit volume per unit time reads

dN synch

dV dt d2k⊥dy
= ω

dN synch

dV dt d3k
=

dN synch

dV dt ωdωdΩ
(27)
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Figure 5: Azimuthal average of the synchrotron radiation spectrum of u, d, s quarks
and their corresponding antiquarks compared to the experimental data from Ref. [20]
divided by V t = 25π fm4 (dots) and V t = 9 × 25π fm4 (stars); eB = m2

π, y = 0.
Lower line: T = 200 MeV, upper line: T = 250 MeV. Adopted from Ref. [17].

Figure 4 displays the spectrum of synchrotron radiation by u quarks as a function of k⊥
at fixed φ [17]. At midrapidity y = 0, Eq. (26) implies that k⊥ = ω. Contribution of d
and s quarks is qualitatively similar. At eB ≫ m2, quark masses do not affect the
spectrum much. The main difference stems from the difference in electric charge. In
Fig. 4 only the contributions of the first ten Landau levels are displayed. The cutoff
frequencies ωs,jk can be clearly seen and some of them are indicated on the plot for
convenience.

In order to compare the photon spectrum produced by synchrotron radiation to the
photon spectrum measured in heavy-ion collisions, the u, d and s quarks contributions
must be summed up. Furthermore, the experimental data from Ref. [20] should be
divided by V t, where t is the magnetic field relaxation time. The volume of the plasma
can be estimated as V = πR2t with R ≈ 5 fm being the nuclear radius. The results are
plotted in Fig. 5. It is seen that synchrotron radiation gives a significant contribution
to the photon production in heavy-ion collisions at low kT ’s. This is the region where
conventional models of photon production fail to explain the experimental data.

5 Summary

High intensity and long life-time of electromagnetic field produced in relativistic heavy
ion collisions indicate its phenomenological significance. In this presentation I dis-
cussed only two examples. It is clear however that the electromagnetic field changes
the very structure of quark-gluon plasma and leaves hardly any observable unaffected.
The ongoing experimental programs at RHIC and LHC can shed more light on the
properties of hot nuclear matter in intense electromagnetic field.
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Abstract

A study of a class of the non-linear sigma models and gauged non-linear
sigma models is presented. The canonical structure, constrained dynamics and
the instant-form and light-front quantization of these models is reviewed and
studied.
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1 Introduction

In this talk, a study of the non-linear sigma models (NLSM) [1–9] and a class of gauged
non-linear sigma models (GNLSM) is presented [7, 8]. The canonical structure and
constraint quantization [10–18] of these models is studied using the instant-form and
light-front dynamics [17,18]. The instant-form (IF) quantization (IFQ) and light-front
(LF) quantization (LFQ) of these models is reviewed and studied.

In this talk, we consider a class of non-linear sigma models [1–6] and gauged non-
linear sigma models [1–9]. We first review a class of NLSM [1–9] including their canon-
ical structure and constrained dynamics, and then study their IFQ and LFQ [17,18]
using the Hamiltonian [10], path integral [11–13] and Becchi–Rouet–Stora and Tyutin
(BRST) [14–16] formulations.

Using the above methods, we study a class of NLSM and GNLSM in one-space one-
time dimensions (2D). We study their canonical structure and constraint quantization
in the IFQ and LFQ, using Dirac’s Hamiltonian formulation and the path integral and
BRST formulations. Our studies also involve a construction of gauge-invariant (GI)
field theories from the gauge-non-invariant (GNI) field theories using the Stueckelberg
formalism and other methods. We could recover the physical contents of the original
GNI theories from the corresponding newly constructed GI theories under some special
non-trivial gauge-fixing conditions (GFC).

A few points about the IF and LF dynamics are in order. In the IF quantization
of field theories, one studies the theory on the hyper surfaces defined by the IF
time: t = x0 = constant [17, 18]. On the other hand, in the LFQ [17, 18] of field
theories, one studies the theory on the hyper surfaces of the LF defined by the light-
cone (LC) time: τ = x+ = (x0 + x1)/

√
2 = constant.

The LFQ [17,18] has several advantages over the IFQ [17,18]. The LF theory, e. g.,
has more kinematical generators than the corresponding IF theory and the removal
of constraints by Dirac’s method gives fewer independent dynamical variables in the
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LFQ than in the IFQ. In LFQ there is no conflict with the microcausality principle.
In the LFQ of gauge theories, the transverse degrees of freedom of the gauge field
can be immediately identified as the dynamical degrees of freedom, as a result, the
LFQ remains very economical in displaying the relevant degrees of freedom leading
directly to the physical Hilbert space. Also, because the LF coordinates are not related
to the conventional instant-form coordinates by a finite Lorentz transformation, the
descriptions of the same physical result may be different in IF and LF dynamics. The
advantages of the LFQ over the IFQ are reviewed in Ref. [18]. Use of both the IF and
LF gives a rather complete dynamics of the system. A study of such theories could
be used to test several interesting ideas in field theories.

Further the product of two Fermi fields at the same space-time point is highly
singular and leads to regularization ambiguities. In order to take care of these regu-
larization ambiguities one introduces a regularization parameter which appears in the
coefficient of the mass term of the U(1) gauge field Aµ. This regularization scheme is
often referred to as the standard regularization.

The O(N) nonlinear sigma models in 2D, where the field sigma is a real N -
component field, provide a laboratory for the various nonperturbative techniques,
e. g., 1/N -expansion, operator product expansion, and the low energy theorems.
These models are characterized by features like renormalization and asymptotic free-
dom common with that of quantum chromodynamics and exhibit a nonperturbative
particle spectrum, have no intrinsic scale parameter, possess topological charges, and
are very crucial in the context of conformal and string field theories where they appear
in the classical limit.

The Hamiltonian formulation of the gauge-non-invariant O(N)-NLSM in 2D has
been studied in Refs. [2, 3, 6] and its two GI versions have been studied in Ref. [6]
in the IFQ using the Hamiltonian and BRST formulations. The LFQ of this theory
has been studied by us in Ref. [9], using the Hamiltonian, path integral and BRST
formulations.

The IFQ of the gauged non-linear sigma model has been studied by us in Ref. [7],
and its LFQ has been studied in Ref. [8], using the Hamiltonian and BRST formula-
tions. We now proceed to study these models in some details in the following.

2 The non-linear sigma models

The O(N)-NLSM in one-space one-time dimensions is defined by the action [1–6]:

S =

∫
L(σk, λ) d2x,

L =

[
1

2
∂µσk∂

µσk + λ(σ2
k − 1)

]
.

(1)

Here σk(x, t) (with k = 1, 2, ... , N) is a multiplet of N real scalar fields in two-
dimensions, and λ(x, t) is another scalar field. The vector field σ(x, t) maps the two-
dimensional space-time into the N -dimensional internal manifold whose coordinates
are σk(x, t). In the above equation, the first term corresponds to a massless boson
(which is equivalent to a massless fermion), and the second term is the usual term
involving the nonlinear constraint (σ2

k − 1) and the auxiliary field. Also µ = 0, 1 for
the IFQ and µ = +, − for LFQ.
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2.1 Instant-form quantization

In the IFQ, the action of the theory reads [1–6]:

S =

∫
L(σk, λ) dx0dx1,

L =

[
1

2
(∂0σk∂0σk − ∂1σk∂1σk) + λ(σ2

k − 1)

]
.

(2)

This model is seen to possess a set of four constraints [1–6]:

χ1 = pλ ≈ 0,

χ2 = (σ2
k − 1) ≈ 0,

χ3 = 2σkπk ≈ 0,

χ4 =
(
2π2

k + 4λσ2
k + 2σk∂1∂1σk

)
≈ 0.

(3)

Here pλ and πk denote the momenta canonically conjugate respectively to λ and σk.
Also, χ1 is a Primary constraint and χ2, χ3 and χ4 are the secondary Gauss law
constraints. The symbol ≈ here denotes a weak equality in the sense of Dirac, and
it implies that these constraints hold as strong equalities only on the reduced hyper-
surface of the constraints and not in the rest of the phase space of the classical theory
(and similarly one can consider it as a weak operator equality for the corresponding
quantum theory). The canonical Hamiltonian density of the theory is [6]:

Hc =

[
1

2
(π2

k + ∂1σk∂1σk)− λ(σ2
k − 1)

]
. (4)

After including the primary constraint in the canonical Hamiltonian density with the
help of the Lagrange multiplier field u which is treated as a dynamical field, the total
Hamiltonian density of the theory is [6]:

HT =

[
1

2
(π2

k + ∂1σk∂1σk)− λ(σ2
k − 1) + pλu

]
. (5)

The Hamilton’s equations of motion which preserve the constraints of the theory could
now be obtained using this total Hamiltonian density and are omitted here for the
sake of brevity [6]. Also the matrix of the Poisson brackets among the constraints χi

is non-singular. The theory possesses a vector gauge anomaly at the classical level,
implying that the theory describes a gauge-non-invariant theory. However, it is pos-
sible to construct gauge-invariant models corresponding to this GNI theory using the
techniques of constraint quantization. It is also possible to recover the physical con-
tents of the original GNI theory from the newly constructed GI versions. One can
also study the instant-form quantization and light-front quantization of these models
(cf. Refs. [6] and [9]).

The Dirac quantization procedure in the IF Hamiltonian formulation leads to the
non-vanishing equal-time commutation relations for this theory as [2, 6]:

[πl(x, t), πm(y, t)] =
−i
σ2
k

[
σl(x)πm(y)− πl(x)σm(y)

]
δ(x − y),

[σl(x, t), πm(y, t)] = i

[
δlm −

σl(x)σm(y)

σ2
k

]
δ(x− y).

(6)

This model is seen to possess a set of (four) second-class constraints implying that
it describes a gauge-non-invariant theory. However it is possible to construct gauge-
invariant models corresponding to this GNI theory using the techniques of constrained
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dynamics. One can also recover the physical contents of the original GNI theory from
the newly constructed GI versions. Further, it is also possible to study this theory
using the LFQ, where the theory becomes GI, as has been done by us in Ref. [9].

In the path integral formulation [11–14], the transition to quantum theory is made
by writing the vacuum to vacuum transition amplitude for the theory called the
generating functional Z[Jk] for the present theory, in the presence of the external
sources Jk it could be written as:

Z[Jk] =

∫
[dµ] exp

{
i

∫
d2x

[
JkΦk + pλ∂0λ+ πk∂0σk + Πu∂0u−HT

]}
. (7)

Here, the phase space variables of the theory are Φk ≡ (λ, σk, u) with the corre-
sponding respective canonical conjugate momenta Πk ≡ (pλ, πk,Πu). The functional
measure [dµ] of the generating functional Z[Jk] is obtained as:

[dµ] =
[
16σ2

kσ
2
k δ(x − y)

]
[dσk][dλ][du][dπk][dpλ]dΠu] δ[pλ ≈ 0]δ

[
(σ2

k − 1) ≈ 0
]

× δ
[
(2σkπk) ≈ 0

]
δ
[
(2π2

k + 4λσ2
k + 2σk∂1∂1σk) ≈ 0

]
. (8)

2.2 Light-front quantization

In the LFQ the action of this theory reads [9]:

S =

∫
L(σk, λ) dx+dx−,

L =
[
∂+σk∂−σk + λ(σ2

k − 1)
]
.

(9)

This model is seen to possess a set of three constraints:

ψ1 = pλ ≈ 0,

ψ2 = (πk − ∂−σk) ≈ 0,

ψ3 = (σ2
k − 1) ≈ 0.

(10)

Here pλ and πk denote the momenta canonically conjugate respectively to λ and σk.
Also, ψ1 and ψ2 here are primary constraints and ψ3 is the secondary Gauss law
constraint. These constraints form a set of first-class constraints, implying that the
theory describes a GI theory. The theory is indeed seen to be invariant under the
gauge transformations [9]:

δσk = β(x+, x−), δπk = ∂−β(x+, x−), δv = ∂+β(x+, x−),

δλ = δu = δπk = δπu = δπv = 0,
(11)

where the gauge parameter β ≡ β(x+, x−) is a function of its arguments. The canon-
ical Hamiltonian density of the theory is [9]:

Hc =
[
−λ(σ2

k − 1)
]
. (12)

After including the primary constraints in the canonical Hamiltonian density with the
help of the Lagrange multiplier fields u and v which are to be treated as dynamical
fields, the total Hamiltonian density of the theory is:

HT =
[
−λ(σ2

k − 1) + pλu+ (πk − ∂−σk)v
]
. (13)
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3 Gauge-invariant non-linear sigma models

3.1 Model-A

In Ref. [6], we have constructed and studied a gauge-invariant non-linear sigma model
using the Stueckelberg mechanism. In constructing the gauge-invariant model corre-
sponding to the above gauge-non-invariant model, we enlarge the Hilbert space of the
theory and introduce a new field θ, called the Stueckelberg field, through the following
redefinition of fields [6]:

σk → Σk = σk − θ, λ→ Λ = λ+ ∂0θ. (14)

Performing the changes in to the Lagrangian density of the above theory, we obtain
the modified Lagrangian density LI (ignoring the total space and time derivatives)
as [6]

LI = L+ LS (15)

with

LS =

[
1

2
(∂0θ)

2 − 1

2
(∂1θ)

2 − ∂0σk ∂0θ + ∂1σk ∂1θ

+ ∂0θ(σ
2
k − 1)− (λ+ ∂0θ)θ(2σk − θ)

]
, (16)

where LS is the appropriate Stueckelberg term corresponding to LI and in fact, one
can easily see that it is possible to recover the physical contents of the original gauge-
non-invariant theory under some special gauge choice. This gauge-invariant theory is
seen to possess a set of three constraints:

η1 = pλ ≈ 0,

η2 =
[
πθ + πk − (σ2

k − 1) + θ(2σk − θ)
]
≈ 0,

η3 =
[
(σ2

k − 1)− θ(2σk − θ)
]
≈ 0,

(17)

where η1 and η2 are primary constraints and η3 is the secondary Gauss-law constraint
of the theory. Here, pλ, πθ, πk are the momenta canonically conjugate respectively
to the variables λ, θ and σk. The canonical Hamiltonian density of the theory is [6]:

Hc =

[
1

2
π2
k +

1

2
(∂1 σk)2 +

1

2
(∂1θ)

2 − ∂1σ∂1θ − λ(σ2
k − 1) + λθ(2σk − θ)

]
. (18)

The total Hamiltonian density corresponding to this gauge-invariant theory obtained
after including in the canonical Hamiltonian density of the theory the primary con-
straints of the theory with the help of Lagrange multiplier fields is:

HT =

[
1

2
π2
k +

1

2
(∂1σk)2 +

1

2
(∂1θ)

2 − ∂1σ ∂1θ − λ(σ2
k − 1) + λθ(2σk − θ)

+ pλu+ [πθ + πk − (σ2
k − 1) + θ(2σk − θ)]v

]
. (19)

The set of constraints of the theory is first-class, implying that the theory is gauge-
invariant. The theory is indeed seen to be invariant under the following gauge-
transformations:

δσk = β(x0, x1), δλ = −δθ = −∂0β(x0, x1),

δpλ = δπθ = δπk = 0,
(20)
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where the gauge parameter β ≡ β(x0, x1) is a function of its arguments. From this
gauge-invariant theory, it is however, possible to recover the physical contents of the
original gauge-non-invariant theory under some special gauge-fixing conditions. For
this we go to a special gauge given by θ = 0, and accordingly choose the gauge-fixing
conditions of the theory as [7]:

ζ1 = (2σkπk − πθ − πk) ≈ 0,

ζ2 = (2π2
k + 4λσ2

k + 2σK + ∂1∂1σk) ≈ 0,

ζ3 = θ ≈ 0.

(21)

As studied in details in Ref. [6], it is easy to see that the above set of gauge-fixing
conditions reproduces precisely the quantum system described by the original gauge-
non-invariant theory. The above set of gauge-fixing conditions in fact translates the
gauge-invariant version of the theory into the gauge-non-invariant one. The physical
Hilbert spaces of the two theories are just the same [6].

3.2 Model-B

In Ref. [6], we have studied another gauge-invariant non-linear sigma model (con-
structed by Mitra and Rajaraman in Refs. [4, 5], using their procedure of gauge-
invariant reformulation). This model is defined by the total Hamiltonian density

HT =

[
1

2
π2
k +

1

2
(∂1σk)2−λ(σ2

k−1)+pλu−η(σkπk)

]
, η ≡ η(xµ) :=

[
σkπk
2σ2

k

]
, (22)

and its corresponding second-order Lagrangian density [6]

L =

[
1

2
∂µσk ∂

µσk + λ(σ2
k − 1) + η(2σk ∂0σk

]
. (23)

This model possesses a set of two constraints:

χ1 = pλ ≈ 0,

χ2 = (σ2
k − 1) ≈ 0.

(24)

Here pλ and πk denote the momenta canonically conjugate respectively to λ and σk.
Also, χ1 is a primary constraint and χ2 is the secondary Gauss law constraint. Here
the remaining two secondary constraints of the original gauge-non-invariant theory
have been truncated using the method of Mitra–Rajaraman [7, 8] for the gauge-
invariant reformulation of the corresponding original gauge-non-invariant theory. It is
important to note here that this method is applicable only to those theories which pos-
sess a chain of constraints following from a single constraint. The constraints which
have thus been truncated could now be imposed on the original theory as gauge-
fixing conditions for the quantization of the gauge-invariant theory under gauge-
fixing. The above gauge-invariant theory is indeed seen to be invariant under the
gauge-transformations [6]:

δη = β(x0, x1), δπk = 2σkβ(x0, x1), δλ = ∂0β(x0, x1), δσk = δpλ = 0, (25)

where the gauge parameter β ≡ β(x0, x1) is a function of its arguments.

4 The gauged non-linear sigma models

In Refs. [7, 8], we have constructed and studied a gauged non-linear sigma model
and studied its quantization using the IFQ [7] and LFQ [8]. The GNLSM with the
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standard regularization in one-space one-time dimensions is defined by the action [7]:

S =

∫
L(σk, λ, A

µ) d2x,

L =

[
1

2
∂µσk ∂

µσk + λ(σ2
k − 1)− 1

4
FµνF

µν − eAµ ∂
µσk +

1

2
ae2AµA

µ

]
.

(26)

In the above equation, the first term corresponds to a massless boson (which is equiv-
alent to a massless fermion), the second term is the usual term involving the nonlinear
constraint and the auxiliary field λ, the third term is the kinetic energy term of the
electromagnetic vector-gauge field Aµ(x, t), the fourth term represents the coupling of
the sigma field to the electromagnetic field, and the last term is the mass term for the
vector gauge field Aµ(x, t). Here e is the coupling constant that couples the massless
fermion(or equivalently the boson) with the U(1) gauge field Aµ. This theory is a
well known gauge-invariant theory, possessing a set of first-class constraints. Here
we have constructed a gauged version of the usual NLSM by introducing the U(1)
gauge field Aµ into the theory. We have also included the mass term for the U(1)
gauge-field Aµ into the above Lagrangian, defined by [Lm = 1

2ae
2AµA

µ], where a is
the standard regularization parameter. The modified resulting theory then describes
the gauged NLSM (GNLSM) with the standard regularization. This theory is seen
to be GI and has been studied in details using the IFQ in Ref. [7], and its LFQ has
been studied in Ref. [8].

4.1 Instant-form quantization

The GNLSM with the standard regularization is defined by the action (with µ, ν = 0, 1
for IFQ) [7]:

S =

∫
L(σk, λ, A

µ) d2x,

L =

[
1

2
(∂0σk ∂0σk − ∂1σk ∂1σk) + λ(σ2

k − 1)− e(A0∂0σk −A1∂1σk)

+
1

2
(∂0A1 − ∂1A0)2 +

1

2
ae2(A2

0 −A2
1)

]
.

(27)

This model is seen to possess a set of five constraints as follows:

ϕ1 = Π0 ≈ 0,

ϕ2 = pλ ≈ 0,

ϕ3 = (∂1E − eΠk) ≈ 0,

ϕ4 = (σ2
k − 1) ≈ 0,

ϕ5 = (2σkΠk + 2eA0σk) ≈ 0.

(28)

Here pλ, πk, Π0 and E = Π1 denote the momenta canonically conjugate respectively
to λ, σk, A0 and A1. Also, ϕ1 and ϕ2 are primary constraints and ϕ3, ϕ4 and ϕ5

are the secondary Gauss law constraints. Further, these constraints form a set of
first-class constraints, implying that the theory possesses the gauge symmetry and is
invariant under the following gauge-transformations [7]:

δσk = eβ(x0, x1), δλ = −δA0 = −∂0β(x0, x1), δA1 = ∂1β(x0, x1),

δπk = δE = δΠ0 = δpλ = δΠu = δΠv = 0,

δu = −δv = ∂0∂0β(x0, x1),

(29)
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where the gauge parameter β ≡ β(x0, x1) is a function of its arguments. The canonical
Hamiltonian density of the theory is [7]:

Hc =

[
1

2

[
π2
k + E2 + (∂1σk)2 + e2A2

0

]
− 1

2
e2
(
A2

0 −A2
1

)

+ E∂1A0 + eA0πk − eA1∂1σk − λ
(
σ2
k − 1

)]
. (30)

After including the primary constraints in the canonical Hamiltonian density with the
help of the Lagrange multiplier fields u and v which are to be treated as dynamical
fields, the total Hamiltonian density of the theory is:

HT =

[
1

2

[
π2
k + E2 + (∂1σk)2 + e2A2

0

]
+ E∂1A0 + eA0πk −

1

2
e2
(
A2

0 −A2
1

)

− eA1∂1σk − λ
(
σ2
k − 1

)
+ Π0u+ pλv

]
. (31)

4.2 Light-front quantization

The GNLSM with the standard regularization is defined by the action with µ, ν = +,−
for LFQ ) [8]:

S =

∫
L(σk, λ, A

µ) dx+dx−,

L =

[
(∂+σk)(∂−σk) + λ

(
σ2
k − 1

)
− e
(
A−∂−σk +A+∂+σk

)

+
1

2

(
∂+A

+ − ∂−A−)2 + ae2
(
A+A−)

]
.

(32)

This model is seen to possess a set of five constraints:

ξ1 = Π+ ≈ 0,

ξ2 = pλ ≈ 0,

ξ3 =
(
πk − ∂−σk + eA+

)
≈ 0,

ξ4 =
(
∂−Π− + e∂−σk,+e

2A+
)
≈ 0,

ξ5 =
(
σ2
k − 1

)
≈ 0.

(33)

Here pλ, πk, Π+ and Π− denote the momenta canonically conjugate respectively to λ,
σk, A− and A+. Also, ξ1, ξ2 and ξ3 here are primary constraints and ψ4 and ψ5

are the secondary Gauss law constraints. These constraints form a set of first-class
constraints, implying that the theory describes a GI theory. The theory is indeed seen
to be invariant under the gauge transformations [8]:

δσk = eβ(x+, x−), δλ = −δA− = −∂+β(x+, x−), δA+ = ∂−β(x+, x−),

δπk = δΠ+ = δΠ− = δpλ = δπk = δΠu = δΠv = δΠw = 0,

δu = −δv = ∂+∂+β(x+, x−), δw = e∂+β(x+, x−),

(34)

where the gauge parameter β ≡ β(x0, x1) is a function of its arguments. The canonical
Hamiltonian density of the theory is [8]:

Hc =
[
−λ(σ2

k − 1)
]
. (35)
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After including the primary constraints in the canonical Hamiltonian density with
the help of the Lagrange multiplier fields u, v and w which are treated as dynamical
fields, the total Hamiltonian density of the theory is:

HT =
[
−λ(σ2

k − 1) + Π+u+ pλv + (πk − ∂−σk + eA+)w
]
. (36)

Also, in the usual Hamiltonian and path integral formulations of a GI theory
under some GFC, one necessarily destroys the gauge invariance of the theory by
fixing the gauge (which converts a set of first-class constraints into a set of second-
class constraints, implying a breaking of gauge invariance under gauge-fixing). In
order to achieve the quantization of a GI theory such that the gauge-invariance of the
theory is maintained even under gauge-fixing one goes to a more generalized procedure
called BRST formulation.

For the BRST quantization of a GI theory, one enlarges the phase space of the
classical theory or the Hilbert space of the corresponding quantum theory of the GI
theory by introducing the Faddeev–Popov fermionic ghost and anti-ghost fields and
the Nakanishi–Lautrup bosonic ghost field into the first-order Lagrangian density or
the action of the theory. One thus rewrites the GI system as a quantum system
which possesses a generalized gauge-invariance called the BRST symmetry. In the
BRST formulation, one thus embeds a GI theory into a BRST-invariant system, and
the quantum Hamiltonian of the system which includes the gauge-fixing contribution
commutes with the BRST charge operator Q as well as with the anti-BRST charge
operator Q̄, and the new symmetry of the quantum system (the BRST symmetry)
which replaces the gauge-invariance is maintained even under the gauge-fixing and
hence projecting any state onto the sector of BRST and anti-BRST invariant states,
yields a theory which is isomorphic to the original gauge-invariant theory.
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Abstract

Recently Grinstein, Jora and Polosa have studied a model of large N scalar
quantum chromodynamics in one-space one-time dimension. This model admits
a Bethe–Salpeter equation describing the discrete spectrum of qq̄ bound states.
They consider the gauge fields in the adjoint representation of SU(N) and the
scalar fields in the fundamental representation. The model is asymptotically
free and linearly confining. The model provides a good framework for the de-
scription of a large class of tetraquark (diquark-antidiquark) states. Recently
we have studied the light-front quantization of this model without a Higgs po-
tential. In the present work, we study the light-front Hamiltonian, path integral
and BRST formulations of this model in the presence of a Higgs potential.

Keywords: Quantum chromodynamics (QCD); tetraquark states; diquark-anti-
diquark states; light-front quantization; Hamiltonian quantization; path integral
quantization; BRST quantization

1 Introduction

Study of multiquark states has been a subject of wide interest for a rather long
time [1–15]. Their interpretation remains a challenging task and a number of phe-
nomenological models [1–15] have been proposed to understand various experimental
observations. Various possibilities of understanding the hadron structure different
from the usual mesons and baryons [3,4] have been considered in the literature rather
widely [1–15]. Some of these states find a rather more natural interpretation in terms
of four quark states or tetraquark states [3–15]. By now it is widely perceived that not
only the heavier states like the X , Y , Z states have an exotic structure which find more
natural explanation as tetraquark states or diquark-antidiquark (QQ̄) states [3–15],
but even the light scalar mesons are also most likely the lightest particles with an ex-
otic structure also to be understood as QQ̄ or tetraquark states (because they cannot
be classified as standard qq̄ mesons) [1–14].

Very recently ’t Hooft, Isidori, Maini, Polosa and Riquer [13] and others [2–5],
have shown how one could explain the decays of the light scalar mesons by assum-
ing a dominant QQ̄ structure for the lightest scalar mesons, where the diquark (Q)
is being taken to be a spin zero antitriplet color state [1–5]. Further, Grinstein,

1Speaker at the Conference.

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 195.
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Jora and Polosa [14] have studied a model of large N scalar quantum chromody-
namics (QCD) [1–15] in one-space one-time dimensions. Their model admits [14] a
Bethe–Salpeter equation describing the discrete spectrum of qq̄ bound states [1–5].
It is important to emphasize here that in the first approximation, the nonet formed
by f0(980), a0(980), κ(900), σ(500) is interpreted as the lowest QQ̄ multiplet [14],
and the decuplet of scalar mesons with masses above 1 GeV, formed by f0(1370),
f0(1500), f0(1710), a0(1450), K0(1430) and possibly containing the lowest glueball,
is interpreted as the lowest qq̄ scalar multiplet [12–14]. The work of Grinstein et
al. [14] is seen to further support this hypothesis. In the work of Grinstein et al. [14],
the gauge fields have been considered in the adjoint representation of SU(N) and the
scalar fields in the fundamental representation. The theory is asymptotically free and
linearly confining and different aspects of this theory have been studied by several
authors in various contexts [14].

In a recent paper we have studied [15] the light-front (LF) quantization (LFQ) of
this theory [with a mass term for the complex scalar (diquark) field but without
the Higgs potential], under appropriate LC gauge-fixing conditions. In the present
work, we study the LF Hamiltonian [16], path integral [17–19] and BRST [20–22]
formulations of this theory [14] in the presence of a Higgs potential on the LF
(i. e., on the hyperplanes defined by the equal light-cone (LC) time τ = x+ =
(x0 + x1)/

√
2 = constant [23–27]. The LF theory is seen to be gauge-invariant (GI)

possessing a set of first-class constraints.

In our earlier work involving the LFQ of this theory [15], the theory was considered
with a mass term for the complex scalar (diquark) field but without a Higgs potential,
whereas we now study this theory in the presence of the Higgs potential. The mo-
tivation for doing this is to study the aspects related to the spontaneous symmetry
breaking in the theory. Also, because the theory is GI, we also study its BRST quan-
tization under appropriate BRST LC gauge-fixing. Actually, in the Hamiltonian and
path integral quantization of a theory under some gauge-fixing conditions the gauge-
invariance of the theory necessarily gets broken because the procedure of gauge-fixing
converts the set of first-class constraints of the theory into a set of second-class ones.
In view of this, in order to achieve the quantization of a GI theory, such that the
gauge-invariance of the theory is maintained even under gauge-fixing, one of the pos-
sible ways is go to a more generalized procedure called the BRST quantization, where
the extended gauge symmetry called the BRST symmetry is maintained even under
gauge-fixing.

2 Some basics of the theory

In this section we consider the instant-form (IF) quantization (IFQ) of this model of
large N scalar QCD in the presence of a Higgs potential, studied by Grinstein, Jora
and Polosa [without a Higgs potential but with a mass term for the complex scalar
(diquark) field φ] [14]. We absorb the mass term for the complex scalar (diquark)
field φ in the definition of our Higgs potential. The bosonized action of the theory
that we study is defined (suppressing the color indices) by the action:

S =

∫
L(φ, φ†, Aµ) d2x, (1a)

L =

[
−1

4
FµνF

µν + ∂µφ
†∂µφ+

[
iρ(φAµ∂µφ

† − φ†Aµ∂
µφ) + ρ2φ†φAµA

µ
]
− V (|φ|2)

]
,

(1b)
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V (|φ|2) = V (φ†φ) =
[
µ2(φ†φ) +

λ

6
(φ†φ)2

]
, |φ|2 = (φ†φ), φ0 6= 0, (1c)

Fµν = (∂µAν − ∂νAµ), ρ =
g√
N
, (−µ2 > 0 , λ > 0), (1d)

gµν = gµν :=

(
1 0
0 −1

)
, µ, ν = 0, 1 (IFQ), (1e)

gµν = gµν :=

(
0 1
1 0

)
, µ, ν = +, − (LFQ). (1f)

In the above Lagrangian density of the theory, the first term represents the kinetic
energy of the gluon field, the second term represents the kinetic energy term for the
scalar absorbed (diquark) field, the third term represents the interaction term for
the scalar (diquark) field with the gluon field (the color indices have again been sup-
pressed) and the last term represents the Higgs potential which is kept rather general,
without making any specific choice for the parameters µ2 and λ. However, they are
chosen such that the potential remains a double well potential with the vacuum expec-
tation value φ0 = 〈0|φ(x)|0〉 6= 0, so as to allow the spontaneous symmetry breaking
in the theory. Also, the mass term for the scalar (diquark) field has been absorbed in
the definition of the Higgs potential. The values µ2 = m2 and λ = 0 reproduce the
theory of Grinstein, Jora and Polosa [14]. For obtaining the gauged theory under our
present investigation, we have used the gauging prescription: ∂µ → Dµ = (∂µ + iρAµ)
(where the color indices are being suppressed) (it is to be noted here that our work
of Ref. [15] uses a different gauging prescription).

Also, in order to remain consistent with the work of Grinstein, Jora and Polosa [14],
we have ignored the gluon self coupling term in our considerations (just like the work
of Ref. [25]).

3 Instant-form quantization

In the instant-form quantization of the theory (with the metric tensor gµν = gµν =
diag(+1,−1); µ, ν = 0, 1), the theory is seen to possess a set of three constraints:

ψ1 = Π0 ≈ 0, ψ2 =
[
∂1E + iρ(φπ − φ†π†)

]
≈ 0,

ψ3 =
[
2ρ2A0π

†φ† + iρA1(φ∂1φ
† + φ†∂1φ)

]
≈ 0,

(2)

where the constraint ψ1 is a primary constraint and the constraints ψ2 and ψ3 are the
secondary Gauss-law constraints. Also, here π, π†, Π0 and E = Π1 are the momenta
canonically conjugate respectively to φ, φ†, A0 and A1 (here, A0 ≡ Aa

0τ
a, A1 ≡ Aa

1τ
a,

Π0 ≡ Π0aτa, E ≡ Eaτa). The symbol ≈ here denotes a weak equality in the sense
of Dirac [16]. Further, these constraints are easily seen to form a set of second-class
constraints because the matrix of the Poisson brackets among these constraints is a
non-singular matrix implying that the theory is gauge-non-invariant. The canonical
Hamiltonian density of this theory is:

Hc =

[
1

2
(E)2 −A0 ∂1E + π†π + ∂1φ

†∂1φ+ ρ2A2
1φ

†φ

− iρA0(φπ − φ†π†)− iρA1(φ†∂1φ− φ∂1φ†) + µ2(φ†φ) +
λ

6
(φ†φ)2

]
. (3)

After including the primary constraint ψ1 in the canonical Hamiltonian density with
the help of the Lagrange multiplier field u, the total Hamiltonian density becomes:

HT =

[
Π0u+

1

2
(E)2 −A0 ∂1E + π†π + ∂1φ

†∂1φ+ ρ2A2
1φ

†φ

− iρA0(φπ − φ†π†)− iρA1(φ†∂1φ− φ∂1φ†) + µ2(φ†φ) +
λ

6
(φ†φ)2

]
. (4)
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The Hamilton’s equations of motion of the theory that preserve the constraints of the
theory in the course of time could be obtained from the total Hamiltonian density
and are omitted here for the sake of brevity. The matrix Rαβ of the Poisson brackets
among the set of these constraints ψi with (i = 1, 2, 3) is seen to be singular, implying
that the set of these constraints ψi is first-class and that the theory under consider-
ation is gauge-invariant. Consequently the theory is seen to possess the local vector
gauge symmetry defined by the local vector gauge transformations:

δφ = iρβφ, δφ† = −iρβφ†, δA0 = ∂0β, δA1 = ∂1β, (5)

where β ≡ β(x0, x1) is an arbitrary function of its arguments. This theory could now
be quantized under some appropriate gauge-fixing conditions, e. g., under the time-
axial or temporal gauge: A0 ≈ 0. The details of this IFQ are however, outside the
scope of the present work [what actually happens is that one of the matrix elements of
the matrixRαβ involves a linear combination of a Dirac distribution function δ(x1−y1)
and its first derivative and finding its inverse is a rather non-trivial task]. We now
proceed with the LFQ of this theory in the next section.

4 Light-front Hamiltonian and

path integral quantization

For the LFQ, the bosonized action of the theory (suppressing the color indices) in LF
coordinates x± := (x0 ± x1)/

√
2 reads:

S =

∫
L dx+dx−, (6a)

L =

[
1

2
(∂+A

+ − ∂−A−)2 + (∂+φ
†∂−φ+ ∂−φ

†∂+φ) − µ2(φ†φ)− λ

6
(φ†φ)2

+ iρA+(φ∂+φ
† − φ†∂+φ) + iρA−(φ∂−φ

† − φ†∂−φ) + 2ρ2φ†φA+A−
]
. (6b)

In the work of Ref. [14], the authors have studied the above action, after implementing
the gauge-fixing condition (GFC) A+ ≈ 0 “strongly” in the above action. In contrast
to this, we propose to study the theory defined by the above action, following the
standard Dirac quantization procedure [16] and we do not fix any gauge at this stage.
We instead consider this GFC (A+ ≈ 0) as one of the gauge constraints [16] which
becomes strongly equal to zero only on the reduced hyper surface of the constraints
and remains non-zero in the rest of the phase space of the theory and we do not set
it strongly equal to zero in above equation.

We like to emphasize here that one of the salient features of Dirac quantization
procedure [16] is that in this quantization the GFC’s should be treated on par with
other gauge-constraints of the theory which are only weakly equal to zero in the sense
of Dirac [16], and they become strongly equal to zero only on the reduced hyper
surface of the constraints of the theory and not in the rest of the phase space of the
classical theory (in the corresponding quantum theory these weak equalities become
the weak operator equalities).

Another thing to be noted here is that we have introduced the Higgs potential in
our present work and we have absorbed the mass term for the scalar (diquark) field
in the definition of our Higgs potential. This LF theory is seen to possess a set of four
constraints:

χ1 = Π+ ≈ 0, χ2 = [π − ∂−φ† + iρA+φ†] ≈ 0, χ3 = [π† − ∂−φ− iρA+φ] ≈ 0,

χ4 = [∂−Π− + iρ(φ∂−φ
† − φ†∂−φ) + 2ρ2φ†φA+] ≈ 0,

(7)
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where the constraints χ1, χ2 and χ3 are primary constraints and the constraint χ4

is the secondary Gauss-law constraint, which is obtained by demanding that the
primary constraint χ1 be preserved in the course of time. The preservation of χ2, χ3

and χ4, for all times does not give rise to any further constraints. The theory is thus
seen to possess only four constraints χi (with i = 1, 2, 3, 4). Also, here π, π†, Π+

and Π− are the momenta canonically conjugate respectively to φ, φ†, A− and A+

(here, A+ ≡ A+aτa, A− ≡ A−aτa, Π0 ≡ Π0aτ
a, E ≡ Eaτa). Now, the constraints χ2,

χ3 and χ4 could however, be combined into a single constraint:

η =
[
∂−Π− + iρ(φπ − φ†π†)

]
≈ 0, (8)

and with this modification, the new set of constraints of the theory could be written
as:

Ω1 = χ1 = Π+ ≈ 0, Ω2 = η =
[
∂−Π− + iρ(φπ − φ†π†)

]
≈ 0. (9)

Further, the matrix of the Poisson brackets among the constraints Ωi, with i = 1, 2 is
seen to be a singular matrix implying that the set of constraints Ωi is first-class and
that the theory under consideration is gauge-invariant. The canonical Hamiltonian
density for this LF theory is:

Hc =

[
1

2
(Π−)2 + Π−(∂−A

−) + µ2(φ†φ) +
λ

6
(φ†φ)2

− iρA−(φ∂−φ
† − φ†∂−φ)− 2ρ2φ†φA+A−

]
. (10)

After including the primary constraints χ1, χ2 and χ3 in the canonical Hamiltonian
density Hc with the help of the Lagrange multiplier fields u, v and w, the total
Hamiltonian density could be written as:

HT =

[
(Π+)u+ (π − ∂−φ† + iρA+φ†)v + (π† − ∂−φ− iρA+φ)w

+ µ2(φ†φ) +
λ

6
(φ†φ)2 +

1

2
(Π−)2 + Π−∂−A

−

− iρA−(φ∂−φ
† − φ†∂−φ)− 2ρ2φ†φA+A−

]
. (11)

The Hamilton’s equations of motion of the theory that preserve the constraints of the
theory in the course of time could be obtained from the total Hamiltonian density.
Also, the divergence of the vector gauge current density of the theory is seen to vanish,
implying that the theory possesses at the classical level a local vector-gauge symmetry.
The action of the theory is indeed seen to be invariant under the local vector gauge
transformations:

δφ = −iρβφ, δφ† = iρβφ†, δA− = ∂+β, δA+ = ∂−β,

δπ =
[
ρ2βφ†A+ + iρβ∂−φ

†], δπ† =
[
ρ2βφA+ − iρβ∂−φ

]
,

δu = δv = δw = δΠ+ = δΠ− = δΠu = δΠv = δΠw = 0,

(12)

where β ≡ β(x+, x−) is an arbitrary function of its arguments and Πu, Πv and Πw

are the momenta canonically conjugate to the Lagrange multiplier fields u, v and w
respectively, which are treated here as dynamical fields.

The theory could now be quantized, e. g., under the GFC’s: ζ1 = A+ ≈ 0,
ζ2 = A− ≈ 0, where the gauge A+ ≈ 0 represents the LC time-axial or temporal
gauge and the gauge A− ≈ 0 represents the LC Coulomb gauge and both of these
gauges are physically important gauges. The matrix Rαβ of the Poisson brackets
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among the set of constraints Ωi with i = 1, 2 is seen to be nonsingular with the
determinant given by

[∣∣∣∣det(Rαβ)
∣∣∣∣
] 1

2

=
[[
δ
′

(x− − y−)
][
δ(x− − y−)

]]
. (13)

Finally, following the Dirac quantization procedure in the Hamiltonian formulation,
the non-vanishing equal light-cone-time commutators of the theory, under the GFC’s
A+ ≈ 0 and A− ≈ 0 are obtained as:

[
φ(x+, x−), π(x+, y−)

]
= iδ(x− − y−), (14)

[
φ†(x+, x−), π†(x+, y−)

]
= iδ(x− − y−), (15)

[
φ(x+, x−),Π−(x+, y−)

]
=

1

2
ρφǫ(x− − y−), (16)

[
φ†(x+, x−),Π−(x+, y−)

]
= −1

2
ρφ†ǫ(x− − y−), (17)

[
π(x+, x−),Π−(x+, y−)

]
=

1

2
ρπǫ(x− − y−), (18)

[
π†(x+, x−),Π−(x+, y−)

]
= −1

2
ρπ†ǫ(x− − y−), (19)

[
Π−(x+, x−), φ(x+, y−)

]
=

1

2
ρφǫ(x− − y−), (20)

[
Π−(x+, x−), φ†(x+, y−)

]
= −1

2
ρφ†ǫ(x− − y−), (21)

[
Π−(x+, x−), π(x+, y−)

]
= −1

2
ρπǫ(x− − y−), (22)

[
Π−(x+, x−), π†(x+, y−)

]
=

1

2
ρπ†ǫ(x− − y−). (23)

The first-order Lagrangian density LI0 of the theory is:

LI0 =

[
1

2
(Π−)2 + ∂+φ

†∂−φ+ ∂−φ
†∂+φ+ 2ρ2φ†φA+A− − µ2φ†φ

− iρA−(φ†∂−φ− φ∂−φ†)− iρA+(φ†∂+φ− φ∂+φ†)−
λ

6
(φ†φ)2

]
. (24)

In the path integral formulation [17–19], the transition to quantum theory is made
by writing the vacuum to vacuum transition amplitude for the theory called the
generating functional Z[Jk]. For the present theory, under the GFC’s ζ1 = A+ ≈ 0
and ζ2 = A− ≈ 0 and in the presence of the external sources Jk, it reads:

Z[Jk] =

∫
[dµ] exp

[
i

∫
d2x

(
JkΦk + π∂+φ+ π†∂+φ

† + Π+∂+A
−

+ Π−∂+A
+ + Πu∂+u+ Πv∂+v + Πw∂+w −HT

)]
. (25)

Here, the phase space variables of the theory are Φk ≡ (φ, φ†, A−, A+, u, v, w) with
the corresponding respective canonical conjugate momenta: Πk ≡ (π, π†,Π+,Π−,Πu,
Πv,Πw). The functional measure [dµ] of the generating functional Z[Jk] under the
above gauge-fixing is obtained as:

[dµ] = [δ′(x− − y−) δ(x− − y−)][dφ][dφ†][dA+][dA−][du][dv][dw]

× [dπ][dπ†][dΠ−][dΠ+][dΠu][dΠv][dΠw] δ[Π+ ≈ 0] δ[A− ≈ 0]

× δ
[(
∂−Π− + iρ(φπ − φ†π†)

)
≈ 0
]
δ[A+ ≈ 0]. (26)
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5 Light-front BRST quantization

For the BRST formulation of the model, we rewrite the theory as a quantum system
that possesses the generalized gauge invariance called BRST symmetry. For this, we
first enlarge the Hilbert space of our gauge-invariant theory and replace the notion
of gauge-transformation, which shifts operators by c-number functions, by a BRST
transformation, which mixes operators with Bose and Fermi statistics. We then intro-
duce new anti-commuting variable c and c̄ (Grassmann numbers on the classical level
and operators in the quantized theory) and a commuting variable b such that [20–22]:

δ̂φ = −iρcφ, δ̂φ† = iρcφ†, δ̂A− = ∂+c, δ̂A+ = ∂−c,

δ̂π =
[
ρ2c φ†A+ + iρ c ∂−φ

†], δ̂π† =
[
ρ2c φA+ − iρ c ∂−φ

]
,

δ̂u = δ̂v = δ̂w = δ̂Π+ = δ̂Π− = δ̂Πu = δ̂Πv = δ̂Πw = 0,

δ̂c = 0, δ̂c̄ = b, δ̂b = 0,

(27)

with the property δ̂2 = 0. We now define a BRST-invariant function of the dynamical
phase space variables of the theory to be a function f such that δ̂f = 0. Now the BRST
gauge-fixed quantum Lagrangian density LBRST for the theory could be obtained by
adding to the first-order Lagrangian density LI0, a trivial BRST-invariant function,
e. g., as follows:

LBRST =

[
1

2
(Π−)2 + ∂+φ

†∂−φ+ ∂−φ
†∂+φ− iρA−(φ†∂−φ− φ∂−φ†)

− λ

6
(φ†φ)2−µ2φ†φ+ 2ρ2φ†φA+A−− iρA+(φ†∂+φ−φ∂+φ†) + δ̂

[
c̄(∂+A

− +
1

2
b)
]]
.

(28)

The last term in the above equation is the extra BRST-invariant gauge-fixing term.
After one integration by parts, the above equation could now be written as:

LBRST =

[
1

2
(Π−)2+∂+φ

†∂−φ+∂−φ
†∂+φ−iρA−(φ†∂−φ−φ∂−φ†)−µ2φ†φ−λ

6
(φ†φ)2

+ 2ρ2φ†φA+A− − iρA+(φ†∂+φ− φ∂+φ†) + ∂+A
− +

1

2
b2 + (∂+c̄)(∂+c)

]
. (29)

The Euler–Lagrange equation obtained by the variation of LBRST with respect to c̄
implies ∂+∂+c = 0. We thus define the bosonic momenta in the usual manner
so that Π+ := b but for the fermionic momenta with directional derivatives we
set Πc := ∂+c̄ and Πc̄ := ∂+c, implying that the variable canonically conjugate to c
is ∂+c̄ and the variable conjugate to c̄ is ∂+c. The quantum BRST Hamiltonian
density of the theory is:

HBRST =

[
1

2
(Π−)2 + Π−(∂−A

− − 2ρ2φ†φA+A− + µ2φ†φ+
λ

6
(φ†φ)2

− iρA−(φ∂−φ
† − φ†∂−φ)− 1

2
(Π+)2 + ΠcΠc̄

]
. (30)

The BRST charge operator of the present theory is:

Q =

∫
dx−

[
ic∂−Π− − ρc(φπ − φ†π†)− i∂+cΠ+

]
. (31)

The theory is seen to possess negative norm states in the fermionic sector. The
existence of these negative norm states as free states of the fermionic part ofHBRST is,
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however, irrelevant to the existence of physical states in the orthogonal subspace of the
Hilbert space. The Hamiltonian is also invariant under the anti-BRST transformation
given by:

¯̂
δφ = iρc̄φ,

¯̂
δφ† = −iρc̄φ†, ¯̂

δA− = −∂+c̄, ¯̂
δA+ = −∂−c̄, (32)

¯̂
δπ =

[
−ρ2c̄ φ†A+ − iρ c̄ ∂−φ†

]
,

¯̂
δπ† =

[
−ρ2c̄φA+ + iρc̄∂−φ

]
, (33)

¯̂
δu =

¯̂
δv =

¯̂
δw =

¯̂
δΠ+ =

¯̂
δΠ− =

¯̂
δΠu =

¯̂
δΠv =

¯̂
δΠw = 0, (34)

¯̂
δc = −b, ¯̂

δc̄ = 0,
¯̂
δb = 0, (35)

with generator or anti-BRST charge

Q̄ =

∫
dx−

[
−i c̄ ∂−Π− − ρ c̄ (φπ − φ†π†) + i ∂+c̄Π+

]
. (36)

We also have

∂+Q = [Q,HBRST ] = 0, ∂+Q̄ = [Q̄,HBRST ] = 0 (37)

with HBRST =
∫
dx−HBRST , and we further impose the dual condition that both Q

and Q̄ annihilate physical states, implying that

Q|ψ〉 = 0 and Q̄|ψ〉 = 0. (38)

The states for which the constraints of the theory hold, satisfy both of these con-
ditions and are in fact, the only states satisfying both of these conditions. Now,
because Q|ψ〉 = 0, the set of states annihilated by Q contains not only the set of
states for which the constraints of the theory hold but also additional states for which
the constraints of the theory do not hold in particular. This situation is, however,
easily avoided by additionally imposing on the theory, the dual condition: Q|ψ〉 = 0
and Q̄|ψ〉 = 0. Thus by imposing both of these conditions on the theory simultane-
ously, one finds that the states for which the constraints of the theory hold satisfy
both of these conditions and, in fact, these are the only states satisfying both of these
conditions because in view of the conditions on the fermionic variables c and c̄ one
cannot have simultaneously c, ∂+c and c̄, ∂+c̄ applied to |ψ〉 to give zero. Thus the
only states satisfying Q|ψ〉 = 0 and Q̄|ψ〉 = 0 are those that satisfy the constraints
of the theory and they belong to the set of BRST-invariant as well as to the set of
anti-BRST-invariant states. Here, the new extended gauge symmetry which replaces
the gauge invariance is maintained (even under the BRST gauge-fixing) and hence
projecting any state onto the sector of BRST and anti-BRST invariant states yields
a theory which is isomorphic to the original GI theory.

6 Acknowledgments

Author thanks the Department of Science and Technology (DST), New Delhi, India,
for the award of a Full Travel Grant for attending the International Conference
on Nuclear Theory in the Supercomputing Era — 2013 (NTSE-2013), held at the
Iowa State University, Ames, Iowa, USA, on May 13–17, 2013, where this work was
presented as an “Invited Talk”. He also thanks the Organizers of NTSE-2013 for
providing a very warm and excellent environment and hospitality during the confer-
ence. This work was supported in part by the Department of Energy under Grant
No. DE-FG02-87ER40371. Last but not least, the authors thank Prof. Stan Brodsky
for a very fruitful collaboration on this subject and for several crucial clarifications
and for his invaluable continuous guidance, support and motivations throughout the
course of this work.



LFQ of large N scalar QCD2 with a Higgs potential 203

References

[1] R. L. Jaffe, Phys. Rev. D 15, 267 (1977).

[2] R. L. Jaffe, Phys. Rev. D 15, 281 (1977).

[3] R. L. Jaffe and F. Wilczek, Phys. Rev. Lett. 91, 232003 (2003).

[4] G. ’t Hooft, Nucl. Phys. B 75, 461 (1974).

[5] A. D. Polosa, in Proc. Int. Workshop on Charm Phys. (Charm 2007), 5–8 Aug.,
2007, Ithaca, New York, eds. H. Mahlke and J. Napolitano. eConf C070805, 36
(2007).

[6] L. Maiani, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 99, 182003 (2007).

[7] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 71, 014028
(2005).

[8] L. Maiani, A. D. Polosa and V. Riquer, New J. Phys. 10, 073004 (2008).

[9] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 93, 212002
(2004).

[10] I. Bigi, L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 72,
114016 (2005).

[11] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, PoS HEP2005, 105 (2006).

[12] A. D. Polosa, Nucl. Phys. B Proc. Suppl. 181-182, 175 (2008).

[13] G. ’t Hooft, G. Isidori, L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B
662, 424 (2008).

[14] B. Grinstein, R. Jora and A. D. Polosa, Phys. Lett. B 671, 440 (2009).

[15] U. Kulshreshtha, D. S. Kulshreshtha and J. P. Vary, Phys. Lett. B 708, 195
(2012).

[16] P. A. M. Dirac, Can. J. Math 2, 129 (1950).

[17] P. Sanjanovic, Ann. Phys. (NY) 100, 227 (1976).

[18] U. Kulshreshtha and D. S. Kulshreshtha, Phys. Lett. B 555, 255 (2003).

[19] U. Kulshreshtha and D. S. Kulshreshtha, Eur. Phys. Jour. C 29, 453 (2003).

[20] C. Becchi, A. Rouet and A. Stora, Phys. Lett. B 52, 344 (1974).

[21] V. Tyutin, Report No. FIAN-39 (1975) (unpublished).

[22] D. Nemeschansky, C. Preitschopf and M. Weinstein, Ann. Phys. (NY) 183, 226
(1988).

[23] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

[24] S. J. Brodsky, H. C. Pauli and S. S. Pinsky, Phys. Rept. 301, 299 (1998).

[25] P. P. Srivastava and S. J. Brodsky, Phys. Rev. D 64 045006 (2001).

[26] P. P. Srivastava and S. J. Brodsky, Phys. Rev. D 61, 025013 (2000).

[27] P. P. Srivastava and S. J. Brodsky, Phys.Rev. D 66, 045019 (2002).



Non-Perturbative Time-Dependent

Quantum Field Evolution

Xingbo Zhaoa, Anton Ildertonb, Pieter Marisa

and James P. Varya

aDepartment of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
bDepartment of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg,

Sweden

Abstract

We present a nonperturbative, first-principles numerical approach for time-
dependent problems in the framework of quantum field theory. In this approach
the time evolution of quantum field systems is treated in real time and at the
amplitude level. As a test application, we apply this method to QED and study
photon emission from an electron in a strong time-dependent external field. Co-
herent superposition of electron acceleration and photon emission is observed in
the nonperturbative regime.

Keywords: Non-perturbative; time-dependent; strong field; quantum electrody-
namics; light-front dynamics

1 Introduction

Solving time-dependent problems in quantum field theory is desired for a wide range
of applications. One important area is in scattering processes. Simulating scattering
processes as time-dependent processes at the amplitude level opens up possibilities
for handling complicated scenarios from first-principles. Typical examples include:
1) The asymptotic states cannot be well-defined. For example, long range forces exist
between the colliding particles; another example is parton collisions in the deconfined
medium created in relativistic heavy-ion collisions. 2) The scattering processes occur
in the presence of time-dependent background fields, which are typically encountered
in strong field laser physics as well as in relativistic heavy-ion physics. In the former
case, time-dependent electromagnetic fields are provided by laser beams, and in the
latter case, colliding nuclei create strong and time-dependent (color-)electromagnetic
fields. 3) One is interested in the explicit time evolution of quantum field ampli-
tudes during scattering processes, which could shed light on, e. g., the mechanism of
hadronization in QCD.

To address time-dependent processes at the amplitude level, one first needs a
stationary state description for stable particles participating in the time-dependent
process in terms of quantum field amplitudes. This was achieved by the previously
constructed Basis Light-front Quantization (BLFQ) [1, 2]. The BLFQ adopts the
light-front quantization and the Hamiltonian framework, see Ref. [3] for a review on
the light-front dynamics. It solves for the (boost-invariant) light-front amplitudes for
both bound states and scattering states by diagonalizing the light-front Hamiltonian
of the quantum field system. Recently, the efforts of applying BLFQ to positronium
systems have been initiated [4, 5].

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 204.
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In this paper, we introduce an extension of the BLFQ to the time-dependent
regime, which is called the time-dependent Basis Light-Front Quantization
(tBLFQ) [6, 7]. Based on the stationary amplitudes obtained in BLFQ, tBLFQ eval-
uates the time-evolution of quantum field configurations by explicitly solving the
time-dependent Schrödinger equation. This approach provides a natural framework
for addressing scattering problems from a time-dependent perspective.

In this work, we illustrate tBLFQ through an application to strong field laser
physics. Specifically, we study the “nonlinear Compton scattering”(nCs) process [8,9],
in which an electron is excited by a background laser field and emits a photon. This
paper is organized as follows: in Section 2, we introduce our model for the background
laser field; in Section 3 we discuss the formalism of tBLFQ; in Section 4 we give a brief
review on BLFQ which is employed to construct basis states for tBLFQ; in Section 5
we conduct a sample calculation for the nCs process and present the numerical results.
Finally we conclude and provide our outlook for future work in Section 6.

2 Background field

We model the laser background as a classical field (i. e., we neglect back reaction on
the laser). We consider a longitudinal periodic electric field pointing in the 3-direction
with profile,

E3(x+, x−) = −E3
0 sin (l−x

−) Θ(x+) Θ(∆x+ − x+), (1)

where E3
0 is the peak amplitude and l− is the frequency. The theta functions impose

a finite light-front time duration on the field. An appropriate gauge potential is

A−(x+, x−) =
E3

0

l−
cos (l−x

−) Θ(x+) Θ(∆x+ − x+). (2)

The dependence on x+ and x− makes this particularly suitable to a light-front treat-
ment.

3 Quantum evolution

In tBLFQ, we calculate the evolution of quantum field configurations at the amplitude
level. For the nCs process, the Hamiltonian P− contains two parts, P−

QED which is the

full interacting light-front Hamiltonian of QED, and interactions V (x+) introduced
by the external field, so

P−(x+) = P−
QED + V (x+) . (3)

Both the QED Hamiltonian P−
QED and the external field interaction V (x+) may

induce transitions on the quantum field amplitudes over time. In the nCs process,
we are, however, mostly interested in transitions induced by the external field V (x+).
Therefore, we adopt an interaction picture, in which the light-front QED Hamil-
tonian P−

QED serve as the “main” part of the Hamiltonian and the external field
interaction V (x+) as the “interaction” part. In this interaction picture, the quantum
field amplitude evolves according to

i
∂

∂x+
|ψ;x+〉I =

1

2
VI(x+)|ψ;x+〉I , (4)

where |ψ;x+〉I = eiP
−

QEDx+/2|ψ;x+〉 is the quantum field amplitude in the interaction
picture, and the “interaction Hamiltonian in the interaction picture” VI evolves in
time according to

VI(x+) = e
i
2P

−

QED
x+

V (x+) e−
i
2P

−

QED
x+

. (5)
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The solution to (4) can be formally written in terms of a time-ordered (T+) series as

|ψ;x+〉I = T+ e
− i

2

x+∫

x
+
0

VI dx+

|ψ;x+0 〉I , (6)

where |ψ;x+0 〉I is the initial quantum field amplitude at light-front time x+0 . In the
nCs process, this initial state corresponds to a single physical electron.

To implement this solution numerically, we need to specify a basis for the quantum
field amplitudes |ψ;x+〉I as well as the external field interaction VI(x+). Eq. (5)
suggests that the most convenient basis is what comprises the eigenstates of the light-
front QED Hamiltonian, P−

QED. We denote this basis as |β〉, which can be found by

solving the eigenvalue problem for P−
QED,

P−
QED|β〉 = P−

β |β〉, (7)

where P−
β is the eigenvalue (light-front energy) for the eigenstate |β〉. In tBLFQ, we

employ the previously constructed BLFQ [1,2] to solve this eigenvalue problem. More
details will be shown in the next section.

In terms of the basis states |β〉, the quantum field state |ψ;x+〉 is represented as

|ψ;x+〉I =
∑

β

cβ(x+)|β〉, (8)

where cβ(x+) = 〈β|ψ;x+〉 is the amplitude in the basis |β〉. The initial state in
the nCs process — a physical electron — is an eigenstate of P−

QED and thus can be
trivially expressed in this basis.

With both the quantum field configuration and the interaction term in the Hamil-
tonian represented in the basis |β〉, Eq. (6) can be realized as a series of matrix-vector
multiplications acting on an initial state vector. To make the numerical calculation
feasible, in this step, we make two approximations: “time-step discretization” and
“basis truncation”: the former is to decompose the time-evolution operator in Eq. (6)
into small but finite steps in light-front time x+, with the step size δx+,

T+e
− i

2

x+∫

x
+
0

VI dx+

|ψ(x+0 )〉I →
[
1− i

2VI(x+n )δx+
]
· · ·
[
1− i

2VI(x+1 )δx+
]
|ψ(x+0 )〉I , (9)

and the latter is to keep the basis dimensionality finite. In tBLFQ, the basis trunca-
tion is performed in the basis state (|β〉) construction stage in BLFQ, which will be
introduced in the next section. “Basis truncation” and “time-step discretization” are
the only two approximations in tBLFQ.

4 Basis construction

In this section we present a brief review of BLFQ [1,2] and explain the procedure of
constructing the tBLFQ basis |β〉 through solving the eigenvalue problem of P−

QED in
BLFQ. For more details, see Ref. [6].

Since quantum field systems generally have large numbers of degrees-of-freedom,
to mitigate the computational burden, it is important to choose an efficient basis for
the eigenvalue problem. The idea in BLFQ is that an efficient basis should capture
the symmetries of the underlying dynamics, so that in such a basis the Hamilto-
nian exhibits a block-diagonal structure. Each block is associated with a group of
quantum numbers corresponding to the symmetries captured by the basis. Thus, the
Hamiltonian can be diagonalized block by block, and in practice, we can selectively
diagonalize only those blocks with desired quantum numbers.
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Specifically for the light-front QED Hamiltonian P−
QED, the BLFQ basis, de-

noted as |α〉, captures the following three symmetries: 1) Translational symme-
try in the x− direction; 2) Rotational symmetry in the transverse plane; 3) Lep-
ton number conservation. These three symmetries correspond to three conserved
operators. These are the longitudinal momentum P+, longitudinal projection of
angular momentum J3, and charge, or net fermion number Q, respectively. The
BLFQ basis states |α〉 are chosen to be the eigenstates of these three operators:
{P+, J3, Q}|α〉 = {2πK/L,Mj, Nf}|α〉 (L is the length of the longitudinal “box” in
which we embed our system, see below). These eigenvalues divide the BLFQ basis
states |α〉 into multiple “segments”. Each segment consists of the basis states |α〉
sharing the same group of eigenvalues.

BLFQ basis states |α〉 are constructed in terms of a Fock sector expansion. Each
Fock particle has helicity, longitudinal momentum p+ = 2πk/L (the sum of k, in each
state, must equal K, which implicitly imposes basis truncation on the longitudinal
degree of freedom), and two transverse degrees of freedom. The latter are described in
terms of the radial quantum number, n, and the angular quantum number, m, of the
eigenstates of a 2D-harmonic oscillator (2D-HO). This choice of basis, motivated by
applications to QCD, is suitable for describing the confining interaction. This choice
is supported by the success of the AdS/QCD approach to hadron spectroscopy [10],
where a similar basis is adopted.

In summary, a complete specification of a BLFQ basis requires 1) the segment
specifiers K,Mj, and Nf , 2) two truncation parameters, namely the choice of Fock
sectors to retain, and the transverse truncation parameter Nmax, the maximum total
number of oscillator quanta 2n + |m| for the Fock states and 3) the “box length” L
in the longitudinal direction and a scale parameter b =

√
MΩ for the 2D-HO wave

functions, where M and Ω are the mass and frequency of the 2D-HO.
Specifically for the nCs processes, the initial state is a single physical electron.

Since the external field interaction V (x+) conserves net fermion number and does not
excite transverse degrees of freedom, we only need to prepare eigenstates of P−

QED

in segments of different K. The K’s in these segments are equally spaced by the
longitudinal momentum quantum number of the background field klas = Ll−/π. In
each segment, we truncate the Fock sectors to the lowest two sectors, |e〉 and |eγ〉. We
take L = 2πMeV−1, so the value of k(K) can be read as the longitudinal momentum
in units of MeV, and b = 0.511 MeV, which matches the natural scale in QED set by
the physical electron mass me.

In our constructed BLFQ basis |α〉, P−
QED manifests as a block-diagonal numerical

matrix. Each block is associated with a distinct K. Then, upon diagonalizing P−
QED

block by block (see Ref. [11] for sector-dependent renormalization, and Refs. [12, 13]
for applications), we obtain the eigenvalues P−

β and the associated eigenstates |β〉 in
the basis |α〉,

|β〉 =
∑

α

|α〉〈α|β〉. (10)

These eigenstates |β〉 are the basis states used in tBLFQ. For each basis state, the
invariant mass Mβ relates to its eigenvalue P−

β as: M2
β = P+

β P
−
β − P 2

⊥,β, where P+
β

and P⊥,β are the longitudinal and transverse momentum for |β〉, respectively. The
ground states (with the lowest invariant mass in each segment) are interpreted as the
physical electron states and the excited states are interpreted as the electron-photon
scattering states.

5 Numerical results

In this section we carry out a sample numerical calculation for the nCs process. A
basis consisting of three segments with K = {Ki,Ki+klas,Ki+2klas} is chosen for
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Figure 1: Time evolution of the system at (from top to bottom) x+ = 0.2, 0.4,
0.6 MeV−1, with the background field switched on at x+ = 0. Each dot represents a
tBLFQ basis state |β〉, an eigenstate of QED. Horizontal axis: the invariant mass of
the state Mβ . Vertical axis: the probability of finding the state |β〉 in units of 10−3.
The inset panels show, at normal scale, the (much larger) probabilities of finding the
single physical electron states (in the K = 1.5, 3.5, 5.5 segments), with invariant
mass Mβ = me.

this calculation. In each segment we retain both the single electron (ground) and
electron-photon (excited) states. The initial state for our process is a single (ground
state) electron in the K = Ki segment. This basis allows for the ground state to be
excited twice by the background (from the segment with K = Ki through to segment
with Ki + 2klas). In this calculation, we take Ki = 1.5 and Nmax = 8, with a0 = 10,
klas = 2 and L = 2π MeV−1. We present the evolution of the electron system in Fig. 1,
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Figure 2: The average invariant mass of the electron-photon system evolves as a
function of exposure time. The vertical axis is the difference between the average
invariant mass of the electron-photon system and that of a single physical electron.

at increasing (top to bottom) light-front times. As time evolves, Fig. 1 shows how the
background causes transitions from the ground state in the K = 1.5 segment to other
eigenstates of P−

QED. Both the single electron states and electron-photon states are
populated; the former represent the acceleration of the electron by the background,
while the latter represent the process of radiation. At times x+ = 0.2 MeV−1, the
single electron state in the K = 3.5 segment becomes populated while the probability
for finding the initial state begins to drop. The populated electron-photon states
begin forming a peak structure. The location of the peak is around the invariant mass

of 0.8 MeV, roughly consistent with the expected value of Mpk1 =
√
P−
i (Ki + klas) =

0.78 MeV, where P−
i =

m2
e

Ki
∼ 0.17 MeV is the light-front energy of the initial single

electron state with K = 3.5.
As time evolves, the probability of finding the electron in its initial (ground) state

continues to decrease. Single electron states with successively higher K dominate
the system. It also becomes possible to find electron-photon states of higher K and
invariant mass, following the absorption of more energy from the background field as
time evolves (see the second and third rows of Fig. 1).

As the state |ψ;x+〉 encodes all the information of the system, other observables
can be constructed out of |ψ;x+〉. As an example, the evolution of the average in-
variant mass 〈M〉 ≡ ∑βMβ〈β|ψ〉2 of the system as a function of exposure time is

displayed in Fig. 2. The approximately linear increase of the invariant mass up to
an exposure time of 0.6 MeV−1 indicates the fact that photons are created as the
background field pumps energy into the system.

6 Conclusion and outlook

In this paper, we review a recently constructed nonperturbative framework for time-
dependent problems in quantum field theory. It is called “time-dependent BLFQ”
(tBLFQ). Adopting the light-front dynamics and Hamiltonian formalism, tBLFQ pro-
vides the evolution of quantum field amplitudes through the light-front Schrödinger
equation. Given the light-front Hamiltonian of the system, and an initial state as
input, the quantum field amplitudes of the system at any subsequent time can be
evaluated. The entire calculation is performed nonperturbatively with basis trunca-
tion and time-step discretization being the only two approximations.

As a generic method for time-dependent problems in quantum field theory, the
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tBLFQ method can be applied to both first-principles and effective Hamiltonians,
where the time-dependence arises either from the background fields or from using
non-stationary initial states. In this work we apply the tBLFQ method to strong
field laser physics and specifically study the nonlinear Compton scattering process,
in which an electron is accelerated by a background field and emits a photon. The
numerical calculation reveals a coherent superposition of electron acceleration and
photon-emission processes in the nonperturbative regime.

As a next step, we plan to apply this method to relativistic heavy-ion collisions in
which the medium of the colliding nuclei can be modeled as a dissipative background
field. For example, the energy loss of the produced quark and gluon jets in this
evolving background field can be predicted. Another application is the hadronization
process in QCD.

We acknowledge valuable discussions with K. Tuchin, H. Honkanen, S. J. Brod-
sky, P. Hoyer, P. Wiecki and Y. Li. This work was supported in part by the De-
partment of Energy under Grant Nos. DE-FG02-87ER40371 and DESC0008485
(SciDAC-3/NUCLEI) and by the National Science Foundation under Grant No
PHY-0904782. A. I. is supported by the Swedish Research Council, contract 2011-4221.
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Abstract

The exact treatment of nuclei starting from the constituent nucleons and
the fundamental interactions among them has been a long-standing goal in nu-
clear physics. In addition to the complex nature of nuclear forces, one faces the
quantum-mechanical many-nucleon problem governed by an interplay between
bound and continuum states. In recent years, significant progress has been made
in ab initio nuclear structure and reaction calculations based on input from QCD
employing Hamiltonians constructed within chiral effective field theory. In this
contribution, we first present a brief overview of recent achievements of various
ab initio nuclear reaction approaches and then focus on the newly developed
techniques, the no-core shell model with continuum (NCSMC) capable of de-
scribing simultaneously both bound and scattering states in light nuclei.

Keywords: Ab initio calculations; low-energy nuclear reactions, resonances,
halo nuclei

1 Introduction

One of the central goals of nuclear physics is to come to a basic understanding of
the structure and dynamics of nuclei, quantum many-body systems exhibiting bound
states, unbound resonances, and scattering states, all of which can be strongly cou-
pled. Ab initio (i. e., from first principles) approaches attempt to achieve such a
goal for light nuclei. Over the past fifteen years, efficient techniques such as the
Green’s function Monte Carlo (GFMC) [1], ab initio NCSM [2], Coupled Cluster
Method (CCM) [3–5] or nuclear lattice effective field theory (EFT) [6] have greatly
advanced our understanding of bound-state properties of light nuclei starting from
realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. On the other
hand, a fully-developed fundamental theory able to address a large range of nuclear
scattering and nuclear reaction properties is still missing, particularly for processes
involving more than four nucleons overall. Better still, achieving a realistic ab initio
description of light nuclei requires abandoning the “traditional” separated treatment
of discrete states and scattering continuum in favor of a unified treatment of struc-
tural and reaction properties. The development of such a unified fundamental theory
of light nuclei is key to refining our understanding of the underlying forces across
the nuclear landscape: from the well-bound nuclei to the exotic nuclei at the bound-
aries of stability that have become the focus of the next generation experiments with
rare-isotope beams, to the low-energy fusion reactions that represent the primary
energy-generation mechanism in stars, and could potentially be used for future en-
ergy generation on earth.

In this contribution, we present a brief overview of the emerging field of ab initio
calculations of nuclear reactions in Section 2. In Section 3, we describe the recently
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introduced ab initio many-body approach to nuclear bound and continuum states,
the no-core shell model with continuum (NCSMC) that combines the resonating-
group method (RGM) [7] with the ab initio no-core shell model (NCSM) [8]. In
Section 4, we discuss recent applications of the NCSMC to the description of 7He
resonances, we investigate the 3N interaction effects in the nucleon-4He scattering,
we highlight the introduction of the three-body clusters in the description of 6He, and
present preliminary study of the continuum effects in the low-lying resonances of 9Be.
Conclusions are given in Section 5.

2 Ab initio approaches to nuclear reactions

Because of their importance nuclear reactions attract much attention, and there have
been many interesting new developments in the recent past. In this section we will
give a brief and non-exhaustive overview of the theoretical efforts devoted to ab initio
approaches to nuclear reactions, and in particular scattering of light nuclei.

By ab initio approaches we mean methods, in which all the nucleons involved in
the process are treated as active degrees of freedom, and the antisymmetrization of the
many-body wave functions is treated exactly. Further, the NN interactions among all
participating nucleons are realistic, i. e., describe accurately NN scattering and the
deuteron. Finally, the approximations used in the calculations should be controllable
in a sense that it should be feasible to arrive at or to extrapolate to an exact result
with a specified uncertainty. We note that, in general, the 3N force that provides a
realistic description of the three-nucleon system should also be considered in ab initio
calculations.

In the three- and four-nucleon sectors there has been remarkable progress over the
past decade: the Faddeev [9], Faddeev–Yakubovsky (FY) [10, 11], Alt, Grassberger
and Sandhas (AGS) [12, 13], hyperspherical harmonics (HH) [14], Lorentz integral
transform (LIT) methods [15–17], RGM [18], etc., are among the best known of
several numerically exact techniques able to describe reactions observables starting
from realistic NN and in some cases also 3N forces.

Going beyond four nucleons there are fewer ab initio or ab initio inspired methods
able to describe reactions observables starting from realistic forces. Only very recently
the Green’s function Monte Carlo (GFMC) [19], the no-core shell model combined
with the resonating group method (NCSM/RGM) [20,21] and the fermionic molecular
dynamics [22] have made steps in this direction.

Among the recent developments in the A = 4 scattering and reaction calcula-
tions we highlight the new capability to include properly the Coulomb interaction
in momentum space [12, 13] and to include the three-nucleon interaction in the p-3H
Faddeev–Yakubovsky configuration space calculations [11]. A benchmark for the n-3H
low-energy elastic cross section calculation has been performed by the FY, AGS and
HH methods using different NN potentials [23]. The main conclusion of this work
is the failure of the existing NN forces to reproduce the n-3H total cross section.
Remarkable recent results are the p-3He scattering calculations performed using the
hyperspherical harmonic basis, which demonstrated that the new NN plus 3N in-
teractions derived within chiral effective field theory (EFT) reduce noticeably the
discrepancy observed for the Ay observable [24]. Further, with the same Hamilto-
nian, the low-energy total n-3H cross section calculated by the HH method was found
in improved agreement with the data [25].

In a ground-breaking development, the AGS method has been generalized to cal-
culations of the n-3H scattering above the four-nucleon breakup threshold [26]. This
allowed to calculate the elastic cross section of 14.1 MeV neutrons. This is in par-
ticular important as such high-energy neutrons are produced in the deuteron-triton
fusion.
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The first ab initio scattering calculation for a system with A > 4 was performed
within the GFMC approach. The n-α low-lying Jπ = 3/2− and 1/2− P -wave res-
onances as well as the 1/2+ S-wave non-resonant scattering below 5 MeV center of
mass (c.m.) energy were obtained using the AV18 NN potential with and without the
three-nucleon force, chosen to be either the Urbana IX or the Illinois-2 model [19].
The results of these calculations revealed sensitivity to the inter-nucleon interaction,
and in particular to the strength of the spin-orbit force. New developments of the
GFMC applications to nuclear reactions include calculations of spectroscopic overlaps
for light nuclei [27] and calculations of the asymptotic normalization constants (ANC)
by integral relations with the variational Monte Carlo (VMC) wave functions [28].

The FMD approach has been applied quite successfully to the description of the
radiative capture cross section (S-factor) of the 3He(α,γ)7Be reaction important for
astrophysics. The FMD calculations describe new experimental data both at low
energy (below 100 keV) as well as at high energy (from 1 MeV to 2.5 MeV) [29].

As an interesting theoretical development to the many-body scattering, we men-
tion the approach based on the variational description of continuum states in terms of
integral relations [30] that may be used to directly apply the bound-state many-body
techniques to scattering. A variation of this approach has been explored in the A = 5
scattering in Ref. [31]. Further, the use of bound-state methods to calculate scattering
properties with possible applications for lattice calculations has been investigated in
Ref. [32].

There are also some recent attempts to describe the nuclear scattering in an ef-
fective field theory approach. In particular, the pionless EFT combined with the
RGM was successfully applied to three- and four-nucleon bound state and scattering
calculations [33].

In a big jump in mass number, we note that the 17F low-lying states were recently
investigated within the coupled-cluster (CC) approach with the Gamow–Hartree–Fock
basis that incorporates effects of the continuum [34]. The calculation resulted in a
good description of the 1/2+ proton halo state in 17F. It was shown that the continuum
effects are essential to obtain these results and that the proton halo state single-
particle energy is not affected by short-range correlations in the nuclear interactions.

The CC theory has been recently combined with the LIT method to calculate the
photodisintegration of 4He and, in particular, the giant dipole resonance in 16O [35].

Using the Gamow–Hartree–Fock basis, the CCM was used for the first time to
calculate ab initio elastic proton scattering on a nucleus as heavy as 40Ca [36]. Elas-
tic scattering of a nucleon on a target nucleus can be computed from the one-nucleon
overlap functions. These are calculated within the CC theory. The obtained cross
sections at low-energy for elastic proton scattering on 40Ca were found in a fair agree-
ment with experiment.

As a completely new development, ab initio calculations of nuclear scattering and
reactions on the lattice has been explored in Ref. [37]. Adiabatic projection method
was implemented and tested in elastic fermion-dimer scattering in lattice effective
field theory. Such calculation corresponds to neutron-deuteron scattering in the spin-
quartet channel at leading order in pionless effective field theory. The method adapts
features of the resonating group method [7] in a similar fashion as in the NCSM/RGM
approach [38] discussed in the subsequent sections.

3 No-core shell model with continuum

In this section we briefly overview the newly introduced approach to nuclear bound
and continuum states, the no-core shell model with continuum [39, 40]. This ap-
proach adopts an extended model space that, in addition to the continuous binary-
cluster (A−a, a) NCSM/RGM states, with A−a and a nucleons in the heavier and
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the lighter cluster, respectively, encompasses also square-integrable NCSM eigen-
states of the complete A-nucleon system. Such eigenstates introduce in the trial wave
function short- and medium-range A-nucleon correlations that in the binary-cluster
NCSM/RGM formalism have to be treated by including a large number of excited
states of the clusters.

3.1 NCSM

The ab initio NCSM is a nuclear-structure technique appropriate for the description
of bound states or for approximations of narrow resonances. Nuclei are considered
as systems of A non-relativistic point-like nucleons interacting through realistic inter-
nucleon interactions. Translational invariance as well as angular momentum and
parity of the system under consideration are conserved. The many-body wave function
is cast into an expansion over a complete set of antisymmetric A-nucleon harmonic
oscillator (HO) basis states containing up to Nmax HO excitations above the lowest
possible configuration:

|ΨJπT
A 〉 =

Nmax∑

N=0

∑

i

cNi |ANiJπT 〉. (1)

Here, N denotes the total number of HO excitations of all nucleons above the mini-
mum configuration, JπT are the total angular momentum, parity and isospin, and i
additional quantum numbers. The sum over N is restricted by parity to either an
even or odd sequence. The basis is further characterized by the frequency Ω of the
HO well and may depend on either Jacobi relative or single-particle coordinates. In
the former case, the wave function does not contain the center of mass (c.m.) mo-
tion, but antisymmetrization is complicated. In the latter case, antisymmetrization
is trivially achieved using Slater determinants, but the c.m. degrees of freedom are
included in the basis. The HO basis within the Nmax truncation is the only possible
one that allows an exact factorization of the c.m. motion for the eigenstates, even
when working with single-particle coordinates and Slater determinants. Calculations
performed with the two alternative coordinate choices are completely equivalent.

Square-integrable energy eigenstates expanded over the Nmax~Ω basis, |ANiJπT 〉,
are obtained by diagonalizing the intrinsic Hamiltonian, Ĥ = T̂int + V̂ ,

Ĥ |AλJπT 〉 = Eλ |AλJπT 〉, (2)

where T̂int is the internal kinetic energy operator and V̂ is the NN or NN+3N
interaction. We note that with the HO basis sizes typically used (Nmax∼10−14),
the |AλJπT 〉 eigenstates lack correct asymptotic behavior for weakly-bound states
and always have incorrect asymptotic behavior for resonances.

3.2 NCSM/RGM

In the NCSM/RGM [38, 41], the ansatz of Eq. (1) for the A-nucleon wave function
is replaced by an expansion over antisymmetrized products of binary-cluster channel
states |ΦJπT

νr 〉 and wave functions of their relative motion

|ΨJπT
A 〉 =

∑

ν

∫
dr r2

γν(r)

r
Âν |ΦJπT

νr 〉 . (3)

The channel states |ΦJπT
νr 〉 contain (A−a)- and a-nucleon clusters (with a<A) of

total angular momentum, parity, isospin and additional quantum number I1, π1, T1, α1

and I2, π2, T2, α2, respectively, and are characterized by the relative orbital angular
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momentum ℓ and channel spin ~s = ~I1 + ~I2:

|ΦJπT
νr 〉 =

[(
|A− a α1I

π1

1 T1〉 |a α2I
π2

2 T2〉
)(sT )

Yℓ(r̂A−a,a)
](JπT ) δ(r − rA−a,a)

rrA−a,a
. (4)

The channel index ν collects the quantum numbers {A − a α1I
π1

1 T1; a α2I
π2

2 T2; sℓ}.
The intercluster relative vector ~rA−a,a is the displacement between the clusters’ cen-
ters of mass and is given in terms of the single-particle coordinates ~ri by:

~rA−a,a = rA−a,a r̂A−a,a =
1

A− a

A−a∑

i=1

~ri −
1

a

A∑

j=A−a+1

~rj . (5)

The cluster wave functions depend on translationally invariant internal coordinates
and are antisymmetric under exchange of internal nucleons, while the intercluster
antisymmetrizer Âν takes care of the exchange of nucleons belonging to different
clusters.

With appropriate boundary conditions imposed on the wave functions of the rel-
ative motion γν(r), the expansion of Eq. (3) is suitable for describing bound states,
resonances and scattering states between clusters. For bound states, expansions (1)
and (3) are equivalent, although for well-bound systems where short-range A-body
correlations play a dominant role, the convergence of the eigenenergy would typically
be more efficient within the NCSM model space defined by Eq. (1).

The unknown relative-motion wave functions γν(r) are determined by solving the
many-body Schrödinger equation in the Hilbert space spanned by the basis

states Âν |ΦJπT
νr 〉:

∑

ν

∫
dr r2

[
HJπT

ν′ν (r′, r)− EN JπT
ν′ν (r′, r)

] γν(r)

r
= 0, (6)

where

HJπT
ν′ν (r′, r) =

〈
ΦJπT

ν′r′

∣∣∣ Âν′ĤÂν

∣∣∣ΦJπT
νr

〉
, (7)

N JπT
ν′ν (r′, r) =

〈
ΦJπT

ν′r′

∣∣∣ Âν′Âν

∣∣∣ΦJπT
νr

〉
, (8)

are the Hamiltonian and norm kernels, respectively, and E is the total energy in the
c.m. frame.

3.3 NCSMC

The NCSMC ansatz for the many-body wave function includes both A-body square-
integrable and (A−a, a) binary-cluster continuous basis states according to:

|ΨJπT
A 〉 =

∑

λ

cλ |AλJπT 〉+
∑

ν

∫
dr r2

γν(r)

r
Âν |ΦJπT

νr 〉. (9)

The resulting wave function (9) is capable of describing efficiently both bound and
unbound states. Indeed, the NCSM sector of the basis (eigenstates |AλJπT 〉) provides
an effective description of the short- to medium-range A-body structure, while the
NCSM/RGM cluster states make the theory able to handle the scattering physics of
the system. In other words, with the expansion (9) one obtains the coupling of the
NCSM with the continuum. Clearly, the NCSMC model space is overcomplete, but
this is not a concern. We also note that, in principle, the expansion (9) can be further
generalized to include a three-cluster component suitable for the description of, e. g.,
Borromean halo nuclei and reactions with final three-body states [42].
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The discrete (cλ) and continuous (γν(r)) unknowns of the NCSMC wave function
are obtained as solutions of the coupled equations

(
HNCSM h̄

h̄ H

)(
c
χ

)
= E

(
1 ḡ
ḡ 1

)(
c
χ

)
, (10)

where χν(r) are the relative wave functions in the NCSM/RGM sector when working
with the orthogonalized cluster channel states [41]. These are related to the original
wave functions γν(r) of Eq. (9) by the relationship given in Eq. (20) of Ref. [40].

The NCSM sector of the Hamiltonian kernel is a diagonal matrix of the NCSM
energy eigenvalues Eλ (2),

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = Eλ δλλ′ , (11)

while H is the orthogonalized NCSM/RGM kernel of Eq. (17) in Ref. [40]. Because
of the orthogonalization procedure, both diagonal blocks in the NCSMC norm kernel
are identities in their respective spaces. The coupling between square-integrable and
binary-cluster sectors of the model space is described by the cluster form factor

ḡλν(r) =
∑

ν′

∫
dr′ r′

2〈AλJπT |Âν′ΦJπT
ν′r′ 〉 N

− 1
2

ν′ν (r′, r) (12)

in the norm kernel, and by the coupling form factor

h̄λν(r) =
∑

ν′

∫
dr′ r′

2〈AλJπT |ĤÂν′ |ΦJπT
ν′r′ 〉 N

− 1
2

ν′ν (r′, r). (13)

in the Hamiltonian kernel.

4 NCSM/RGM and NCSMC applications

4.1 7He resonances

The first demonstration of the power of the NCSMC approach was shown in an
investigation of 7He resonances [39,40]. The 7He nucleus is a particle-unstable system
with a JπT = 3/2− 3/2 ground state lying at 0.430(3) MeV [43,44] above the 6He+n
threshold and an excited 5/2− resonance centered at 3.35 MeV, which mainly decays
to α+3n (as discovered in the pioneering work of Ref. [45]). While there is a general
consensus on the 5/2− state, discussions are still open for the other excited states.
In particular, the existence of a low-lying (ER ∼ 1 MeV) narrow (Γ ≤ 1 MeV) 1/2−

state has been advocated by many experiments [46–50] while it was not confirmed
in several others [51–56]. The presence of a low-lying 1/2− state has been excluded
by a study on the isobaric analog states of 7He in 7Li [57]. According to this work,
a broad 1/2− resonance at ∼3.5 MeV with a width Γ ∼ 10 MeV fits the data the
best. Neutron pick-up and proton-removal reactions [53, 54] suggest instead a 1/2−

resonance at about 3 MeV with a width Γ ≈ 2 MeV.
From a theoretical point of view, 7He is an ideal system to showcase achieve-

ments made possible by a unified ab initio approach to nuclear bound and continuum
states such as the NCSMC. Since 7He is unbound, it cannot be reasonably described
within the NCSM. One could calculate its properties using the NCSM/RGM within
an 6He+n binary-cluster expansion. However, the 6He nucleus is weakly bound and
all its excited states are unbound. Consequently, a limitation to just a few lowest 6He
eigenstates in the NCSM/RGM expansion would be questionable especially because,
except for the lowest 2+ state, all other 6He excited states are either broad resonances
or simply states in the continuum. With the NCSMC these challenges are overcome.
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Figure 1: Dependence of the NCSM/RGM (a) and NCSMC (b) 6He+n phase
shifts of the 7He 3/2− ground state on the number of 6He states included in the
binary-cluster basis. The short-dashed green curve, the dashed blue curve and the
solid red curve correspond to calculations with 6He 0+ ground state only, 0+, 2+

states and 0+, 2+, 2+ states, respectively. The similarity-renormalization-group
(SRG) [58–61] N3LO [62,63] NN potential with Λ = 2.02 fm−1, the Nmax=12 basis
size and the HO frequency of ~Ω=16 MeV were used.

This is seen by studying the dependence of the 3/2− ground state (g.s.) phase
shifts on the number of 6He eigenstates included in the NCSM/RGM [panel (a)] and
NCSMC [panel (b)] calculations, shown in Fig. 1. Here, the channels are denoted
using the standard notation 2s+1ℓJ , e. g., 2P3/2 for the g.s. resonance, with the quan-
tum numbers s, ℓ and J defined as in Section 3.2, Eq. (4). We observe that the
NCSM/RGM calculation with the 6He target restricted to its ground state does not
produce a 7He 3/2− resonance (the phase shift does not reach 90 degrees and is less
than 70 degrees up to 5 MeV). A 2P3/2 resonance does appear once n+6He(2+1 ) chan-
nel states are coupled to the basis, and the resonance position further moves to lower
energy with the inclusion of the second 2+ state of 6He. On the contrary, the NCSMC
calculation with only the ground state of 6He already produces the 2P3/2 resonance.
In fact, this NCSMC model space is sufficient to obtain the 7He 3/2− g.s. resonance
at about 1 MeV above threshold, which is lower than the NCSM/RGM prediction
of 1.39 MeV when three 6He states are included. Adding the first 2+ state of 6He
generates a modest shift of the resonance to a still lower energy while the 2+2 state
of 6He has no significant influence [see Fig. 1, panel (b)]. We further observe that
the difference of about 0.7 MeV between the NCSM/RGM and NCSMC results for
the resonance position is due to additional correlations in the wave function brought
about by the 7He eigenstates that are coupled to the neutron-6He binary-cluster states
in the NCSMC. Indeed, such A = 7 eigenstates (in the present calculation four 3/2−

states, of which only the 3/2−1 produces a substantial effect on the 2P3/2 resonance)
have the practical effect of compensating for higher excited states of the 6He target
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Figure 2: NCSM/RGM (a) and NCSMC (b) 6He+n diagonal phase shifts (except
6P3/2, which are eigenphase shifts) as a function of the kinetic energy in the center
of mass. The dashed vertical area centered at 0.43 MeV indicates the experimental
centroid and width of the 7He ground state [43, 44]. In all calculations the lowest
three 6He states have been included in the binary-cluster basis.

omitted in the NCSM/RGM sector of the basis.
The NCSM/RGM and NCSMC phase shifts for the n+6He five P -wave and

the 2S1/2 channels are shown in Fig. 2. All curves have been obtained including
the three lowest 6He states (i. e., the 0+ ground state and the two lowest 2+ excited
states) within the Nmax = 12 HO basis. The model space of the NCSMC calculations
[panel (b)] additionally includes ten 7He NCSM eigenstates. The dashed vertical area
centered at 0.43 MeV indicates the experimental centroid and width of the 7He ground
state [43, 44]. As expected from a variational calculation, the introduction of the ad-
ditional square-integrable A-body basis states |AλJπT 〉 [i. e., going from panel (a)
to panel (b) of Fig. 2] lowers the centroid values of all 7He resonances. In particu-
lar, the 3/2− ground and 5/2− excited states of 7He are pushed toward the 6He+n
threshold, closer to their respective experimental positions. The resonance widths
also shrink toward the observed data as we discuss below.

Computed widths Γ and resonance energies ER are reported in Table 1, together
with the available experimental data. From an experimental standpoint, the situation
concerning the 1/2− resonance is not clear as discussed in the beginning of this section
and documented in Table 1. While the centroid energies determined in the experi-
ments of Refs. [53,54] and [57] are comparable, the widths are very different. Within
the present determination of ER and Γ, the NCSMC results are in fair agreement
with the 1/2− properties measured in the neutron pick-up and proton-removal reac-
tions experiments of Refs. [53] and [54]. Our calculations definitely do not support the
hypothesis of a low-lying (ER ∼ 1 MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [46–50].
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Table 1: Experimental and theoretical values for the resonance centroids and widths
in MeV for the 3/2− ground state and the 5/2− and 1/2− excited states of 7He.
Calculations are carried out as described in Fig. 2 and in the text.

Jπ
experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [44] 0.71 0.30 1.39 0.46 1.30
5/2− 3.35(10) 1.99(17) [64] 3.13 1.07 4.00 1.75 4.56
1/2− 3.03(10) 2 [53] 2.39 2.89 2.66 3.02 3.26

3.53 10 [57]
1.0(1) 0.75(8) [47]

4.2 Nucleon-4He scattering with chiral NN+3N interactions

The ab initio no-core shell model/resonating-group method has now been extended to
include 3N interactions for the description of nucleon-nucleus collisions [65]. The ex-
tended framework was then applied to nucleon-4He elastic scattering using similarity-
renormalization-group evolved nucleon-nucleon plus three-nucleon potentials derived
from chiral effective field theory. Up to six excited states of the 4He target were
included in the NCSM/RGM calculations. Significant effects from the inclusion of
the chiral 3N force were found, e. g., it enhances the spin-orbit splitting between
the 3/2−and 1/2− resonances and leads to an improved agreement with the phase
shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental
data. Calculated phase shifts compared to the R-matrix analysis of experimental data
in the energy range up to the d-3H threshold are shown in Fig. 3. The 2P3/2 resonance
position is overestimated. The probably reason is the omition of higher excited states
of 4He and of the other closed channels, e. g., d-3H, in the calculations. The omitted
states and channels can be effectively included by the NCSMC coupling to the 5He
eigenstates (obtained within the NCSM). Work in this direction is under way.

4.3 6He as a 4He+n+n three-body cluster

The NCSM/RGM technique has also been generalized to the three-body cluster dy-
namics [42]. The solution of the three-cluster Schrödinger equation was obtained by
means of hyperspherical harmonic expansions on a Lagrange mesh [67,68]. In Ref. [42],
the first 4He+n+n investigation of the g.s. of the 6He nucleus was presented based on
a NN potential that yields a high-precision fit of the NN phase shifts and ab initio
four-body wave functions for the 4He cluster obtained consistently from the same
Hamiltonian. Within this approach, one gets the appropriate asymptotic behavior of
the wave functions. This is demonstrated in Fig. 4 showing the ground-state wave
function of 6He. A two-peak shape distribution is found in the ground-state probabil-
ity distribution. One peak corresponds to a “di-neutron” configuration in which the
neutrons are close together (about 2 fm apart from each other) while the 4He core
is separated from their c.m. at a distance of about 3 fm. Whereas the second peak,
corresponding to the “cigar” configuration, represents an almost linear structure in
which the two neutrons are far from each other (about 5 fm apart) and the alpha
particle lies almost in between them at ∼1 fm from their center of mass. Moreover,
the present formalism combined with the appropriate scattering boundary conditions
gives access to the ab initio study of resonant states of two-neutron halo nuclei (such
as the excited states of 6He) as well as to scattering problems involving channels with
three fragments. Three-cluster NCSM/RGM 4He+n+n scattering calculations with
the aim to study the 6He low-lying resonances are currently under way. Further, a
generalization to include the NCSMC coupling is also under way.
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Figure 3: Comparison of the n-4He (a) and p-4He (b) phase-shifts (1S1/2, 2P1/2, 2P3/2

and 2D3/2 waves) within the largest considered model space including the first six low-
lying resonant states of the 4He (g.s., 0+0, 0−0, 2−0, 2−1, 1−1, 1−0) at Nmax = 13
to the experimental phase-shifts (purple crosses) obtained from an R-matrix analy-
sis [66]. Results for the NN+3N -full Hamiltonian are shown as red solid lines, those
for the NN + 3N -induced Hamiltonian as blue dashed lines. For further details see
Ref. [65]

4.4 Structure of 9Be

The structure of 9Be nucleus poses a challenge to ab initio approaches based on bound-
state techniques such as the NCSM. The positive parity resonances are in general
found too high compared to experiment and the splitting between the lowest 5/2−

and 1/2− resonances tends to be overestimated when 3N effects are included [69]. A
question is to which extend the continuum affects the 9Be resonances and the above
observations. NCSMC calculations with the chiral NN+3N interactions are now
under way to answer these questions. Here we discuss preliminary results obtained
using only a two-nucleon SRG-evolvedNN interaction. The 9Be is studied as a system
of 8Be+n with g.s. and the 2+ state of 8Be included. The NCSMC coupling to the 9Be
NCSM eigenstates is taken into account. The n-8Be P -wave phaseshifts are shown
in Fig. 5. A good convergence with respect to the HO basis size is found. The 9Be
separation energy is overestimated by 1 MeV with the used NN potential, which then
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also results in a shift of the resonances to a lower energy compared to experiment and
even in a ∼100 keV binding of the 5/2− state. Still, some interesting conclusions can
be drawn even from these calculations. The splitting between the 5/2− and the 1/2−

resonance is reduced substantially when the continuum is included due to the shift
of the 1/2− P -wave resonance with the 5/2− F -wave state position unaffected. The
positive-parity resonances, especially the 1/2+1 and the 3/2+1 S-wave resonances, are
dramatically lowered in energy when the continuum is taken into account.
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5 Conclusions

Great progress has been made in the development of ab initio approaches to nuclear
scattering, reactions and the description of weakly bound states. The accuracy of
few-body methods improved and their ability to treat non-local and three-nucleon
interactions has been extended. Nuclear reaction calculations with chiral forces are
now possible. The four-nucleon scattering calculations are now feasible even above
the breakup threshold. There are promising developments in methods applicable to
systems of more than four nucleons. Continuum effects can now even be investigated
in semi-magic nuclei beyond the p-shell.

We discussed in more details a new unified approach to nuclear bound and contin-
uum states, the NCSMC, based on the coupling of a square-integrable basis (A-body
NCSM eigenstates), suitable for the description of many-body correlations, and a
continuous basis (NCSM/RGM cluster states) suitable for a description of long-range
correlations, cluster correlations and scattering. This approach allows us to study
weakly bound systems as well as narrow and broad resonances. The inclusion of 3N
interactions in this formalism is under way. This opens new possibilities to perform
realistic calculations for p- and light sd-shell nuclei starting from chiral NN+3N
interactions.

Acknowledgements

Computing support for this work came from the LLNL institutional Computing Grand
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[2] P. Navrátil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand and A. Nogga, Phys.
Rev. Lett. 99, 042501 (2007).

[3] G. Hagen, T. Papenbrock, D. J. Dean and M. Hjorth-Jensen, Phys. Rev. Lett.
101, 092502 (2008).

[4] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt and T. Papenbrock,
Phys. Rev. Lett. 108, 242501 (2012).

[5] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer and P. Navrátil, Phys.
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Żo lnierczuk, Phys. Rev. C 63, 024007 (2001).

[10] R. Lazauskas and J. Carbonell, Phys. Rev. C 70, 044002 (2004).

[11] R. Lazauskas, Phys. Rev. C 79, 054007 (2009).

[12] A. Deltuva and A. C. Fonseca, Phys. Rev. C 75, 014005 (2007).

[13] A. Deltuva and A. C. Fonseca, Phys. Rev. Lett. 98, 162502 (2007).

[14] L. E. Marcucci, A. Kievsky, L. Girlanda, S. Rosati and M. Viviani, Phys. Rev.
C 80, 034003 (2009).

[15] D. Gazit, S. Bacca, N. Barnea, W. Leidemann and G. Orlandini, Phys. Rev.
Lett. 96, 112301 (2006).

[16] S. Quaglioni and P. Navrátil, Phys. Lett. B 652, 370 (2007).

[17] S. Bacca, N. Barnea, W. Leidemann and G. Orlandini, Phys. Rev. Lett. 102,
162501 (2009).

[18] H. M. Hofmann and G. M. Hale, Phys. Rev. C 77, 044002 (2008).

[19] K. M. Nollett, S. C. Pieper, R. B. Wiringa, J. Carlson and G. M. Hale, Phys.
Rev. Lett. 99, 022502 (2007).
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Abstract

A brief outline of the Lorentz Integral Transform method is given. Recent
results for the inclusive electrodisintegration of 3He and 4He are discussed. The
energy resolution that can be obtained with the LIT approach is studied and it
is shown that the LIT method is a method with a controlled resolution. The
final part discusses the role of the isoscalar monopole resonance of 4He in (e, e′)
scattering.

Keywords: Lorentz Integral Transform; inclusive electron scattering; few-body
nuclei; three-nucleon force, isoscalar monopole resonance

1 Introduction

Integral transforms are of common use in physics. In general they have the following
form

Φ(σ) =

∫
dEK(E, σ)R(E), (1)

whereK(E, σ) is a well defined kernel and whereR(E) is an energy dependent response
function of the system under consideration. Often it is very difficult or even impossible
to determine R(E) in a direct calculation, in particular when a many-body continuum
wave function should be calculated. In such cases one may consider to determine
directly the integral transform Φ(σ), i. e. without knowledge of R(E). Then, the
response function R(E) can be obtained from the inversion of the integral transform.

In the following we will discuss the Lorentz integral transform (LIT) L(σ) [1, 2].
In the past the LIT approach has been applied to a variety of inelastic electroweak
reactions [2, 3]. Because of the specific form of the kernel and different from many
other integral transforms, the LIT is an integral transform with a controlled resolution.
The kernel L(E, σ) of the LIT is of Lorentzian shape:

L(E, σ) =
1

(E − σR)2 + σ2
I

(2)

(σ = σR + iσI). It is evident that the parameter σI controls the width of the
Lorentzian. A reduced value for σI leads to a higher energy resolution, however,
at the same time one has also to increase the precision of the calculation. This point
will be discussed in greater detail in Sect. 3.

The LIT L(σ) is calculated by solving an equation of the form

(H − σ) Ψ̃ = S, (3)

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 226.
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where H is the Hamiltonian of the system under consideration and S is an asymp-
totically vanishing source term. The solution Ψ̃ is localized. This a very important
property, since it allows to determine Ψ̃ with bound-state methods, even in case that
the direct calculation of the response function R(E) constitutes a continuum state
problem. Having calculated Ψ̃ one obtains the LIT from the following expression:

L(σ) = 〈Ψ̃|Ψ̃〉. (4)

The response function R(E) is determined from the calculated L(σ) by inverting the
equation

L(σ) =

∫
dE

R(E)

(E − σR)2 + σ2
I

. (5)

A general discussion of the inversion and details about various inversion methods are
given in Refs. [2, 4, 5].

An alternative way to write the LIT is given by

L(σ) = − 1

σI
Im

(〈
S
∣∣∣ 1

σR + iσI −H
∣∣∣S
〉)
. (6)

This reformulation is useful since it allows a direct application of the Lanczos al-
gorithm for the determination of L(σ) [6]. In fact the calculations discussed in the
following sections are performed in this way by using expansions in hyperspherical
harmonics (HH). The convergence is accelerated by introducing additional two-body
correlations in case of three-nucleon applications (CHH), while for the four-body sys-
tem an effective interaction approach is used (EIHH [7]).

2 Electron scattering off 3,4He

In order to calculate a specific reaction one has to specify the source term S in Eqs. (3)
and (6). In case of unpolarized inclusive electron scattering one has a longitudinal
response function RL(q, ω) and a transverse response function RT (q, ω), where q and ω
describe momentum and energy transfer of the electron to the nucleus. The source
term S takes the following form:

|S〉 = θ|0〉, (7)

where θ is a specific transition operator and |0〉 is the ground-state wave function of the
nucleus. For the response functions RL(q, ω) and RT (q, ω) the transition operator θ
corresponds to the nuclear charge and current operator, respectively.

2.1 Transverse response function RT (q, ω) of 3He
in the quasi-elastic region

The inclusive transverse response function RT (q, ω) of 3He in inelastic electron scat-
tering has recently been considered with the LIT method at momentum transfers rang-
ing from 500 to 700 MeV/c [8]. Besides the usual non-relativistic nucleon one-body
currents various additional current operators have been taken into account: meson
exchange currents (MEC) [9,10], isobar currents involving the ∆ resonance (IC) [11],
and relativistic corrections to the non-relativistic nucleon one-body currents [12]. In
order to circumvent problems with special relativity the calculation is performed in
the so-called active nucleon Breit (ANB) frame which moves with −3q/2 with respect
to the laboratory frame. In order to compare with experimental data the RT result
is then transformed to the laboratory system. As nuclear force a realistic nuclear
interaction has been considered, which consists in the AV18 NN potential [13] and
the UIX three-nucleon force [14].
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Figure 1: Transverse response function RT (q, ω) of 3He at q = 500, 600, and
700 MeV/c with force model AV18+UIX; experimental data from [15–17].

In Fig. 1 the resulting response function RT (q, ω) is shown. One observes an
excellent agreement with experimental data in the whole quasi-elastic peak region
for all three considered momentum transfers. It should be pointed out that for the
good agreement with experiment it is necessary to control, to some extent, problems
due to special relativity (ANB frame) and to include both IC and relativistic correc-
tions of the nucleon one-body current, whereas MEC are of less importance in the
3He quasi-elastic peak region. The IC contribution is particularly interesting: (i) it
cancels the effect of the three-nucleon force (3NF) in the peak region and (ii) in the
isospin T = 3/2 channel of the disintegrated nucleus one finds an important IC con-
tribution beyond the peak region; this isospin channel contributes exclusively to the
three-body break-up of 3He and thus IC should be included in the calculation of such
reactions.

From the results in Fig. 1 it is evident that the LIT approach allows calculations
of reactions up into the far many-body continuum. This is quite remarkable since no
continuum wave functions are calculated and only bound-state methods are applied.

2.2 Longitudinal response function RL(q, ω) of 4He
at lower momentum transfer

Up to present realistic LIT calculations for the 4He electrodisintegration have been
performed for RL [18, 19] only, whereas for RT a LIT calculation [20] with the cen-
tral NN potential MTI/III [21] exists. The results for the longitudinal response are
particularly interesting at lower momentum transfer since 3NF effects become quite
important. Also at higher momentum transfer 3NF effects are non-negligible, but
less important (below 10%). In Fig. 2 the 4He RL(q, ω) of [18] is shown at various
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Figure 2: RL(q, ω) of 4He with force models AV18 (dashed), MTI/III (dash-dotted),
and AV18+UIX (solid).

low momentum transfers for nuclear force models AV18 and AV18+UIX. In the low-
energy region one finds a considerable decrease due 3NF which reaches almost 50%
at q = 50 MeV/c. In Fig. 2 also a result with the MTI/III potential is depicted.
Different from the realistic nuclear force models the MTI/III potential overestimates
the 4He binding energy by a few MeV. Nonetheless the MTI/III RL lies between
the AV18 and AV18+UIX results. This shows that the large 3NF effect cannot be
caused just by a 3NF effect on the 4He ground state, but that 3NF effects on the
nuclear continuum wave function lead to essential contributions. In Ref. [19] also RL

results for force model AV18+TM’ are included (TM’ 3NF from Ref. [22]). In Fig. 3
we illustrate results from this reference for q = 50 MeV. Relatively large differences
can be seen between the AV18+UIX and the AV18+TM’ results, although both force
models lead to almost equal 4He binding energies.

3 Energy resolution with the LIT approach

It was already mentioned in the introduction that the LIT approach is a method with
a controlled resolution. Here this aspect is illustrated in greater detail. A solution
of the LIT equation (6) via an expansion on a basis with N basis functions can be
understood as follows. One determines the spectrum of the Hamiltonian on this basis
thus finding N eigenenergiesEn. Furthermore, the solution assigns to any eigenenergy
a strength in form of a Lorentzian with height Ln and width σI . It should be noticed
that the source term |S〉 affects only the height Ln. The LIT result then reads

L(σ) =

N∑

i=1

Ln

(σR − En)2 + σ2
I

. (8)
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Figure 3: As Fig. 2 but for force models AV18 (dashed), AV18+TM’ (dash-dotted),
and AV18+UIX (solid).

Note that this result is related to the so-called Lanczos response RLnczs by

RLnczs(E, σI) =
σI
π
L(E, σI). (9)

In the limit σI → 0 the Lanczos response is equal to the true response function R(E).
However, one often calculates RLnczs for a small but finite σI value and identifies the
Lanczos response with the true response, which in general is an uncontrolled approx-
imation. In the LIT approach one does not make such an identification of transform
and response function. A proper treatment requires an inversion. From a practical
point of view such a correct treatment is even advantageous, since the computational
effort is much less. In fact, it allows to work with a not too small σI , thus with a
relatively small number of basis functions N . Only in case of structures, which change
rapidly with energy, e. g. resonances, one might need σI values of the order of the
resonance width. To give a better understanding of the energy resolution with the
Lorentz integral transform method also here deuteron photodisintegration in unre-
tarded dipole approximation is considered as a simple example. The corresponding
cross section is given by

σunret(ω) = 4π2αωRunret(ω), (10)

where ω denotes the photon energy and α is the fine structure constant. The rele-
vant transition operator for the calculation of Runret(ω) is the dipole operator θ =∑

i zi(1 + τi,z)/2, where zi and τi,z are the z-components of the position vector and of
the isospin operator of the ith nucleon, respectively. For the deuteron case the dipole
operator allows only transitions to the following np final states: 3P0,

3P1, and 3P2-3F2.
For simplicity in the following example only transitions to 3P1 are considered. The
following ansatz for the corresponding Ψ̃ is made:

|Ψ̃〉 = ψ̃(r) |(l = 1, S = 1)j = 1〉 |T = 1〉, (11)

where r (T = 1) is the relative distance (isospin) of the np pair. The resulting LIT
equation can be easily solved by direct numerical methods or by expansions of ψ̃(r) on
a complete set. Since in case of nuclei with A > 2 we are generally using expansions
on hyperspherical harmonics, where the hyperradial part is expanded in Laguerre

polynomials L
m+ 1

2
n times an exponential fall-off, here a corresponding ansatz is made:

ψ̃(r) =

N∑

n=1

cn r L
1+ 1

2
n (r/b) exp(−r/2b), (12)
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where cn is a normalization factor and b a constant.

A comparison of results with the Lanczos response and inversion results was made
in Ref. [2] for the simple example of deuteron photodisintegration in unretarded dipole
approximation. In this case one can check the quality of the results by comparing
with a conventional calculation, where np continuum wave function are calculated.
The study of Ref. [2] has shown that within the LIT approach it is sufficient to use
a rather large value of 10 MeV for σI and hence a basis with a rather low N . On
the contrary for the Lanczos response, even when using σI = 0.25 MeV with a quite
high number of basis states, it was not possible to reproduce the R(E) sufficiently
correctly.

In Figs. 4–6 LIT results for the 3P1 channel are shown for various values of N
and σI . To obtain the 3P1 part of the unretarded deuteron photodisintegration cross
section one has to invert these transforms. However, in order to make a reliable
inversion L(σ) should be sufficiently converged for a given σI . In particular isolated
peaks of single Lorentzians should not appear, i. e. for any σR value one should
have a significant contribution from various Lorentzians. The results of Figs. 4–6
show that the convergence pattern is quite different for the various σI . For the case
with the lowest resolution (σI = 2.5 MeV) one obtains a sufficiently converged L(σ)
already with 30 basis functions (N = 30). For the case with σI = 1 MeV one
is close to convergence with N = 50, whereas the LIT for the highest requested
resolution (σI = 0.1 MeV) is quite far from convergence even with N = 50. For the
latter case the number of basis functions should be increased considerably to obtain a
converged L(σ). It is evident that a higher resolution requires a higher computational
effort. In an actual calculation one should check what is the lowest σI value with a
sufficiently converged LIT. Structures which are considerably smaller than such a σI
value cannot be resolved by the inversion. A helpful criterion is given in Ref. [23] (see
discussion of Fig. 7 in Ref. [23]).

From the discussion above it is evident that the LIT approach is a method with a
controlled resolution.
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Figure 4: Deuteron photodisintegration in unretarded dipole approximation: LIT
result for np channel 3P1 with σI = 2.5 MeV.
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Figure 5: As Fig. 4 but with σI = 1 MeV.
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4 Isoscalar monopole resonance of 4He

The 0+ resonance of 4He can be studied in hadronic and electron scattering reac-
tions. The signal of the resonance is much more pronounced in the latter case and
thus electron scattering experiments of 4He are the proper tool to study the reso-
nance. In fact the pronounced cross section peak has been studied in various (e, e′)
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experiments [24–26]. There it has been found that the resonance is located be-
tween the two thresholds for the break-up in 3H-p and 3He-n and that the width
is about 300 keV. In addition, the resonance strength has been measured over a
rather large momentum transfer range.

In Ref. [27] a LIT calculation of the isoscalar monopole part ofRL(q, ω) of 4He(e, e′)
has been performed using the nuclear force model AV18+UIX and a chiral nuclear
force model with the Idaho N3LO NN potential [28] supplemented by a 3NF in N2LO
in two different parameterizations. The calculation shows that both interaction mod-
els overestimate the resonance position by about 700 keV and sufficiently convergent
LIT results could only be obtained for σI ≥ 5 MeV. Such a resolution, much larger
than the experimental width of 300 keV, is of course not sufficient to determine the
detailed resonance structure. On the other hand it has been possible to separate the
background strength from the resonance strength. For details of this separation I
refer to Ref. [27]. Here it should only be mentioned that this is not a trivial task
and that it has been achieved by an appropriate inversion procedure, which gave the
energy distribution of the background strength and the total resonance strength.

In Fig. 7 the calculated resonance strength is compared to the above mentioned ex-
perimental data. One sees that the two realistic interaction models exhibit rather dif-
ferent results: the AV18+UIX force leads to a resonance strength which is about 20 %
lower than that of the chiral force model. Thus the 4He resonance strength turns out
to be an observable which is very selective concerning force models. In Fig. 7 it
can also be seen that even with force model AV18+UIX the experimental resonance
strength is overestimated considerably. As discussed in detail in Ref. [27] it is not
easy to understand what causes the difference of theoretical and experimental results
(e. g., the calculated elastic 4He form factor agree well with experimental data up to
about q2 = 4 fm−2 for both potential models). In Fig. 7 an additional theoretical
result [29] is shown for a force model consisting in the AV8’ NN potential and a
simplistic 3NF. One observes a nice agreement with the experimental data. However,
the calculation cannot be considered to be fully realistic (the not completely realistic
potential model has led to a second 0+ bound state and not to a resonance in the
continuum).

One might ask how the width of the 4He 0+ resonance can be resolved with the
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LIT method. That the method is in principle capable to resolve a resonance with such
a small width has been shown in Ref. [23] in a model study. In the present case one
could increase the HH basis or increase the size of the box, but this might not lead to a
much improved result. Probably it is better to describe the four-body system as 3+1
system with an HH expansion for the three-body part and a separate expansion for
the relative motion of nucleon and residual system, of course, always with bound-state
methods. Such an approach would be in close analogy to a scattering calculation for
a two-body break-up.

5 Summary

An overview has been given on recent LIT applications for the inclusive electrodis-
integration of 3He and 4He with realistic nuclear force models. The results for the
transverse response function RT (q, ω) of 3He show (i) that an excellent agreement with
experimental data is obtained in the quasi-elastic peak region at higher momentum
transfers and (ii) that the LIT method can be applied also to reactions with energies
far into the many-body continuum. For 4He, results of the longitudinal response func-
tion RL(q, ω) of 3He have been reported. They exhibit strong 3NF effects at lower
momentum transfers. In addition it has been discussed that a theoretical study for
the isoscalar monopole part of the RL of 4He reveals (i) a strong dependence of the
resonance strength on the nuclear force model and (ii) a considerable overestimation
of the experimental resonance strength.

The energy resolution that can be obtained with the LIT method has also been
discussed in greater detail. The discussion shows that the LIT approach is a method
with a controlled resolution.
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Abstract

In this work we report on the first application of the No-Core Gamow Shell
Model to study ab initio bound and unbound states in light nuclei. This model is
formulated in the complex energy plane by using a complete Berggren ensemble
which treats bound, resonant, and scattering states on equal footing. The reso-
lution of the many-body Schrödinger equation is performed with the technique
of the Density Matrix Renormalization Group.

Keywords: Ab initio method; coupling with the continuum; Density Matrix
Renormalization Group

1 Introduction

In the last decade our knowledge of nuclei far from the valley of stability has radically
improved. This improvement has been a by-product of advances in both experi-
ment and theory. New experimental facilities that have already been built (RIBF at
RIKEN) or are being constructed (SPIRAL2 at GANIL, FAIR, FRIB at MSU) will
give us a better insight of areas in the nuclear chart that have never been explored,
pushing even further our knowledge at the limits of nuclear existence. At the same
time, the increase in computing power has made it possible to calculate properties
of nuclei in an ab initio fashion, using realistic interactions which reproduce nucleon-
nucleon scattering data. For few-body systems (A ≤ 4) methods such as Faddeev [1]
and Faddeev–Yakubovsky (FY) [2] provide an exact solution to the many-body prob-
lem. Methods such as the Green’s Function Monte Carlo (GFMC) [3], the Hyperspher-
ical Harmonics [4], the No-Core Shell Model (NCSM) [5], the Coupled-Cluster (CC)
approach [6] and more recently, the In-Medium Similarity Renormalization Group
method [7] and Dyson Self-Consistent Green’s Function method [8] have been applied
successfully for the ab initio description of light and medium mass nuclei.

Nuclei with large isospin which can be found in these remote regions, have at-
tracted a great deal of interest. They belong to the category of Open Quantum
Systems, inter-connected via the decay and reaction channels. These are very fragile
objects with small separation energies and very large spatial dimensions. The prox-
imity of the continuum affects their bulk properties (matter and charge distributions)
and their spectra. Phenomena such as the anomalous behavior of elastic cross-sections
and the associated overlap integral near threshold states in multi-channel coupling
(Wigner-cusps) [9] and the appearance of cluster correlations in the vicinity of the
respective cluster emission threshold [10], to mention a few, are all unique manifesta-
tions of the continuum coupling.

From the theoretical perspective, existing many-body methods have had to be gen-
eralized in order to construct approaches where both structure and reactions are uni-
fied to describe these exotic systems. Examples of these attempts are the Shell Model

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 236.

http://www.ntse-2013.khb.ru/Proc/Rotureau.pdf.

236



Ab initio description of light nuclei in the Berggren basis 237

Embedded in the Continuum (SMEC) [11] and the Gamow Shell Model (GSM) [12,13]
in which nuclei are described as systems with a core above which valence nucleons
interact. The GSM, which is the most recent of these two approaches, is a gener-
alization of the Harmonic Oscillator (HO) shell model in the complex energy plane
using the Berggren ensemble [14]. Recent ab initio approaches such as the NCSM
coupled with the Resonating Group Method [15], the CC approach generalized in the
complex-energy plane using the Berggren basis [16] and the GFMC [17], have allowed
an ab initio description of bound and unbound states of nuclei.

In this work we introduce the No-Core Gamow Shell Model (NCGSM) [18] as
an alternative for ab initio calculations of weakly-bound and unbound states of light
nuclei using realistic interactions. We will show the basic ingredients of the NCGSM
and describe the many-body method namely, the Density Matrix Renormalization
Group (DMRG) technique, used to solve the many-body problem. We will then
present selected results obtained in this approach.

2 Formalism

The intrinsic Hamiltonian H for a nucleus with A nucleons is given by

H =
1

A

A∑

i<j

(~pi − ~pj)2
2m

+

A∑

i<j

V NN
ij , (1)

where m is the nucleon mass, ~pi is the momentum of the nucleon i and V NN is a two-
body nuclear potential. In the NCGSM [18], the weakly-bound/unbound eigenstates
of H are obtained by using an expansion in the Berggren basis which allows to treats
bound, resonant and scattering states on equal footing. Let us consider a finite-
depth single-particle (s.p.) potential. Its eigenstates fulfill the Berggren completeness
relation which can be written as

∑

n=b,d

|un〉〈ũn|+
∫

L+

|uk〉〈ũk| dk = 1, (2)

where b are bound states, d are decaying resonant states and the integral along a
contour L+ represents the contribution from the non-resonant scattering continuum,
see Fig. 1. By discretizing the integral in (2), a discrete set of s.p. states can be
obtained from which one constructs the many-body basis in which the Hamiltonian H
is diagonalized. Due to the inclusion of resonant states and complex-continuum states,
the representation of H in the (many-body) Berggren basis is complex-symmetric.
The dimension of the Hamiltonian matrix grows rapidly with the number of discretized
continuum states and nucleons and as a consequence, advanced numerical methods
that can handle large non-Hermitian matrices must be used. In the context of the
GSM, it has been shown that the DMRG method is an efficient way to compute the
low-lying spectrum of the Hamiltonian at a low computational cost [13, 19]. In the
following, we describe the main features of DMRG applied to the NCGSM.

The DMRG method was first introduced to overcome the limitations of the Wilson-
type renormalization group to describe strongly correlated systems with short-range
interactions [20]. More recently, the DMRG has been reformulated and applied to
finite Fermi systems [21], nuclear shell model [22–24], and open systems [19]. While
most of the DMRG studies have been focused on properties in strongly correlated
closed quantum systems characterized by Hermitian density matrices, systems involv-
ing non-Hermitian and non-symmetric density matrices can also be treated [19, 25].

Let us consider the application of the J-scheme DMRG in the context of the
NCGSM. The objective is to calculate an eigenstate |Jπ〉 of the Hamiltonian Ĥ with
angular momentum J and parity π. As |Jπ〉 is a many-body pole of the scattering
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Figure 1: Illustration of the Berggren completeness relation (2) in the complex
k-plane. The bound states are located on the positive imaginary axis. The weakly
bound halo states lie close to the origin. The positive-energy resonant states are lo-
cated in the fourth quadrant. Those with a small imaginary part can be interpreted
as resonances. The complex-k contour L+ represents the non-resonant scattering
continuum.

matrix of Ĥ , the contribution from non-resonant scattering shells along the continuum
contour L+ to the many-body wave function is usually smaller than the contribution
from the resonant orbits [12]. Based on this observation, the following separation
is usually performed [19]: the many-body states constructed from the single-particle
poles form a subspace A (the so-called ‘reference subspace’), and the remaining states
containing contributions from non-resonant shells form a complement subspace B (see
Fig. 2).

One begins by constructing states |k〉A forming the reference subspace A. All
possible matrix elements of suboperators of the GSM Hamiltonian Ĥ acting in A,
expressed in the second quantization form, are then calculated and stored and the
Hamiltonian is diagonalized in the reference space to provide the zeroth-order ap-
proximation |ΨJ〉(0) to |Jπ〉. The scattering shells (lj), belonging to the discretized
contour L+, are then gradually added to the reference subspace to create the sub-
space B. This first stage of the NCGSM+DMRG procedure is referred to as the
‘warm-up phase’. For each new added shell, all possible many-body states denoted
as |i〉B are constructed and matrix elements of suboperators of the HamiltonianH act-
ing on |i〉B are computed. By coupling states in A with the states |iB〉, one constructs
the set of states of a given Jπ. This ensemble serves as a basis in which the NCGSM

{kA}

{αB}

{(lj)s}

Figure 2: Schematic illustration of the
NCGSM+DMRG procedure during the sth

step of the warm-up phase. States {kA} from A,
previously optimized states αB, and states {(lj)s}
constructed by occupying the sth shell with n
particles are coupled to generate the new set of
states {kA ⊗ iB}J = {kA ⊗ {αB ⊗ (lj)ns }}J .
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Hamiltonian is diagonalized. The target state |ΨJ〉 is selected among the eigenstates
of Ĥ as the one having the largest overlap with the reference vector |ΨJ〉(0). Then,
the desired truncation is performed in B by introducing the reduced density matrix,
constructed by summing over the reference subspace A [26]. In standard DMRG ap-
plications for Hermitian problems, where the eigenvalues of the density matrix are
real non-negative, only the eigenvectors corresponding to the largest eigenvalues are
kept during the DMRG process. Within the metric defining the Berggren ensemble,
the NCGSM density matrix is complex-symmetric and its eigenvalues are, in general,
complex. As a consequence, the truncation is done by keeping the eigenstates αB (the
‘optimized’ states) with the largest nonzero moduli of eigenvalue [19]. The trace of
the density matrix being equal to one, the truncation is done by keeping eigenstates
of the density matrix with the corresponding eigenvalue wα such that the condition

∣∣∣∣∣∣
1−Re




Nρ∑

α=1

wα



∣∣∣∣∣∣
< ǫ (3)

is satisfied. The quantity ǫ in (3) can be viewed as the truncation error of the reduced
density matrix. The smaller ǫ, the larger number of eigenvectors must be kept. In
particular, for ǫ=0, all eigenvectors with non-zero eigenvalues are retained.

The warm-up phase is followed by the so-called sweeping phase, in which, starting
from the last scattering shell (lj)last, the procedure continues in the reverse direction
(the ‘sweep-down’ phase) until the first scattering shell is reached. The procedure
is then reversed and a sweep in the upward direction (the ‘sweep-up’ phase) begins.
The sweeping sequences continue until convergence for target eigenvalue is achieved.

3 Selected results

We now show few results obtained with the NCGSM+DMRG approach and we start
here with the ground state in 4He. Obviously this system is well-bound and can
be described using an expansion in a HO basis without including continuum states.
Nevertheless, using an expansion in the Berggren basis in that case allows to test
our approach by comparing with exact results obtained in the Faddeev–Yakubovsky
approach [1]. The two-body interaction V NN in (1) is chosen as the Argonne υ18
interaction renormalized with the Vlow−k method [27] with a sharp momentum cut-
off Λ = 1.9 fm−1. Using this renormalization scheme allows a decoupling between
high-momentum and low-momentum degrees of freedom and as a consequence, im-
proves the convergence of nuclear structure calculations [27]. We include s1/2, p3/2,
p1/2, d3/2, d5/2, f7/2, f5/2, g9/2, g7/2 shells for protons and neutrons. For the par-
tial waves with angular momentum l ≤ 1, the s.p. basis is generated by performing
Gamow–Hartree–Fock (GHF) [12] calculations. In this case, the GHF potential has
a neutron and proton bound state in the s1/2 channel at respectively −26.290 MeV
and −24.453 MeV. The rest of s and p shells are taken along the contour on the
real k-axis which extends up to 4 fm−1 and is discretized with 18 points. For shells
with l ≥ 2, we take the HO basis functions given by a HO potential with a ra-
dius b = 1.5 fm and we include 5 d, 3 f and 3 g s.p. states for both protons and
neutrons. Results for the g.s. energy in 4He are shown in Fig. 3 as a function of
the iteration of the NCSM+DMRG method for a truncation ǫ = 10−6. One can see
that, as the middle of the third sweep is reached, the energy has converged and the
corresponding value is

ENCGSM = −29.15 MeV,

whereas the exact result in the FY approach [1] is

EFY = −29.19 MeV.
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Figure 3: Energy of the ground state in 4He as a function of the number of step (Nstep).
Comparison of the NCGSM with the FY result with the Vlow−k Argonne υ18 interac-
tion.

The largest Hamiltonian matrix one has to deal with in the NCSM+DMRG has a
dimension Dmax ∼ 6000 whereas a direct resolution of the NCSM Hamiltonian matrix,
that is for ǫ = 0, would require to diagonalize a matrix of dimension 6,230,512 in J-
scheme. The difference between our theoretical result and the experimental binding
energy Eexp = −28.30 MeV, is due to higher-order terms in the nuclear interactions,
such as three-nucleon forces, which are not included in the Hamiltonian (1).

We now show results for the 5He nucleus which is a challenge for any many-
body theory because of its unbound character. In particular, both the ground and
first excited states are many-body resonances. Because of these characteristics, the
complex energy formulation of the NCGSM using the Berggren ensemble is a perfect
tool for its description. Indeed, in our formalism the resonance parameters (g.s.
energy with respect to 4He and the width) will be identified as the eigenvalues of the
complex-symmetric Hamiltonian matrix. The position of the resonance will then be
the real part of the energy, while the imaginary part is related to the width by the
formula: Γ = −2ℑm(E). We use here the N3LO interaction renormalized by Vlow−k

with a cutoff Λ = 1.9 fm−1. For l ≤ 1, the s.p. basis for protons and neutrons are
generated by the GHF potential. In the l = 0 partial wave there are two bound states
at E = −23.290 MeV and E = −23.999 MeV for respectively neutron and proton.
The GHF potential has a p3/2 s.p. resonance with a real part of energy 1.193 MeV
and a width 1267 keV. In order to fulfill Berggren completeness, the p3/2 contour is
taken in the fourth-quadrant of the complex k-plane (see Fig. 1) whereas the s1/2
and p1/2 contours are chosen along the real-k axis. For states with l ≥ 1, the s.p.
states are given by HO basis functions as previously for 4He. In Figs. 4, 5 we show
the NCGSM+DMRG convergence pattern, for a truncation ǫ = 10−6, of the real and
imaginary parts of the g.s. energy in 5He. In the middle of the third sweep, the energy
has converged to

ℜe(ENCGSM) = −26.31 MeV, ℑm(ENCGSM) = −0.2 MeV.

The real part lies at about 1 MeV above the experimental total binding energy [28]
and as previously, the difference with the experimental binding energy is due to omit-
ted higher-order terms in the nuclear interactions. For this truncation, the largest
Hamiltonian matrix that needs to be diagonalized during the DMRG iterations has a
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Figure 5: Imaginary part of the energy of the ground state in 5He as a function of the
number of step (Nstep) using the chiral N3LO interaction renormalized by by Vlow−k

with Λ = 1.9 fm−1.

dimensionDmax ∼105, whereas in the case of the full diagonalization i. e. for ǫ = 10−6,
the Hamiltonian matrix has a dimension ∼ 3× 109.

4 Summary

We have presented an ab initio approach to describe bound/unbound light nuclei us-
ing the framework of the No-Core Gamow Shell Model (NCGSM). By working in the
Berggren ensemble, the NCGSM allows bound, resonant and scattering states to be
treated on equal footing. The numerical solutions of the many-body Schrödinger equa-
tion are obtained by applying the Density Matrix Renormalization Group (DMRG)
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method. We have shown results for the ground state in 4He (bound nucleus) and the
many-body ground state resonance in 5He. This work serves as a proof of principle
of the application of the Berggren’s basis in a NCSM framework. In the future, we
plan to apply the NCGSM+DMRG to study the structure of weakly bound/unbound
light systems as for instance the very exotic systems in the hydrogen isotopic chain.
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Abstract

The PHENIX experiment at RHIC carries out studies of hot dense matter
produced in heavy ion collisions and studies of the proton spin from polarized
proton collisions. In this talk I concentrate on our present picture of the quark-
gluon plasma as revealed in collisions of Au and other nuclei.

Keywords: RHIC; PHENIX; QGP; perfect liquid; elliptic flow; RAA; QGP
temperature

1 Introduction

The Relativistic Heavy Ion Collider (RHIC) was built at Brookhaven National Labo-
ratory (BNL) and the first collisions of beams of 130 GeV/A Au nuclei were observed
in June 2000. PHENIX and STAR are two large detector systems built to study these
collisions. In the first collisions flow was observed. In the summer of 2001 experiments
with collisions of Au beams at the full RHIC energy of 200 GeV/A were undertaken.
After extensive analysis of the results of runs from 2000–2004 a white paper [1] was
published where evidence was given for the production of a Quark–Gluon Plasma
(QGP). The plasma was designated sQGP in illusion to the strong coupling observed.
In addition the sQGP behaved not as a gas as many expected but like a liquid with
almost zero viscosity, the so called “perfect liquid”. In 2010 the first collisions of Pb
nuclei were observed at the Large Hadron Collider (LHC) at a much higher energy
density than at RHIC.

In this talk I will discuss the suppression of particles in the hot dense nuclear
medium created at RHIC which gives evidence that the QGP is strongly coupled.
Next I will discuss the evident that the QGP flows indicating that the plasma acts
like a liquid rather than a gas. Finally I will discuss recent measurements at PHENIX
in an attempt to measure the temperature of the QGP.

2 Suppression of particles in the sQGP

In order to produce a QGP you need not only high energies but large volumes. This
is necessary to sustain high energy densities and temperatures for a sufficiently long
time. Before the collision the nuclei can be pictured as two relativistically flattened
“pancakes” of quarks and gluons. In the initial collision products of hard scattering
are created followed by the creation of large numbers of quarks and gluons out of the
vacuum to produce a dense partonic medium. This medium can initially be the QGP
but as it cools and expands it evolves into a hadronic gas phase. For 200 GeV/A Au
collisions of the order of 104 particles are created. This process is illustrated in Fig. 1.

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 244.
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Figure 1: Stages in a relativistic heavy ion collision.

In order to study the properties of the QGP, particles that traverse the hot dense
medium serve as a probe of its properties. In order to study the effects of the medium
we introduce a Nuclear Modification Factor

RAA =
dN

J/Ψ
AA /dy

Ncoll dN
J/Ψ
pp /dy

.

In this factor the yield in nucleus-nucleus collisions is divided by the yield in p+p
collisions but scaled by the appropriate number of binary collisions Ncoll which is
calculated using the Glauber model. We do not expect to produce the QGP in p+p
collisions. Thus if the particles are not modified by the medium we expect RAA = 1.
In Fig. 2 the concept of participating nucleons is illustrated along with a plot of the
number of binary collisions for Au collisions as a function of impact parameter.

A large number of measurements have been carried out at PHENIX to measure
the response of various particles to passage through the hot dense medium created

Figure 2: Concept of nuclear modification factor. On the left the concept of partici-
pant nucleons is illustrated and to the right a plot of participants and binary collisions
as a function of impact parameter for Au collisions is shown.
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Figure 3: Plots showing RAA for the 0 to 10% most central 200 GeV/A Au+Au colli-
sions for a wide variety of mesons, protons and direct photons, and particle transverse
momenta up to 19 GeV/c. Note the large suppression for hadrons but not for direct
photons.

in Au+Au collisions. Using both Au+Au and p+p data measured at PHENIX RAA

for a number of different particles has been measured and the results are shown in
Fig. 3. Particularly striking is the large suppression of π0 mesons [2] all the way out
to 19 GeV/c. In addition large suppression of η and ω mesons [3, 4] were observed.
This is evidence for strong suppression of mesons composed of the light u and d quarks
in the sQGP.

We also measured the suppression of φ and K+ mesons that contain a heavy s
quark. It is interesting to note that for these mesons the suppression was less but
still [5, 6] significantly below an RAA of 1.0. It might be expected that photons
produced in direct interactions with the colliding quarks and gluons would not be
suppressed by the sQGP since they only interact electromagnetically with the hot
dense medium. This can be seen in the results in Fig. 3 for direct photons [7] where
their RAA is 1.0 within the error. We conclude that the sQGP strongly suppresses
mesons made up of light u and d quarks but still significant suppression occurs when
the meson is composed of a heavier s quark. As expected direct photons are little
effected by the sQGP.

An important question is how does suppression in the QGP change if we reduce
the collision energy or the centrality of the collision. We would thus expect less
suppression both for lower collision energy and more peripheral collisions. Au+Au
collisions were studied at 39 and 62.4 GeV/A and the results are compared with those
at 200 GeV/A in Fig. 4.

The suppression for a collision energy of 62.4 GeV/A is very similar to that
for 200 GeV/A except that the suppression is slightly lower at 62.4 GeV/A for π0 mo-
menta below 6 GeV/c. By contrast when the collision energy is lowered to 39 GeV/A
the π0 is still suppressed but to a lesser extent than at 62.4 GeV/A. It would be
of interest to determine how far can we go down in collision energy and still see
significant suppression. The data in Fig. 4 also shows that π0 suppression is still
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Figure 4: RAA results for π0 mesons for collision energies of 62.4 and 39 GeV/A.
Particle numbers from 0 to 400 indicate a range from the most central to the most
peripheral collisions.

significant at all three collision energies [8] down to peripheral collisions where of the
order of 50 particles are emitted.

The LHC has produced Pb+Pb interactions with a collision energy of 2.76 TeV/A.
RAA for the production of π0 and + and − charged hadrons was measured. These
results for RAA are compared with those from Au+Au collisions at PHENIX [9] at a
collision energy of 200 GeV/A in Fig. 5.

From Fig. 5 it is observed that there is very little difference in the suppression
of the π0 even though the collision energies at ALICE are much greater. One might
expect a higher suppression due to the greater energy densities at ALICE but many
more particles are produced so the effects of recombination must be taken into account.

The suppression of u, d and s quarks in the sQGP is significant so it is interesting
to test to what extent the much heavier c and b quarks are suppressed. To study this
the RAA for Au+Au collisions at 200 GeV/A were measured for electrons and positrons
from decay of open charm and beauty. The RAA for these particles is shown in the top
part of Fig. 6 and compared [10] with results from π0. For the most central collisions
electrons with pT greater than 2.0 GeV/c are significantly suppressed.

From the study of the suppression of various particles emitted in Au+Au collisions
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Figure 5: Plots showing RAA for 200 GeV/A collisions at PHENIX and 2.76 TeV/A
Pb+Pb collisions at ALICE.

we have reached the following conclusions:

A. In Au+Au collisions we have created a color opaque medium called the sQGP.

B. Suppression of particles in the medium is prominent for collision energies down
to 39 GeV/A.

C. The level of suppression at the higher energy densities at the LHC is similar to
that at RHIC.

D. The level of suppression is still very significant for the heavy c and b quarks.
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Figure 6: Plots of RAA and v2 in parts (a) and (b), respectively, for electrons from
the decay of open charm and beauty. The data is for Au+Au collisions at 200 GeV
and the 10% most central collisions.

3 Flow and evidence for a liquid sQGP

Early in experiments at RHIC it was observed that particles were not emitted isotrop-
ically in Au+Au collisions. This effect is shown in Fig. 7.

Figure 7: Figure illustrating the concept of elliptic
flow.
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Figure 8: v2 as a function of collision energy.

It was observed in RHIC experiments that when two heavy ions collided hot matter
flowed. The colliding region is almond shaped due to the overlap of the colliding nuclei
that have been flattened to “pancake” shapes due to relativistic effects. The regions
of high density in the center exert a greater pressure resulting in the expansion of
an elliptically shaped region (elliptic flow). The particle angular distribution can be
described as:

dN

dφ
∼ 1 + 2v2 cos(2φ).

For a spherically symmetric distribution v2 is 0.

A plot of v2 for Au+Au collisions at RHIC [11] is shown in Fig. 8. It is evident
that the hot dense matter flows at both the lowest and highest RHIC energies. Also v2
appears to saturate at the highest energies. There is also evidence that open charm
and bottom particles flow but not as strongly as for the lighter quarks. See the (b)
part of Fig. 6.

Once elliptic flow was established an important question was how did it scale with
valence quark count. The v2 was thus studied [12] for a large number of both baryons
and mesons. The results are shown in Fig. 9.

The plot of v2 on the upper part of Fig. 9 shows the results for both baryons and
mesons for a number of different particle energies. If the v2 values in the left plot are
divided by the quark number the results are shown in the plot in the lower part. This
result shows that v2 scales as the quark number.

The observation of quark scaling is significant in that it establishes that collective
behavior has been established during the partonic phase of the system since the
degrees of freedom are partonic. This is a direct signature of deconfinement.

4 Temperature of the quark-gluon plasma

The temperature for formation of the QGP has been predicted to be around 170 MeV.
It is thus important to measure the temperature of the hot hadronic matter produced
at RHIC. The spectrum of photons is complex since they are generated in each stage
of the collision. In the initial phase of the collision photons are emitted from the
primary parton collisions. Next photons are emitted as the QGP forms, thermalizes
and evolves into a mixed phase. Finally the mixed phase evolves into a hot hadron
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Figure 9: Scaling behavior of v2 for baryons and mesons.

gas. This process is illustrated [13] schematically in Fig. 10. Note that the photon
energy spectrum becomes softer at each stage.
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Figure 10: Photon yields from
Au+Au collisions compared with
calculated yields from different
stages of the collision.
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Figure 11: Spectrum of thermal photons from Au+Au collisions at 200 GeV/A com-
pared with calculations assuming various values for formation energies and times.

In order to estimate the temperature of hot hadronic matter produced at RHIC,
PHENIX measured dilepton production for 200 GeV/A Au and p collisions. This
data was used to deduce the direct photon spectra shown in Fig. 11. The theoretical
calculations shown in Fig. 11 assume a system with an initial temperature between 300
and 600 MeV and formation times between 0.6 and 0.15 fm/c. The PHENIX data [14]
is in good agreement with calculations assuming initial temperatures above 300 MeV,
which is well above the predicted formation temperature for the QGP of 170 MeV.

5 Summary and conclusions

Since the first collisions occurred at RHIC in 2000, the QGP has been produced
using Au beams at RHIC and Pb beams at the LHC. This resulted in the formation
of a very strongly interacting low viscosity liquid called the sQGP. Even heavy c
and b quarks were stopped in the sQGP. At RHIC the temperature of the sQGP was
deduced to be in the range of 300–600 MeV which is well above the proposed limit
of 170 MeV for plasma formation. The transition from sQGP to hot hadronic matter
is continuous rather than through a phase transition. The sQGP produced at the
LHC has properties very similar to that produced at RHIC at a much lower energy
density.
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Relativistic Symmetry in Nuclei
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Abstract

Pseudospin symmetry has been useful in understanding atomic nuclei. We
review the arguments that this symmetry is a relativistic symmetry. The con-
dition for this symmetry is that the sum of the vector and scalar potentials
in the Dirac Hamiltonian is a constant. We give the generators of pseudospin
symmetry. We review predictions that follow from this insight in the origin
of pseudospin symmetry. We propose non-relativistic shell model Hamiltonians
that have a pseudospin dynamical symmetry. We also derive the exact solu-
tions of the Dirac Hamiltonian for harmonic oscillator potentials in the spin
and pseudospin symmetry limits. We also show that there is a higher U(3) or
pseudo-U(3) symmetry in each limit, respectively.

Keywords: Relativistic symmetry; pseudospin symmetry; shell model

1 Introduction

When I was invited to talk at this meeting celebrating James 70th birthday I was
shocked. Shocked because I could not believe that a student of mine was 70 years
old and because James looks so young and vital so it was hard to believe he is 70.
I arrived at Yale University in 1968 as a young professor. At that time Jim Vary
was a graduate student. Jim was ready to do a thesis and he asked me if I could
be his advisor. We decided on the topic of two body correlations in lead nuclei. We
used a random phase approximation that used two-particle and two hole modes as
well as particle-hole modes. We tested the calculations using two nucleon transfer
reactions that were being measured at the time at the Yale tandem accelerator and
other accelerators around the world [1,2]. Jim received his Ph.D. in 1970. He became
a post doc at MIT and his career blossomed ever since and he became a leader in
large shell model calculations of nuclear properties.

About the same time a quasi-degeneracy in the one nucleon states of spherical
nuclei with quantum numbers (nℓj , n

′ℓ′j′) was discovered [3, 4], where n′ = n − 1,

ℓ′ = ℓ+ 2, j′ = j + 1
2 and n, ℓ, j are the radial, orbital angular momentum, and total

angular momentum quantum numbers, respectively. These quasi-degeneracies persist
in recent measurements in nuclei far from stability [5]. The authors realized that, if
they define the average of the orbital angular momenta as a pseudo-orbital angular
momentum (ℓ̃) and then couple a pseudospin (s̃ = 1

2 ) to the pseudo-orbital angular

momentum, they will get the total angular momenta (j = ℓ̃ ± 1
2 ). For example,

for the (1s 1
2
, 0d 3

2
) orbits, ℓ̃ = 1, which gives the total angular momenta j = 1

2 , 3
2 .

Subsequently pseudospin doublets in deformed nuclei were discovered [6]. Pseudospin
symmetry was later revealed to be a symmetry of the Dirac Hamiltonian [7, 8].

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 254.

http://www.ntse-2013.khb.ru/Proc/Ginocchio.pdf.
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2 Symmetries of the Dirac Hamiltonian

The Dirac Hamiltonian with a Lorentz scalar potential, VS(~r), and a potential which
is the fourth component of a Lorentz vector potential, VV (~r), is

H = ~α · ~p+ β
(
VS(~r) +M

)
+ VV (~r), (1)

where ~α, β are the Dirac matrices, ~p is the momentum, M is the mass, ~r is the radial
coordinate, and the velocity of light is set equal to unity, c =1.

2.1 Spin symmetry: A symmetry of the Dirac Hamiltonian

The Dirac Hamiltonian has spin symmetry when the difference of the vector and
scalar potentials in the Dirac Hamiltonian is a constant, VS(~r) − VV (~r) = Cs [9].
Hadrons [10] and anti-nucleons in a nuclear environment have spin symmetry [11].
These are relativistic systems and normally, in such systems, we would expect large
spin-orbit splittings, but, in this limit, spin doublets are degenerate. The generators
for this SU(2) spin algebra, ~S, which commute with the Dirac Hamiltonian with any

potential V (~r), spherical or deformed, [H , ~S ] = 0, are given by [12]

~S =

(
~s 0
0 Up ~sUp

)
, (2)

where ~s = ~σ/2 are the usual spin generators, ~σ are the Pauli matrices, and Up =
~σ · ~p

p

is the helicity unitary operator introduced in [13]. The generators are four by four
matrices as appropriate for the Dirac Hamiltonian.

2.2 Pseudospin Symmetry: A Symmetry of the
Dirac Hamiltonian

Another SU(2) symmetry of the Dirac Hamiltonian occurs when the sum of the vector
and scalar potentials in the Dirac Hamiltonian is a constant, VS(~r) + VV (~r) = Cps [9].

The generators for this SU(2) algebra ~̃S, which commute with the Dirac Hamiltonian

with any potential V (~r), spherical or deformed, [H, ~̃S] = 0, are given by [12]

~̃S =

(
Up ~sUp 0

0 ~s

)
. (3)

This symmetry was shown to be pseudospin symmetry [7]. The eigenfunctions of
the Dirac Hamiltonian in this limit will have degenerate doublets of states, one of
which has pseudospin aligned and the other with pseudospin unaligned. The “upper”
matrix of the pseudospin generators in Eq. (3), Up ~sUp, have the spin intertwined
with the momentum which enables the generators to connect the states in the dou-
blet, which differ by two units of angular momentum. The approximate equality in
magnitude of the vector and scalar fields in nuclei and their opposite sign have been
confirmed in relativistic mean field theories [8] and in QCD sum rules [8, 14].

3 Consequences of relativistic
pseudospin symmetry

One immediate consequence of pseudospin symmetry as a relativistic symmetry is
that the “lower” matrix of the pseudospin generators in Eq. (3), ~s, does not change
the radial wavefunction of the “lower” component of the Dirac eigenfunctions. Hence
this symmetry predicts that the radial wavefunctions of the “lower” component is the
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same for the two states in the doublet. Previous to this discovery many relativistic
mean field calculations of nuclear properties had been made. Hence this prediction
was tested with existing calculations and, indeed, these wavefunctions are very similar
for both spherical [15, 16] and deformed nuclei [17, 18]. Because of the momentum
dependence of the “upper” matrix of the generators the relationship between the
“upper” components involves a differential equation and these have also been tested
in spherical [19] and deformed nuclei [18] with success.

Magnetic dipole and Gamow–Teller transitions between the two states in pseu-
dospin doublets are forbidden non-relativistically because the states differ by two
units of angular momentum. However, they are not forbidden relativistically which
means that they are proportional to the lower component of the Dirac eigenfunc-
tion. This leads to a condition between the magnetic moments of the states and the
magnetic dipole transition between them because the radial amplitudes of the lower
components of the two states in a pseudospin doublet are equal. Therefore the mag-
netic dipole transition between the two states in the doublet can be predicted if the
magnetic moments of the states are known [8, 20]. Likewise pseudospin symmetry
also predicts Gamow–Teller transitions between a state in a parent nucleus to the
partner state in the daughter nucleus if the Gamow–Teller transition to the same
states in the parent and daughter nucleus is known. We do not have space to discuss
these relationships in detail but one example occurs in the mirror nuclei 39

19K20 and
39
20Ca19. The ground state and first excited state of 39

19K20 are interpreted as a 0d3/2
and 1s1/2 proton hole respectively, while the ground state and first excited state of
39
20Ca19 are interpreted as a 0d3/2 and 1s1/2 neutron hole respectively. These states

are members of the ñr = 1, ℓ̃ = 1 pseudospin doublet. Using the magnetic moment
of 39Ca a transition rate is calculated which is only about 37 % larger than the mea-
sured. However, the two states in the doublet are not pure single-particle states. A
modification of these relations has been derived which take into account the fact that
these states are not pure single particle states [8, 21]. The modified relations give
a transition rate that agrees with the measured value to within experimental error.
Again using the mass 39 nuclei, the Gamow–Teller transitions from the ground state
of 39Ca to the ground and first excited state of 39K are known, which is enough in-
formation to predict the transition from the ground state to the excited state. In
the non-relativistic shell model an effective tensor term geff [Y2σ](1) is added to the
magnetic dipole operator and the Gamow–Teller operator to produce a transition,
where geff is a calculated effective coupling constant. However, the magnetic dipole
transition calculated between the same states is an order of magnitude lower than
the experimental transition [22] although the calculated Gamow–Teller agrees with
the experimental value within the limits of experimental and theoretical uncertainty.
This inconsistency has been a puzzle for the non-relativistic shell model. On the
other hand the relativistic single-nucleon model gives a consistent description of both
of these transitions. A global prediction of magnetic dipole transitions throughout the
periodic table has had reasonable success as well [8,21]. However, a global prediction
of Gamow–Teller transitions have not been done yet. Pseudospin symmetry can also
be used to relate quadrupole transitions between multiplets [8].

4 Anti-nucleon in a nuclear environment

Charge conjugation changes a nucleon into an anti-nucleon. Under charge conjuga-
tion the scalar potential of a nucleon remains invariant while the its vector poten-
tial changes sign. Hence the pseudospin condition VS(~r) + VV (~r) ≈ Cps becomes
V̄S(~r) − V̄V (~r) ≈ Cps = C̄s. Hence approximate pseudospin for nucleons predicts
approximate spin symmetry for anti-nucleons in a nuclear environment. Since the
potentials are also very deep we would expect approximate U(3) symmetry as well
(see Section 6). The sparse data on the scattering of polarized anti-nucleons on nuclei
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supports this prediction [23]. Perhaps more data on the scattering of polarized anti-
nucleons on nuclei will be forthcoming from GSI.

5 Shell model Hamiltonians with pseudospin
as a dynamical symmetry

We would like to go beyond the mean field and use pseudospin symmetry in the
non-relativistic shell model. To that goal, we have constructed the most general shell
model Hamiltonian with two-nucleon interactions which has pseudospin symmetry
and pseudo-orbital angular momentum symmetry as dynamical symmetries. Such
Hamiltonians have eigenfunctions with conserved pseudospin and pseudo-orbital an-
gular momentum, but the energy levels are not degenerate. We do not have the space
to give the derivation, but we summarize the results.

These shell model Hamiltonians are given in momentum space. The single particle
Hamiltonian forA nucleons, hps = ΣA

k=1 h(~pk), has the same form as the single particle
Hamiltonian that has spin as a dynamical symmetry; that is,

h(~pk) = hc(pk) + ho(pk) ~ℓk · ~ℓk + hso(pk)~sk · ~ℓk. (4)

For completely degenerate pseudospin doublets, there is the condition hso(pk) =
4ho(pk) [24].

The two-nucleon interaction, Vps = ΣA
k>t=1V (~pk, ~pt), is composed of isospin zero

and one parts,

V (~pk, ~pt) = V (0)(~pk, ~pt)
(1 − τk · τt)

4
+ V (1)(~pk, ~pt)

(3 + τk · τt)
4

, (5)

where

V (T )(~pk, ~pt)

= V (T )
c + V (T )

s sk · st + V (T )
o ℓk · ℓt + V (T )

so (sk · ℓt + st · ℓk)

+ V
(T )
t [skst]

(2) ·
(

[p̂kp̂k](2) + [p̂tp̂t]
(2)
)

+ V
(T )
dt

(
[skst]

(2)· [p̂kp̂t](2)− [skst]
(1)· [p̂kp̂t](1)

)

+ V (T )
mso

(
[sk · p̂k] p̂k · ~ℓt + [st · p̂t] p̂t · ~ℓk

)
, (6)

and all the coefficients V
(T )
i depend on the magnitudes of the momenta, pk, pt, and the

angle between them, θk,t. The first line has spin as a dynamical symmetry. However
the second line has tensor interactions, and the third line has dipole interactions which
break the spin symmetry, but conserve pseudospin symmetry. The tensor interaction
has been shown to be important for shell evolution in exotic nuclei [25]. At the same
time pseudospin doublets are also seen in these nuclei [5]. Perhaps these shell model
Hamiltonians will be able to explain both effects in a unified way.

6 The Dirac Hamiltonian with
harmonic oscillator potentials

The Dirac Hamiltonian with harmonic oscillator potentials has been solved analyti-
cally in the spin and pseudospin limits [8,26] but not in the limit of scalar and vector
potentials independent of each other. In these two limits there are higher symmetries
just as there are for the non-relativistic harmonic oscillators. We shall summarize the
results for the spherically symmetric Dirac Hamiltonian.
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6.1 The spherically symmetric Dirac Hamiltonian with
spin symmetry and harmonic oscillator potentials

The Dirac Hamiltonian for a spherical harmonic oscillator with spin symmetry is

H = ~α · ~p+ βM + (1 + β)V (r), (7)

r is the magnitude of the radial coordinate. The generators for the spin SU(2) algebra
are given in Eq. (2). The generators for the orbital angular momentum SU(2) alge-

bra, ~L, which commute with the Dirac Hamiltonian with any spherically symmetric
potential V (r), [H , ~L ] = 0, are given by

~L =

(
~ℓ 0

0 Up
~ℓUp

)
, (8)

where ~ℓ = (~r×~p)
~

.

6.2 The energy spectrum

With the harmonic oscillator potential V (r) = Mω2

2 r2 the eigenvalue equation is [26]

√
EN +M (EN −M) =

√
2~2ω2M

(
N +

3

2

)
, (9)

where N = 2n + ℓ is the total harmonic oscillator quantum number, n is the radial
quantum number and ℓ is the orbital angular momentum. Hence the eigenenergies
have the same degeneracies as the non-relativistic harmonic oscillator. This eigenvalue
equation is solved with Mathematica,

EN =
M

3

[
3B(AN ) + 1 +

4

3B(An1,n2,n3
)

]
, (10)

where B(AN ) =

(
AN+
√

A2
N
− 32

27

2

)2
3

, and AN =
√
2~ω
M

(
N + 3

2

)
. The spectrum is non-

linear in contrast to the non-relativistic harmonic oscillator; i. e., the relativistic har-
monic oscillator is not harmonic. However for large M , the binding energy goes like

EN −M ≈M
(
AN√

2
+ · · ·

)
≈ ~ω

(
N +

3

2

)
, (11)

in agreement with the non-relativistic harmonic oscillator. For small M the spectrum
goes as

EN ≈M
(
A

2
3

N + · · ·
)
≈M 1

3

[√
2~ω

(
N +

3

2

)] 2
3

, (12)

which, in lowest order, agrees with the spectrum for M → 0. Hence the harmonic
oscillator is not harmonic in the relativistic limit.

6.3 U(3) generators

The relativistic energy spectrum has the same degeneracies as the non-relativistic
spectrum [27], even though the dependence on N is different. This suggests
that the relativistic harmonic oscillator has a higher U(3) symmetry. The non-

relativistic U(3) generators are the orbital angular momentum ~ℓ, the quadrupole
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operator qm = 1
~Mω

√
3
2

(
2M2ω2[rr]

(2)
m + [pp]

(2)
m

)
, where [rr]

(2)
m means coupled to an-

gular momentum rank 2 and projection m, and the total oscillator quantum number

operator, NNR = 1
2
√
2~Mω

(
2M2ω2r2 + p2

)
− 3

2 . They form the closed U(3) algebra

[
NNR, ~ℓ

]
= [NNR, qm] = 0, (13)

[
~ℓ, ~ℓ
](t)

= −
√

2 ~ℓ δt,1,
[
~ℓ, q
](t)

= −
√

6 qm δt,2, [q, q](t) = 3
√

10 ~ℓ δt,1, (14)

with NNR generating a U(1) algebra whose eigenvalues are the total number of

quanta N and ~ℓ, qm generating an SU(3) algebra. In the above we use the cou-

pled commutation relation between two tenors, T
(t1)
1 , T

(t2)
2 of rank t1, t2, which

is
[
T

(t1)
1 , T

(t2)
2

](t)
=
[
T

(t1)
1 , T

(t2)
2

](t)
− (−1)t1+t2−t

[
T

(t2)
2 , T

(t1)
1

](t)
.

The relativistic orbital angular momentum generators ~L are given in Eq. (8). We
shall now determine the the quadrupole operator Qm and monopole operator N that
commute with the Hamiltonian in Eq. (7). In order for the quadrupole generator

Qm =

(
(Qm)11 (Qm)12 ~σ · ~p

~σ · ~p (Qm)21 ~σ · ~p (Qm)22 ~σ · ~p

)
, (15)

to commute with the Hamiltonian, [Qm, H ] = 0, the matrix elements must satisfy the
conditions,

(Qm)12 = (Qm)21, (16)

2[(Qm)11, V ] + [(Qm)12, p
2] = 0, (17)

2[(Qm)12, V ] + [(Qm)22, p
2] = 0, (18)

(Qm)11 = (Qm)12 2(V +M) + (Qm)22 p
2. (19)

One solution is

Qm = λ2

(
Mω2(Mω2 r2 + 2M)[rr]

(2)
m + [pp]

(2)
m Mω2[rr]

(2)
m ~σ · ~p

~σ · ~p Mω2[rr]
(2)
m [pp]

(2)
m

)
, (20)

where λ2 is an overall constant undetermined by the commutation of Qm with the
Dirac Hamiltonian.

For this quadrupole operator to form a closed algebra, the commutation with itself
must be the orbital angular momentum operator as in Eq. (14). This commutation
relation gives

[Q,Q](t) =
√

10λ22Mω2
~
2

(
(Mω2r2 + 2M) ~ℓ ~ℓ ~σ · ~p

~σ · ~p ~ℓ 0

)

=
√

10λ22Mω2
~
2(H +M)~L δt,1, (21)

and we get the desired result if λ2 =
√

3
Mω2~2(H+M) . The quadrupole operator then

becomes

Qm =

√
3

Mω2~2(H +M)

(
Mω2(Mω2r2 + 2M)[rr]

(2)
m + [pp]

(2)
m Mω2[rr]

(2)
m ~σ · ~p

~σ · ~p Mω2[rr]
(2)
m [pp]

(2)
m

)
,

(22)

which reduces to the non-relativistic quadrupole generator for H → M . In the
original paper [28] that derives the quadrupole generators there are two typos. In

Eq. (6) of that paper, Mω2

2 r2 should be replaced by Mω2r2 and in the non-relativistic
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quadrupole operator M2ω2[rr]
(2)
m should be replaced by 2M2ω2[rr]

(2)
m . Also, the ex-

pression for B(AN ) in that paper has a misplaced factor of 2 in the denominator.
For the monopole generator, we can solve the same equations. But there is a

simpler way. From Eq. (9) we get,

N =

√
H +M(H −M)

~
√

2Mω2
− 3

2
. (23)

In the non-relativistic limit, H + M → 2M and the non-relativistic Hamiltonian
(H −M)→ ~ω

(
N + 3

2

)
which gives the correct result.

The commutation relations are then those of the U(3) algebra,

[
N , ~L

]
= [N , Qm] = 0, (24)

[
~L, ~L

](t)
= −
√

2~L δt,1,
[
~L,Q

](t)
= −
√

6Qδt,2, [Q,Q](t) = 3
√

10~L δt,1. (25)

The spin generators in Eq. (2), ~S, commute with the U(3) generators as well as
the Dirac Hamiltonian, and so the invariance group is U(3)×SU(2), where the SU(2)

is generated by the spin generators,
[
~S, ~S

](t)
= −
√

2~S δt,1.

6.4 The spherically symmetric Dirac Hamiltonian with
pseudospin symmetry and harmonic oscillator potential

The Dirac Hamiltonian with pseudospin symmetry is [7]

H̃ = ~α · ~p+ βM + (1− β)V (r), (26)

which explains the pseudospin doublets observed in nuclei [8]. This pseudospin Hamil-
tonian can be obtained from the spin Hamiltonian with a transformation

γ5 =

(
0 1
1 0

)
and M → −M, (27)

which gives the pseudospin and pseudo-orbital angular momentum generators [12]

~̃S =

(
Up ~sUp 0

0 ~s

)
, ~̃L =

(
Up
~ℓUp 0

0 ~ℓ

)
. (28)

6.5 Energy spectrum

With the harmonic oscillator potential V (r) = Mω2

2 r2 the eigenvalue equation in the
pseudospin limit is [18]

√
EÑ −M (EÑ +M) =

√
2~2ω2M

(
Ñ +

3

2

)
, (29)

where Ñ = 2ñ + ℓ̃ is the pseudo total harmonic oscillator quantum number, ñ is
the pseudo radial quantum number and ℓ̃ is the pseudo-orbital angular momentum.
While n is the number of radial nodes and ℓ the rank of the spherical harmonic of
the upper Dirac radial amplitude, ñ is the number of radial nodes and ℓ̃ the rank of
the spherical harmonic of the lower Dirac radial amplitude. Again the eigenenergies
have the same degeneracy pattern as the non-relativistic harmonic oscillator in the
spin symmetry limit. This eigenvalue equation is solved on Mathematica,

EÑ =
M

3

[
3B(AÑ )− 1 +

4

3 B(AÑ )

]
, (30)
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where B(AN ) =

(
AÑ+

√
A2

Ñ
+ 32

27

2

)2
3

, and AÑ =
√
2~ω
M

(
Ñ + 3

2

)
. The spectrum is non-

linear in contrast to the non-relativistic harmonic oscillator; i. e., the relativistic har-
monic oscillator is not harmonic in either limit. Even for small AÑ (large M), the
binding energy

EÑ −M ≈M
(
A2

Ñ

4
+ · · ·

)
, (31)

and hence goes quadratically with the the total pseudo-number of quanta and is
non-linear even for large M . For large AÑ (small M) the spectrum goes as

EÑ ≈M
(
A

2
3

Ñ
− 1

3
+ · · ·

)
, (32)

which, in the lowest order, agrees with the spectrum for spin symmetry.

6.6 Pseudo-U(3) generators

The pseudo-U(3) generators which commute with the Dirac Hamiltonian,
[
H̃, ~̃S

]
=

[
H̃, ~̃L

]
=
[
H̃, Q̃m

]
=
[
H̃, Ñ

]
= 0, are then obtained by the transformation in Eq. (27)

and are given by

Q̃m =

√
3

Mω2~2(H −M)

(
Mω2(Mω2r2 − 2M)[rr]

(2)
m + [pp]

(2)
m Mω2[rr]

(2)
m ~σ · ~p

~σ · ~p Mω2[rr]
(2)
m [pp]

(2)
m

)
.

(33)
The commutation relations are then those of a U(3) algebra,

[
Ñ , ~̃L

]
=
[
Ñ , Q̃m

]
= 0, (34)

[
~̃L, ~̃L

](t)
= −
√

2~̃L δt,1,
[
~̃L, Q̃

](t)
= −
√

6 Q̃ δt,2,
[
Q̃, Q̃

](t)
= 3
√

10~̃L δt,1. (35)

However there are no bound Dirac valence states in the pseudospin limit.
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Abstract

This paper describes some applications of GPU acceleration in ab initio
nuclear structure calculations. Specifically, we discuss GPU acceleration of the
software package MFDn, a parallel nuclear structure eigensolver. We modify the
matrix construction stage to run partly on the GPU. On the Titan supercom-
puter at the Oak Ridge Leadership Computing Facility, this produces a speedup
of approximately 2.2x–2.7x for the matrix construction stage and 1.2x–1.4x for
the entire run.

Keywords: Configuration Interaction; no-core shell model; ab initio nuclear
structure; GPU acceleration; Titan supercomputer

1 Introduction

The Configuration Interaction approach to computational nuclear physics casts the
Schrödinger equation for the nuclear many-body bound state problem as a matrix
eigenvalue problem [1, 2]. The many-body Hamiltonian is approximated by a finite
matrix whose eigenvalues and eigenvectors correspond to the bound state energies and
wavefunctions. The wavefunctions can then be used to calculate other observables.
Typically only the lowest eigenvalues and eigenvectors of this matrix are of interest.

The Hamiltonian matrices required to accurately calculate nuclear properties can
be very large, with dimension in excess of 109, and 1013 or more nonzero matrix
elements [2, 3]. Calculations of this magnitude can only be performed on supercom-
puters, with parallel codes like Many-Fermion Dynamics for nuclei (MFDn) [4–8], a
hybrid MPI/OpenMP software package written in Fortran and C.

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 263.

http://www.ntse-2013.khb.ru/Proc/Sosonkina.pdf.
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The Hamiltonian matrices are very sparse, but their sparsity structure is nontriv-
ial; locating and calculating the nonzero matrix elements takes a significant fraction of
the overall runtime in MFDn, on the order of 25−45 % for some representative cases.
The matrix construction stage contains a number of parallelizable steps, however,
each nonzero element can be calculated independently. This problem structure is a
promising target for acceleration on SIMD-style coprocessors like GPUs. We present
an investigation of GPU acceleration in the matrix construction stage of MFDn.

GPU accelerators pair a large number of cores with a communal block of mem-
ory. They have much less memory per core and cannot easily handle more complex
program logic, but are capable of running many calculations in parallel. The CUDA
framework [9] from NVIDIA provides a high-level API for accessing GPU functional-
ity, allowing GPUs to be programmed in languages like C and Fortran.

Code to be executed on the GPU is written in a function called the kernel. The
CPU code can then invoke the kernel, specifying a number of cores on which to run
simultaneously. The kernel invocation specifies thread count in a two-level hierarchy:
threads are grouped together into blocks, and blocks are grouped into a grid. Each
thread has its own small, private, local memory, and each thread in a block can access
the shared memory of that block. Every thread in the grid has access to the global
memory, which can be in the 1−6 GB range. The user calls CUDA allocation and
copy functions to move data to the global memory of the GPU, invokes the kernel
and waits for completion, and then uses copy functions to retrieve the results of the
calculation. The kernel invocation will often request more threads than the GPU has
cores. In this case, the GPU has a scheduler to stream blocks to cores as they become
available.

2 Overview of MFDn

MFDn is a hybrid MPI/OpenMP parallel software package written in Fortran and
C for ab initio nuclear physics calculations. MFDn generates a many-body nuclear
Hamiltonian matrix for the nucleus in question and uses the Lanczos algorithm to
extract the lowest eigenvalues and eigenvectors. The many-body matrix is stored in
memory on core; this strategy limits the sizes of the matrices that can be used, but
is much faster than accessing the matrix from disk. The matrix is symmetric, so only
half of it is generated and stored [7, 8].

MFDn runs in several stages. After the various indexing systems are set up to
specify the many-body basis, the many-body Hamiltonian matrix is constructed. The
nonzero elements are then located, calculated, and stored. Elements in the many-body
matrix are built up as linear combinations of kinetic energy and nuclear interaction
terms. MFDn reads the kinetic energy and 2-body and 3-body potentials from file,
and uses them to calculate elements of the many-body Hamiltonian. The many-body
matrix is distributed among MPI processes in a way that produces a roughly uniform
distribution of nonzero elements.

Once the matrix is generated, MFDn obtains the lowest eigenvalues and eigen-
vectors with the Lanczos algorithm, an iterative algorithm that relies on successive
matrix-vector multiplications and orthogonalizations. The Lanczos algorithm requires
many iterations, and is the most computationally-intensive stage. Efficient multi-
core approaches have been implemented in Refs. [6–8]. Performance with respect
to non-uniform memory access (NUMA) architecture in supercomputer nodes has
been studied in Ref. [10]. When the Lanczos algorithm has completed, MFDn uses
the eigenvalues and eigenvectors to calculate other observables, which can then be
compared to experiment.

Despite being computationally intensive, the Lanczos algorithm stage is not an
easy target for GPU acceleration; it is memory-bound, and also cannot be easily bro-
ken down into GPU-parallelizable pieces. In the matrix construction stage, however,
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each many-body matrix element can be calculated independently. Furthermore, in
the current implementation of MFDn, each 3-body matrix element that is needed
in the many-body matrix must be obtained by performing a change of basis on the
input 3-body potential. This part of the code is very computationally intensive, and
we implement GPU acceleration at the level of this basis transformation.

3 Standalone basis transformation on the GPU

3.1 Basis transformation algorithm

One method for storing the 3-body input interaction matrix is to use the coupled-JT
basis, which adds, or “couples” the angular momenta of the three single-particle states
(SPSs) together into one total angular momentum for the 3-body state. Isospin, a
quantum number that has to do with whether a nucleon is a proton or a neutron,
is similarly coupled. This basis exploits the rotational symmetry of the interaction
to reduce the amount of information that must be stored. However, for constructing
the many-body matrix elements, we need 3-body interaction matrix elements in an
m-scheme basis; that is, we need to “decouple” these coupled-JT matrix elements
every time we need a 3-body matrix element in the construction of the many-body
matrix. Storing the 3-body interaction matrix in m-scheme would be more efficient
for the calculations, but requires much more memory: in one representative case, a
3-body interaction is 33 GB in the m-scheme basis, but only 1 GB in the coupled-JT
basis. Substantial memory savings can thus be achieved by storing the input matrix
in-core in the coupled-JT basis, and calculating m-scheme elements individually as
they are required by MFDn [5, 11, 12].

When MFDn requires a 3-body input interaction matrix element, then, it must
convert that element from the coupled-JT basis. From linear algebra, basis transfor-
mations of matrices are of the form A′ = DTAD, where D is a matrix of projections
from one basis to the other. Figure 1 shows a high-level illustration of this trans-
formation. As in any basis transformation, an element in the new basis is a linear
combination of elements from the old basis, weighted by the projections in D.

In the coupled-JT to m-scheme transformation, D is developed from a series of
angular momentum and isospin coupling coefficients. The matrices A, D, and DT are
never actually constructed in their entirety. MFDn requests 3-body elements from A
one-at-a-time, and elements of D are developed as needed for each request; Fig. 2
illustrates the calculation of a single element from A′.

In principle an element of A′ is a linear combination of all elements from A. Many
elements from A do not contribute, however, because of orthogonality relations that
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Figure 1: Matrix A is transformed from the coupled-JT basis to the m-scheme basis
through multiplication with D and DT .
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Figure 2: MFDn requests one 3-body element at a time. The single indicated element
in A′ can be calculated from the indicated elements in A, D, and DT . In practice,
not all the indicated elements are used, as orthogonality relations dictate that many
of them are zeroes.

manifest as zeroes in A and D. This sparsity structure is highly predictable and can
be exploited. A and A′ can be divided into blocks in a way that allows any element
in a block in A to be constructed entirely from elements in the corresponding block
in A′. Furthermore, all the nonzero elements within that block can be iterated over
with a set of nested loops over coupled angular momentum and isospin values.

Only these potentially-nonzero elements are stored, and they are arranged in the
order that the nested loops will reference them. The basis conversion routine, then,
consists of locating the start of the correct block, going through the nested angular
momentum and isospin loops, and adding the elements of A one after the other, each
weighted by coupling coefficients calculated from the corresponding angular momen-
tum and isospin values. In practice, because the relevant isospin space is so small,
the isospin coupling coefficients are precalculated with several conditionals, and the
isospin loops are unrolled into a single weighted summation. The core of the calcula-
tion, then, is a set of three nested loops over coupled angular momentum values.

3.2 GPU implementation

The bounds of the inner angular momentum decoupling loop depend on the positions
in the outer loops, and the bounds of the outer loops depend on which 3-body element
is being calculated. The loop structure is thus irregular. This irregularity makes it
difficult to map GPU threads to parts of the problem when dedicating more than one
thread to the calculation of a single 3-body element. We parallelized with one 3-body
element calculation per GPU thread, invoking the kernel across many 3-body element
calculations at once.

We used CUDA to interface with the GPU. We put the nested loop structure into
the kernel without modifying it significantly, and added a wrapper function to transfer
a chunk of 3-body element requests to the GPU, invoke the kernel, and transfer the
results back. MFDn and the decoupling code flatten the SPS quantum numbers into a
single linear SPS index, so a 3-body element request takes the form of a set of six SPS
indices. We also flattened several arrays that were multidimensional in the CPU-only
code so that they could be transferred to and referenced on the GPU more quickly.

Before integrating this GPU acceleration strategy into MFDn, we applied it to a
standalone version of the basis transformation code to test performance and act as
an intermediate step; we observed a 4x to 10x speedup compared to a multithreaded
CPU implementation running on eight cores [13].
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4 Integration into MFDn

4.1 A closer look at matrix construction

In the matrix construction stage of MFDn, the many-body Hamiltonian is divided into
chunks of elements with similar quantum numbers, and these chunks are apportioned
across MPI processes. Each process then splits into OpenMP threads to count, locate,
and calculate the nonzero many-body elements. Elements are stored per MPI process
in a single array, with a list of column pointers to split them into columns and a
secondary array to denote their locations in their columns (compressed row format,
or CSR).

The nonzero elements are located in one of two ways. If a block is denser, all
elements in it are iterated through and tested for being nonzero. If the block is
sparser, all combinations of quantum numbers that could yield nonzero elements are
iterated through. MFDn runs through nonzero elements twice during the many-body
matrix generation: once to count the nonzero matrix elements so the appropriate
arrays can be allocated, and once to calculate them.

4.2 Integration with standalone GPU code

During the construction of the many-body matrix, MFDn uses a recursive loop to
calculate the nonzero many-body matrix elements, frequently requesting 3-body ma-
trix elements in m-scheme. In the CPU-only version of MFDn, the decoupling code
calculates 3-body elements one-by-one, as they are requested. The GPU version of
the decoupling code requires a large block of simultaneous requests to be efficient, so
the sequential requests in the CPU code are not ideal. To bridge the gap between
MFDn and the GPU decoupling code, we use buffers to store lists of 3-body element
requests so large “chunks” of requests can be sent to the GPU at once.

Each OpenMP thread has its own buffer allocated to store requests. On receiving a
request, the CPU part of the decoupling subroutine stores the request in the buffer and
returns 0. In the CPU-only version, the returned value is added directly to the many-
body element under calculation; we must thus also store which many-body element
the request pertains to so that it can be added to the correct many-body element
when the calculation finishes on the GPU. Furthermore, the 3-body element is added
with a specific phase, which must also be stored with the request. Larger buffers are
more efficient because the overhead associated with the single CUDA memory copy
and kernel invocation is split over more elements. Tests with the standalone code
indicate diminishing returns after around 20,000 elements [13] on the supercomputer
Dirac at the National Energy Research Scientific Computing Center. Hence, we use
here buffers of approximately this size, although further testing may be required to
optimize buffer size for the integrated code and for different hardware.

Each OpenMP thread starts in the so-called “accumulating mode” while passing
element requests to its buffer until it is full. Then, the thread sends the buffer to the
GPU and switches into the so-called “non-accumulating mode”. In this mode, the de-
coupling code runs as in the CPU-only version of MFDn, calculating 3-body elements
on the CPU at request and returning them; this allows the CPU to continue work
while the GPU, which may be shared among many OpenMP threads, is busy. The
thread checks periodically for a completed chunk from the GPU. When it receives the
chunk, it iterates through the returned three-body elements in the chunk, multiplies
them by the stored phases, and adds them to the array of many-body elements at
the stored locations. It then switches back into accumulating mode, and the cycle
begins again. At the end of the many-body matrix construction phase, all the 3-body
contributions have been added in, either from the GPU calculations or directly from
the CPU decoupling code.
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5 Technical concerns

5.1 MPI and OpenMP structure of GPU access

We allow the GPU to decide which requests to calculate first. Each OpenMP thread
is given its own stream to access the GPU, so at any given time the GPU will have
a number of requests open. With this scheme, a single GPU may end up being
accessed by multiple MPI processes. This is not possible on all systems, and incurs a
performance penalty when it is possible.

One alternative is to restrict the number of MPI processes to the number of nodes
used (one per node). The resulting MPI/OpenMP divisions, however, may not be
ideal for the NUMA structure of the node, which may incur a performance penalty
due to data locality and thread contention issues [10]. Another alternative is to
GPU-accelerate only some MPI processes, leaving the others to run as in the CPU-
only version. However, using this alternative would derange the almost perfect load-
balancing, which is a prominent design feature of the CPU-only version of MFDn,
and thus, diminish the benefit of the acceleration. Given these considerations, we opt
to accept the performance penalty from multiple MPI processes per GPU on systems
where that is possible, and restrict the number of MPI processes to the number of
nodes on other systems.

5.2 Indexing the input interaction

The decoupling code requires the use of a six-dimensional index array, which relates
quantum numbers to locations in the input coupled-JT interaction matrix. This
array is highly jagged: the length along any particular dimension is not constant,
but rather depends on the position along the other dimensions. In C, jagged arrays
are represented as trees of pointers, wherein the “root” pointer points to an array of
pointers, each of which point to further arrays of pointers, and thus until the “leaves”,
which hold the actual data of the array.

Generating such a structure requires a prodigious number of allocations, as each
array at each level must be allocated. On the CPU this is not an issue, but allocations
on the GPU must first be requested from the CPU, adding a significant transfer time
penalty. Our first attempt did not take this inefficiency into account, and over 90%
of the matrix construction time was spent generating the index array on the GPU.

To address this problem, we generated the entire index array in a contiguous block
on the CPU, producing a structure wherein the pointers were correct relative to each
other. We then applied a constant offset to all the pointers in the index array so that
their absolute coordinates would be correct for a contiguous block allocated on the
GPU. The entire pointer structure could then be copied into that block with one copy,
allowing the index structure to be created on the GPU with a single GPU allocate and
GPU copy. With this improvement the index array creation time becomes negligible
in the overall matrix construction.

6 Initial experiments

We present results from the DOE supercomputer Titan at the Oak Ridge National
Laboratory. Titan is a Cray XK7 supercomputer with 18,688 physical compute nodes,
each of which has one 16-core 2.2 GHz AMD Opteron 6274 processor and 32 GB of
RAM. Each node is divided into two NUMA domains, and nodes are served in groups
of two by Gemini high-speed interconnect routers. Additionally, each node has one
NVIDIA K20 Tesla GPU accelerator with 6 GB of memory.

We use the number of non-zeroes in the many-body matrix as a measure of problem
size, and test at a variety of problem sizes. The number of nonzeroes is determined by
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Figure 3: Matrix construction times with CPU-only and GPU-accelerated code.

the choice of nucleus and truncation, so it is difficult to provide a smooth spectrum.
Different problem sizes can require vastly different numbers of cores to store the many-
body matrix, so we do not test all problems sizes on the same configuration; for each
problem size, we allow the many-body matrix to take up half of the total memory, and
choose the smallest configuration that satisfies that requirement. We implement and
test GPU acceleration in MFDn version 14, and compare against CPU performance
using an unmodified build of version 14.

Our primary results are summarized in Figs. 3 and 4: We see a speedup of 2.2x–2.7x
in the matrix construction stage. There is no immediately apparent pattern in the
dependence of speedup on problem size. The choices of nuclei and truncation parame-
ters required to generate the spectrum of problem sizes are somewhat haphazard, so it
is possible that any problem size dependence has become entangled with dependence
on those parameters. Despite the individually varying speedup, the range of speedups
appears to stay roughly the same; thus the GPU acceleration appears to scale well
for the problem sizes investigated.

The speedup over the entire run is a more ambiguous quantity. The time taken in
the MFDn diagonalization stage depends on how many eigenvalues are required and
the accuracy to which they are required to converge. The speedup over the entire run,
which depends on the relative times of the matrix construction and diagonalization
stages, therefore depends on these parameters also. For the representative parameter
choices used in the matrix construction speedup calculations, the overall speedup is
in the 1.2x–1.4x range.
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Figure 4: Matrix construction stage speedup with GPU acceleration.
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7 Conclusion

We have modified the matrix construction stage of MFDn to run partly on the GPU.
The current MFDn implementation stores the matrix elements of the 3-body input
interaction in the compressed coupled-JT basis in-core. The conversion of these
elements back to m-scheme for use with MFDn is highly parallelizable; we implement
this basis transformation on the GPU.

Initial timing results with the GPU-accelerated MFDn code are promising. We
have achieved a consistent speedup in the two- to three-fold range for the matrix
construction stage, and our speedup scales smoothly to larger problem sizes, at least
for those investigated in this paper. It may be possible, though more difficult, to
leverage GPU acceleration in the diagonalization stage, or at a higher level in the
matrix construction stage; such improvements are left for future consideration.
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Abstract

The Many-body Fermion Dynamics for nuclear physics (MFDn) code was
originally developed by James Vary and his colleagues for performing nuclear
configuration interaction (CI) calculations. We describe a number of recent al-
gorithmic and implementation advances in MFDn that enabled it to achieve
high performance, and allowed scientists to study properties of light nuclei with
high accuracy on modern high performance computers.

Keywords: High-performance computing; configuration interaction method;
matrix diagonalization

1 Introduction

The MFDn (Many Fermion Dynamics for nuclear structure) software was developed
by James Vary and his collaborators at Iowa State University [1, 2]. It is a computa-
tional tool for studying nuclear structure.

In MFDn, the nuclear Hamiltonian is evaluated in a large harmonic oscillator
single-particle basis and diagonalized by iterative techniques to obtain the low-lying
eigenvalues and eigenvectors. The eigenvectors are then used to evaluate a suite of
experimental quantities to test accuracy and convergence issues. In several respects,
the approach is similar to the Full Configuration Interaction (FCI) method in other
fields [3, 4]. We often obtain convergence, either by direct diagonalization or simple
extrapolation, and we then claim we have the result of an exact calculation.

In this paper, we describe a number of recent algorithmic and implementation
advances that made MFDn highly efficient on modern high performance computers.

The paper is organized as follows. In Section 2, we will review the general for-
mulation of the nuclear many-body problem and the nuclear CI methodology used
in MFDn for computing a few lowest energy states of a nuclear structure. The im-
plementation details of several key components of MFDn are presented in Sections 3
to 7.

2 Background

The structure of an atomic nucleus with k nucleons is described by a many-body wave-
function Ψ(r1, r2, ... , rk), where rj ∈ R

3, j = 1, 2, ... , k. The wavefunction satisfies
the many-body Schrödinger equation

HΨ(r1, r2, ... , rk) = λΨ(r1, r2, ... , rk), (1)

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 272.

http://www.ntse-2013.khb.ru/Proc/Yang.pdf.
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where H is a many-body Hamiltonian that relates a nucleus configuration defined
by Ψ to the energy of the system. We denote the energy of the system by λ. The
many-body Hamiltonian H is defined as

H =
1

k

∑

i<j

(pi − pj)
2

2m
+

k∑

i<j=1

Vn(ri − rj), (2)

wherem is the nucleon mass, pi is a momentum operator, and Vn(ri−rj) is a two-body
potential operator that describes the interaction between the ith and jth nucleons. A
more accurate treatment of the problem may include three-body potentials. Clearly,
the wavefunction Ψ is an eigenfunction of H associated with the eigenvalue λ.

For nuclei that consist of a few nucleons (less than five), there are several methods
to solve (1) directly. However, as k becomes larger, the size of the problem will
become so large that approximate methods are necessary. One way to overcome
the dimensionality explosion is to project the many-body Hamiltonian into a lower
dimensional subspace S spanned by a set of Slater determinants defined as

Φa(r1, r2, ... , rk) =
1√
k!

∣∣∣∣∣∣∣∣∣

φa1
(r1) φa2

(r1) . . . φak
(r1)

φa1
(r2) φa2

(r2) . . . φak
(r2)

...
...

...
φa1

(rk) φa2
(rk) . . . φak

(rk)

∣∣∣∣∣∣∣∣∣
, (3)

where φai
is the eigenfunction associated with the ai-th eigenvalue of a (single-particle)

Hamiltonian h = p2/2m+v(r). Conventionally, one uses a harmonic oscillator poten-
tial, which is quadratic in r. The use of Slater determinants is a standard technique
employed in quantum mechanics.

In this paper, we define the index of Φa(r1, r2, ... , rk) by a strictly increasing
k-tuple of integers, i. e. a = (a1, a2, ... , ak), where ai is simply the index of the single-
particle eigenfunction that appears in the ith column of the Slater determinant. We
will refer to Φa(r1, r2, ... , rk) or simply a as a many-body basis state. We will call
each component of a a single-particle state. Not all many-body basis states are valid
because each has to satisfy a set of conditions to be defined later. We denote the set of
all valid many-body basis states {a} by A. The size of A will be denoted by n = |A|.

Suppose the desired many-body wavefunction can be well represented by a linear
combination of the basis functions Φa (a ∈ A), i. e.,

Ψ =
∑

a∈A
caΦa, (4)

where ca ∈ R, we can then solve (1) by computing eigenpairs of a projected Hamilto-
nian Ĥ , where

Ĥa,b =

∫

Ω

(Φ∗
aHΦb) dr1dr2 . . . drk. (5)

Because H is self-adjoint, Ĥ is real symmetric. The eigenvector of Ĥ associated with
the desired eigenvalue (energy) gives the coefficients ca in (4).

Clearly, the dimension of Ĥ, which is the total number of valid many-body basis
states |A|, depends on the total number of nucleons (k) contained in the nucleus of
interest and the largest single-particle state (amax) allowed in Φa(r1, r2, ... , rk), which
is implicitly determined by a constraint imposed on the total oscillator quanta (Nmax).
For a large nucleus with many nucleons and large amax value, n can be extremely large.
However, the number of nonzero elements in Ĥ is typically very small, as we will show
below.

It follows from the mutual orthogonality of all single-particle eigenfunctions φℓ
(ℓ = 1, 2, ... , amax) that a one-body integral in (5) becomes zero when a and b differ



274 C. Yang et al.

0 2 4 6 8 10 12 14
N

max

10
0

10
2

10
4

10
6

10
8

10
10

m
at

rix
 d

im
en

si
on

6
Li

8
Be

10
B

12
C

14
N

16
O

18
F

20
Ne

(a) The growth of the matrix dimension
(|A|) with respect to Nmax

10
5

10
6

10
7

10
8

10
9

matrix dimension

10
6

10
7

10
8

10
9

10
10

10
11

10
12

nu
m

be
r 

of
 n

on
ze

ro
 m

at
rix

 e
le

m
en

ts

6
Li

8
Be

10
B

12
C

14
N

16
O

18
F

20
Ne

     2-body
potentials

     3-body
potentials

(b) The growth of number of nonzero ma-
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Figure 1: The characteristics of the CI projected Hamiltonian Ĥ for a variety of
nuclei.

by more than one single-particle state, and a two-body integral becomes zero when a
and b differ by more than two single-particle states, etc. This observation allows us
to determine many of the zero entries of Ĥ without evaluating the numerical integral
in (5).

Empirical evidence suggests that the probability of two randomly chosen but valid
many-body basis states sharing more than k−2 single-particle states is relatively low.
As a result, Ĥ is extremely sparse. Figure 1 shows both the growth of the matrix
dimension (|A|) with respect to Nmax and the growth of the number of nonzero
elements in Ĥ with respect to |A| for a variety of nuclei for both two-body and two-
plus three-body potentials. In practice, we observe that the number of non-zeros in Ĥ
is proportional to |A|3/2.

To compute the eigenvalues of Ĥ efficiently on a high performance parallel com-
puter, the following three issues must be addressed carefully:

1. The generation and distribution of the many-body basis states — This step
essentially determines how the matrix Hamiltonian Ĥ or ĤZ is partitioned and
distributed in subsequent calculations.

2. The construction of the sparse matrix Hamiltonian Ĥ — This step is performed
simultaneously on all processors. Each processor will construct its portion of Ĥ
defined by the many-body basis states assigned to it. Because the positions
of the nonzero elements of the Hamiltonian is not known a priori, the key to
achieving good performance during this step is to quickly identify the locations
of these elements without evaluating them numerically first.

3. The calculation of the eigenvalues and eigenvectors using the Lanczos itera-
tion — The major cost of the Lanczos iteration is the computation required to
perform sparse matrix-vector multiplications of the form y ← Ĥx, where x, y
are both vectors. Performing efficient orthogonalizations of the Lanczos basis
vectors is also an important issue to consider.

3 Parallel basis generation

Because the rows and columns of Ĥ are indexed by valid many-body basis states, the
first step of the nuclear CI calculation is to generate these states so that they can be
used to construct and manipulate matrix elements of Ĥ in subsequent calculations. It
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is desirable to generate the valid many-body basis states in parallel on different pro-
cessors to 1) reduce the basis generation time, 2) allow Hamiltonian to be distributed
and constructed in parallel in subsequent computation.

Because the set of valid many-body states cannot be described by a simple ex-
pression, the strategy we adopt is to enumerate all possible many-body basis states in
some order and pick out the ones that satisfy a set of constraints to be defined below.

When single-particle wave functions φ’s in (3) are chosen to be eigenfunctions of
a harmonic oscillator, each ai corresponds to a set of quantum numbers (n, l, j,mj),
where n ≥ 0 is the quantum number that is associated with the radial component
of the eigenfunction, l ≥ 0 is the angular momentum of the single-particle, j, which
is either |l − 1/2| or l + 1/2, is the coupled spin-angular momentum, and mj , which
can assume the values of −j, j + 1, ... , j − 1, j is the projection of the spin-angular
momentum to a particular spatial axis, often chosen to be the z axis. Single-particle
states are typically ordered by their energy levels (i. e., the corresponding eigenvalues
of the harmonic oscillator Hamiltonian). The energy of the single particle associated
with (n, l, j,mj) can be labeled by N = 2n + l, which is degenerate. Single-particle
states associated with each degenerate energy level are typically ordered by their mj

values.
If the maximum index of the allowed single-particle state is amax, the total number

of different Φa(r1, r2, ... , rk) is

(
amax

k

)
, which can be extremely large. However, in

many cases, interesting physics of a nucleus can be ascertained from a much smaller
model (or configuration) space that contains far fewer Φa(r1, r2, ... , rk)’s that satisfy
additional constraints. In MFDn, these constraints include

1. Oscillator excitation quanta constraint:
∑k

i=1N(ai) ≤ Nmax, where N(ai) is
the oscillator quanta with the ith single-particle, and Nmax is known as the
maximum oscillator excitation quanta chosen in advance. Clearly, the larger
the Nmax value, the larger the model space is.

2. Magnetic projection constraint:
∑k

i=1mj(ai) = m, where mj(ai) is the mj

value associated with the ith single-particle and m is a total magnetic projection
constant chosen in advance

3. Parity constraint.

After imposing these constraints, a majority of the enumerated many-body basis
states can be eliminated. A many-body basis state satisfying all three conditions
above is a valid state. The easiest way to generate all many-body basis states is
to enumerate them in a lexicographical order defined below. A many-body basis
state a = (a1, a2, ... , ak) is said to be lexicographically less than another many-body
basis state b = (b1, b2, ... , bk) if and only if there is a j for which aj < bj and ai = bi
for all i < j. For example, if amax = 9, then (1, 3, 4, 8) is succeeded by (1, 3, 4, 9),
which is in turn succeeded by (1, 3, 5, 6), and (1, 3, 8, 9) is succeeded by (1, 4, 5, 6).
The details on how valid many-body states are enumerated can be found in [5].

To carry out nuclear CI calculation on a distributed-memory parallel computer,
the projected Hamiltonian Ĥ must be partitioned and distributed among different
processors. Associated with this partition is a partition and distribution of the many-
body basis states.

Because Ĥ is symmetric, we generate and store only the lower triangular part of
the matrix to minimize memory usage. To create the matrix and processor mapping,
we first partition Ĥ into rectangular blocks of roughly the same size and map the
matrix blocks in the lower triangular part of the 2D partition to different processors.
Figure 2 illustrates one way to map matrix blocks to 6 processors. We label each
distributed block by a processor identification (pid) number that ranges from 1 to np,
where np is the total number of processors in use. Due to the particular distribution
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Figure 2: The projected Hamiltonian Ĥ is partitioned and distributed among 6 pro-
cessors.

pattern shown in Fig. 2, the choice of np is not arbitrary. If we let nd be the number
of diagonal blocks in the partition, then np = nd(nd + 1)/2. For reasons that we
will explain later nd is typically chosen to be an odd integer. In the following, we
will refer to the processors to which the diagonal blocks of Ĥ are assigned as the
diagonal processors. They are labeled by 1 through nd in Fig. 2. In MFDn, row and
column communication groups are created to allow information to be passed among
processors associated with row or column blocks of Ĥ . As we will explain later, the
matrix block to processor mapping shown in Fig. 2 is not the most efficient.

To avoid moving the matrix elements of Ĥ among different processors and to speed
up the construction of Ĥ, we generate the each submatrix block in (2) simultaneously.
Each processor must have two sets of many-body basis states (one corresponding to
the row indices and the other corresponding to the column indices except when the
submatrix block is one the diagonal. In that case, the row many-body basis states
are identical to the column many-body basis states.)

In MFDn, these many-body states are generated in parallel on the diagonal pro-
cessors only. The ith diagonal processor is responsible for enumerating nd ·m + ith
many-body state and checking its validity. The invalid ones are simply discarded.
This generation scheme naturally leads to a nearly cyclic distribution of the valid
many-body states. Once a set of valid many-body basis states generated on the ith
diagonal processor, they are broadcast to all processors that belong to same column
and row processor groups that contain the ith diagonal processor.

The nearly cyclic distribution of the valid many-body states leads to balance load
among different processors because both the sizes of the blocks assigned to different
processors and the number of nonzero matrix elements of Ĥ are approximately the
same [5].

Sometimes, it is convenient to partition or group valid many-body states in some
way so that they can be generated one group at a time. One way to perform such
a partition is to use the {n, l, j} quantum numbers associated with all single-particle
states in Φa as guidance. In this case, a group of many-body basis states associated
with a particular sequence of (n, l, j) quantum numbers {n̄i, l̄i, j̄i} (i = 1, 2, ... , k) is
defined to be

G({n̄i, l̄i, j̄i}) ≡ {Φa|n(ai) = n̄i, l(ai) = l̄i, j(ai) = j̄i), for i = 1, 2, ... , k}. (6)

This particular choice of grouping is useful because the set of many-body states
that belong to the same G({n̄i, l̄i, j̄i}) is invariant under the magnitude square of the

total spin-angular momentum operator Ĵ, which is often denoted by J2.



Recent advances in MFDn 277

Figure 3: A three-level blocking of a portion of the Hamiltonian matrix Ĥ distributed
to an off-diagonal processor. The first (coarsest) level blocks are bordered by solid
lines. The second level of blocks are bordered by thinner dashed lines. The finest
level blocks are bordered by dotted lines, and those blocks containing non-zeros are
shaded.

4 Hamiltonian construction

A pair of many-body states that differ by no more than K single-particle states with
respect to a Hamiltonian that contains at most K-body interactions is called an
interacting pair. A non-interacting pair corresponds to a zero matrix element indexed
by these two states. Such a matrix entry does not need to be evaluated or stored.

Once all many-body basis states have been generated, we can determine the
nonzero structure of the Hamiltonian matrix by comparing each pair of many-body
basis states. However, this brute-force approach of exhaustive comparison requires
time proportional to the square of the number of many-body states. Even though
each such pairwise test is very simple, the sheer number of them renders this process
prohibitively expensive.

A more efficient way to determine the nonzero structure of the Hamiltonian was
developed in [5]. It is based on the observation that the Hamiltonian matrix typi-
cally contains large blocks of zeros. The basic idea is to identify these large blocks
of zeros by separating many-body basis states into different groups and assigning a
group identification (id) to each group. Instead of performing pairwise comparisons
of many-body basis states, we can first perform pairwise comparisons of group id’s.
Such comparison allows us to identify a block that contains zeros only with a single
comparison. Pairwise comparisons of individual many-body basis states only need to
be performed for blocks that are identified to contain nonzero matrix elements. Fur-
thermore, this approach can be implemented recursively, which leads to a hierarchical
scheme for identifying zero matrix blocks. Figure 3 gives a schematic illustration of
what a three-level blocking of a Hamiltonian will look like. The shaded blocks repre-
sent the finest level blocks that contain nonzero matrix elements. In this particular
case, a large block of zeros, the (2,2)-block bordered by solid lines, is identified at the
coarsest level. Nine intermediate-sized zero blocks can be found at the second level.
Sixteen small zero blocks can be seen at the finest level.

5 Algorithms for computing a few eigenvalues

A natural algorithm for computing a selected few eigenvalues and their corresponding
eigenvectors of Ĥ is an iterative method that does not require storing all |A| × |A|
matrix elements. In nuclear physics, the eigenvalues of interest are those at the low end
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of the spectrum of Ĥ because they describe the ground and the first few excited states
of the nucleus. In MFDn, these eigenvalues are computed by the Lanczos method,
which projects Ĥ into a Krylov subspace K(Ĥ, v0) = span{v0, Ĥv0, ... , Ĥℓ−1v0} of
dimension ℓ ≪ n, where v0 ∈ R

n is an arbitrarily chosen starting vector. If V =
(v1, v2, ... , vℓ) consists of an orthonormal basis of K(Ĥ, v0), the Lanczos method can
be described by

ĤV = V T + feTℓ , (7)

where T = V T ĤV is an ℓ × ℓ tridiagonal matrix that represents the projection
of Ĥ into K(Ĥ, v0), f is a residual vector that satisfies V T f = 0, and eℓ is the ℓ-th
column of the identity matrix. Approximations to eigenvalues of Ĥ can be obtained
by computing eigenvalues of the much smaller matrix T . If q is an eigenvector of T
associated with the eigenvalue θ, then z = V q is the approximation to an eigenvector
of Ĥ .

It is well known that well separated extremal eigenvalues converge rapidly in the
Lanczos iteration [6]. Convergence can be further improved by carefully choosing
the starting vector v0 and refining it using the implicitly restarted Lanczos algorithm
developed in [7] and implemented in [8]. The major cost of the algorithm is the
matrix-vector multiplication w ← Ĥv required at each iteration.

An alternative way to compute the k algebraically smallest eigenvalues is to for-
mulate the eigenvalue problem as the following constrained minimization problem

min
ZTZ=I

trace(ZT ĤZ), (8)

where Z ∈ R
|A|×k. This constrained minimization problem can be solved by precondi-

tioned Davidson–Liu method [9] or the locally optimal block preconditioned conjugate
gradient method [10]. Without a preconditioner, the convergence properties of these
methods are similar to that of the Lanczos algorithm. However, when a good pre-
conditioner is available, these methods can be much faster. Sparse matrix vector
multiplication constitutes the major cost of this algorithm also.

Because it is not yet clear how to construct a good preconditioner for this type of
problem, we will focus on the Lanczos algorithm in the subsequent discussion.

6 Scalable implementation

We now describe some techniques for implementing the Lanczos algorithm efficiently
on large-scale distributed memory parallel high performance computers. The com-
putational cost of the Lanczos iteration is dominated by the sparse matrix vector
multiplications (SpMV) w ← Ĥv required to expand the Krylov subspace, as well
as dense matrix vector multiplications required to maintain orthonormality among
columns of V .

6.1 Topology aware task-to-processor mapping for SpMV

To perform the SpMV operations efficiently on a lower triangular processor grid laid
out as in Fig. 2, each input vector is partitioned among the diagonal processors.

A natural way to distribute a vector v to be multiplied by the distributed A matrix
is to partition it conformally with the column partition of A into nd subvectors {vi},
i = 1, 2, ... , nd as shown in Fig. 4. Row and column communication groups are set up
to allow vi to be broadcast among processing units that lie on the ith row or column of
the triangular grid. If we denote the submatrix of A assigned to the (i, j)th processing
unit by Ai,j , each processing unit performs two SpMVs of the form wi = Ai,jvj and
wj = AT

i,jvi. As depicted in Fig. 4, two reductions are required (one along the row
communication groups and one along the column communication groups) to merge
local products wi and wj to form the global result vector w.
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Figure 4: The decomposition of a symmetric matrix over a 2D triangular processing
grid and the communication operations required during the parallel SpMV phase.
Little triangular blocks along the matrix diagonal correspond to diagonal processors,
and little squares correspond to off-diagonal processors. Each processor is responsible
for communications and computations associated with the submatrix assigned to it.

The simple parallel SpMV scheme described above has a serious pitfall. Since dif-
ferent communication groups contain different number of processing units, the com-
munication volume is not balanced among different communication groups. For ex-
ample, the first column group contains nd processing units, whereas the ndth column
group consists of a single processing unit only. This imbalance may cause significant
load imbalances in large-scale computations. To address this, we extend the trian-
gular grid on the left in Fig. 5 to a square grid on the right and place nd(nd + 1)/2
processing units on this grid in such a way that each row or column of the square grid
contains exactly (nd + 1)/2 processing units. (This is why we require nd to be an odd
integer.) We require that the processing unit that receives the Ai,j submatrix to be
placed on either the (i,j)th or the (j,i)th grid point, but not both. In particular, if
the condition i − j ≤ (nd + 1)/2 is satisfied, then the processing unit Pi,j is placed
on the (i,j)th grid point, otherwise it is placed onto the (j,i)th grid point. As a
result, we can then create row and column communication groups with equal number
of processing units based on the location of each processing unit on the square grid.

Although the above strategy ensures that the communication volume among dif-
ferent communication groups is balanced, the actual performance of the program will

Figure 5: The layout of fifteen processing units (a) on a 2D lower triangular grid
topology and (b) on a 5 × 5 square grid to balance row and column communication
groups.
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Figure 6: A schematic illustration of several different mapping schemes for a 5 × 5
grid, from left to right: DM, CM, BDM and BCM. Tasks mapped to the same column
(row) of the grid belong to the same column (row) communication groups. Tasks with
the same fill patterns belong to the same groups created for basis orthogonalization.

depend on other factors. The mapping between computational tasks and physical
processing units has a strong influence, too.

There are many ways to map task blocks defined in Fig. 5 to different processors,
see Fig. 6. The performance of different mapping schemes can be predicted from
several metrics associated with a network load model that depends on the topology of
the processor layout [11,12]. The task-to-process mapping should be defined in a way
to minimize the effective load on the network measured in addition to communication
volume imbalance. In particular, if we assign 1, 2, ... , nd to the diagonal processors
first, and continue the assignment for each of the subdiagonals until all processors on
the triangular grid are labeled, a scheme which we refer to as the diagonal-major (DM)
ordering of processors, the measured performance of the parallel SpMV is relatively
poor. On the other hand, if we go through the triangular processor grid column by
column, and assign 1, 2, ... , nd along the way, which gives the column-major (CM)
ordering, the performance of SpMV is much better.

6.2 Basis orthogonalization

To eliminate spurious eigenvalues [6], MFDn performs full orthogonalization among
the columns of V in (7). As the number of columns in V increases, orthogonalization
can become a computational bottleneck if it is not effectively parallelized.

For basis orthogonalization, we reconfigure the 2D triangular grid used for parallel
SpMV into a nd × (nd + 1)/2 rectangular processing grid as shown in Fig. 7(a). In
an earlier version of MFDn [5], we used a 2D cyclic distribution of the columns
of V , Fig. 7(b). In this scheme, communicating the local pieces of w, which we denote
by wi, among row communication groups of the 2D rectangular grid require expensive
broadcast and reduction operations. We estimate the total communication volume
to be O(nd × n) in this case. When the dimension of A is extremely large and the
number of processing units used in the computation is large, this communication
overhead significantly hinders the scalability of MFDn.

It turns out that we can reduce the communication overhead associated with
basis orthogonalization by using a hierarchical 1D distribution of the basis vectors
among all processing units. Note that each basis vector v was already divided into nd

subvectors vj , j = 1, 2, ... , nd for SpMV computations, where each vj is associated
with the jth column group in the 2D square grid (Fig. 5). Each subvector vj can then
be partitioned further into (nd + 1)/2 subvectors and distributed among processing
units within the same column communication group, as shown in Fig. 7. In this case,
the expensive broadcast operation required with the 2D cyclic distribution is replaced
with a gathering operation (by MPI Gatherv), which involves a communication volume
of O(n). Similarly, the reduce operation after orthogonalization is replaced with a
scattering operation (by MPI Scatterv). The scattering operation involves O(n) data
transfer, as well. As a result, when the basis vectors are partitioned hierarchically
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Figure 7: (a) 2D rectangular grid for 15 processors. (b) 2D cyclic distribution of the
first 9 basis vectors in V over the 5× 3 rectangular grid. (c) Hierarchical 1D distribu-
tion of the basis vectors in V . With this distribution, the vector w is first partitioned
into 5 subvectors {wi}, i = 1, 2, ... , 5, conformally with the column partitioning of A.
Each subvector wi is further partitioned into 3 shorter vectors, to be scattered to the
processing units with matching labels.

in 1D, the total communication volume is O(n) instead of the O(nd × n) volume
associated with the 2D cyclic distribution discussed earlier.

6.3 A hybrid MPI/OpenMP implementation

In recent years, distributed memory multi-core machines have become widely available
for high performance computing. This trend is likely to continue in the foreseeable
future. On such type of machine, a number of compute nodes are connected via
a high speed communication network. Within each node, several processing units
(or cores) share a common pool of memory. Such architecture allows us to reduce
communication overhead and improve the throughput of computation by combining
message passing based parallelization with thread based concurrency.

An effective technique for reducing communication volume is to restrict MPI com-
munication among nodes that do not share a common pool of memory. This can
be achieved through a hybrid programming paradigm, where local computations are
performed in parallel using a thread based programming model such as OpenMP, and
communication among nodes is done through MPI primitives. To perform a multi-
threaded SpMV on a single node, we use the well-known compressed sparse column
(CSC) method. The OpenMP parallelization for SpMV computations is performed at
the outer-loop level. The columns of the sparse submatrix are assigned to OpenMP
threads dynamically in chunks. The chunk size is chosen large enough to minimize the
dynamic load distribution overheads, while maintaining a good load balance among
threads.

The main benefit of a hybrid parallel implementation is the reduction in the mem-
ory footprint of large-scale computations [13]. Another important benefit is the re-
duced communication volume during the broadcast of v and reduction of w vectors,
which is O(n×nd). This implies that for the same computation (so n is fixed), reduc-
ing the number of diagonal processing units nd would lead to reduced communication
overheads. Since nd ≈

√
2np, by defining a processing unit to be a single CPU with t

cores while fixing the total number of cores used at np, we effectively reduce the num-
ber of MPI processes by a factor of

√
t. Consequently, using hybrid MPI/OpenMP
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parallelization, the overall communication volume is reduced by a factor of
√
t com-

pared to a pure MPI implementation.
In the case of basis orthogonalization, the dense matrix vector multiplication per-

formed on each node can be performed by simply calling a thread-enabled BLAS
subroutine dgemv, which is now standard in the math libraries of multi-core plat-
forms. Since the amount of data transfer required in a hierarchical 1D distributed
basis orthogonalization scheme is O(n) and independent of the number of processing
units, there is no reduction in the communication volume in this phase.

In addition to reducing communication volume, a hybrid OpenMP/MPI imple-
mentation on a distributed multi-core system also provides opportunities for hiding
communication overhead by overlapping communication with computation. It is pos-
sible to implement a symmetric SpMV with a single pass over the elements of the
sparse matrix where both the lower triangular and upper triangular calculations are
performed together. The key observation that allows us to hide communication dur-
ing the SpMV phase is that the symmetric SpMV computations can be divided into
two subtasks: wi = Aijvj (which corresponds to the lower triangular part in Fig. 4)
and wj = AT

ijvi (the upper triangular part). Such a separation breaks certain data
dependencies during SpMV computations. Now the input for the second subtask, vi,
is not required by the first subtask and the output of the first subtask, wi, can be
reduced independently of the second subtask. We should note that going over the ma-
trix elements twice by dividing the SpMV into two subtasks will induce a performance
penalty. But since the matrix elements are streamed sequentially from memory, the
additional burden on the memory subsystem is low compared to the irregular accesses
to vector elements during SpMV.

In a pure MPI implementation of the symmetric SpMV, each processing unit is
responsible for both communication and computation. As shown in Fig. 8, in the
absence of non-blocking collective MPI primitives, effective overlapping of communi-
cation and computation in a pure MPI implementation is not trivial.

Figure 8: In a pure MPI implementation of a parallel symmetric SpMV on an off-
diagonal processing unit (left subfigure), the communication blocks (yellow) separates
the computational blocks (light blue). No communication/computation overlapping
is possible. However, in a hybrid OpenMP-MPI implementation (right subfigure),
the broadcast of vi can be overlapped with the wi = Aijvj computation, and the
reduction of wj can be overlapped with the wj = AT

ijvi computation. The red blocks
indicates where thread synchronization, which has very little overhead, is required.
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However, in the hybrid OpenMP/MPI programming model where a processing
unit runs on multiple cores, we may delegate one core (and the thread mapped to
this core) to perform the communication, while other cores (and their corresponding
threads) perform computations in parallel. As a result, the broadcast of vi can be
overlapped with the computations of the first subtask. Similarly, the reduction on wi

can be done while the computations of the second subtask are being still being carried
out.

The hybrid OpenMP/MPI implementation of SpMV illustrated on the right in
Fig. 8 hides the collective communications performed within row groups. When com-
munication groups are created by using a column major ordering as discussed in
section 6.1, communications along row groups tend to be the costliest ones because
processing units that belong to the same row communication group are likely to be
far apart from each other, as opposed to consecutively rank processing units within a
column communication group [14]. Hence hiding communications within row groups
is expected to have a large impact on the overall performance of the computation.

Note that in our scheme, there is no rigid designation of threads such as a commu-
nication thread or a computation thread. Since we dynamically schedule the compu-
tations among threads during SpMV, once the thread responsible for broadcasting vi
completes this communication task, it can join other threads in the multi-threaded
computations of wi = Aijvj . In addition, the reduction of wi can be efficiently over-
lapped with the calculations of wj = AT

ijvi using the same technique, as shown in
Fig. 8.

7 Computational example

In this section, we report performance gains achieved by incorporating the techniques
discussed above in MFDn. We use one particular example to demonstrate performance
gain. More performance results can be found in [11,12]. The test problem we selected
is the 10B nucleus. We are interested in computing 10 algebraically smallest eigenval-
ues of the Hamiltonian matrix Ĥ constructed by setting Nmax = 8 and Mj = 1. A
2-body interaction potential is used. The dimension of the matrix is roughly 4.8×108

and it contains roughly 1.2 × 1012 nonzero matrix elements in the lower triangular
part of the matrix.

Table 1 lists five different implementations of a parallel Lanczos algorithm. They
correspond to progressive improvements we made in terms of task to processor map-
ping, the way the Lanczos basis vectors are distributed, and whether there is any
overlap between computation and communication. The pure MPI implementation
where processes are arranged on a triangular grid in a diagonal major (DM) order

Table 1: Five versions of parallel implementations of the Lanczos algorithm. They
differ by task to processing mapping, which is related to process ordering, the way
the Lanczos basis vectors are distributed and whether there is any overlap between
computation and communication.

Version
Parallelization Process Ortho. Comm

Strategy Ordering Scheme Overlapping

ver1 MPI only DM 2D Cyclic none

ver2 MPI/OpenMP DM 2D Cyclic none

ver3 MPI only BCM 1D Hierarchical none

ver4 MPI/OpenMP BCM 1D Hierarchical none

ver5 MPI/OpenMP BCM 1D Hierarchical row only
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Figure 9: Strong scaling (left subfigure) and speed-ups (right subfigure) achieved by
different versions on the 10B, Nmax=8, Mj=1 testcase starting from 1,140 cores on
up to 10,560 cores.

and the Lanczos vectors are distributed on a 2D rectangular grid in a cyclic fash-
ion [5] is defined as ver1. On the other extreme, ver5 contains all techniques we
discussed above. In particular, it allows the SpMV computations to be overlapped
with communication.

The left subfigure in Fig. 9 shows the scalability of each version in Table 1 for
this test problem. We define the CPU-hour cost of a single Lanczos iteration as the
wall-clock time (in hours) required for an iteration times the number of cores used
in that run. So in Fig. 9, the CPU-hour cost plot of an implementation with perfect
strong-scaling properties would follow a horizontal line. As seen in Fig. 9, ver5 follow
a nearly horizontal line, meaning that it has very good strong-scaling properties.

The right subfigure in Fig. 9 shows the speed-up achieved by each version for
the same testcase. The speed-up measurements from ver1 and ver2 plateau after
about 4,000 cores. Similarly, the gains from ver3 and ver4 start increasing only
slightly after 7,000 and 9,000 cores, respectively. However, we are still able to achieve
significant speed-up beyond 10,000 cores in ver5.
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Abstract

The shapes of neutron-rich exotic Ni isotopes are studied in terms of large-
scale shell model calculations performed by advanced Monte Carlo Shell Model
(MCSM) for the pf -g9/2-d5/2 model space. Experimental energy levels are re-
produced well by a single fixed Hamiltonian based on A3DA. Intrinsic shapes
are analyzed for MCSM eigenstates including fluctuations. Intriguing interplays
among spherical, oblate, prolate and γ-unstable shapes are seen including shape
fluctuations, E(5)-like situation, the magicity of doubly-magic 56,68,78Ni, and
the coexistence of spherical and strongly deformed shapes.

Keywords: Monte Carlo Shell Model; Ni isotopes; shape coexistence

1 James and us

It is a great pleasure for me to give this talk in the conference celebrating the 70th
birthday of James P. Vary. James has given great supports not only to the devel-
opment of Monte Carlo Shell Model by our group but also to computational nuclear
physics activities in Japan. We are very much grateful to his efforts, enthusiasm and
actual collaborations. In fact, the nuclear structure theory group in the University of
Tokyo (Tokyo group) has enjoyed many collaborations with James and his colleagues
in Ames. We visited Ames many times, while James and Pieter Maris visited Japan
also many times. Figure 1 shows several of Japanese members with colleagues in
Ames at one of such occasions on the 28th of February, 2010.

2 Introduction

The Monte Carlo Shell Model has been explained to a good detail by Abe with co-
authors in this proceedings [1]. We then skip the description of the method, and
discuss what have been and can be obtained. We further restrict ourselves to calcula-
tions for heavier nuclei such as Ni isotopes. The size of the calculation is quite huge,
though. We start with the motivations of such studies.

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 286.

http://www.ntse-2013.khb.ru/Proc/Otsuka.pdf.
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Figure 1: Photo taken in front of the Department of Physics, the Iowa State University
on the 28th of February, 2010.

Atomic nuclei exhibit simple and robust regularities in their structure comprised
of Z protons and N neutrons. A very early example is the (spherical) magic numbers
conceived by Mayer and Jensen [2]. These magic numbers dominate low-energy dy-
namics of stable nuclei and their neighbors on the Segré chart. Another basic feature
is nuclear shape, which has been one of the central issues of nuclear physics since
Rainwater [3] and Bohr and Mottelson [4]. The shape varies as Z or N changes in
such a way that it tends to be spherical near magic numbers, while becomes more
deformed towards the middle of the shell. Thus, Z and N , in connection to the magic
numbers, are known to be key variables in determining the shape of stable nuclei. Rare
isotope beam technology developed since [5] has made experiments on exotic nuclei
feasible, casting challenges to the pictures mentioned above. Even magic numbers
are not exception: the changes of the shell structure due to nuclear forces, referred
to as shell evolution [6], have been seen including disappearance of traditional magic
numbers and appearance of new ones. A recent example is the discovery of N = 34
magic number [7] after its prediction a decade ago [8], while many other cases have
been discussed [6, 9–11].

It is then of much interest to explore shapes of exotic nuclei and to look for
relations to the shell evolution. In this talk, we report results of state-of-the-art
large-scale shell model calculations for a wide range of Ni isotopes, focusing on these
points. While the ground state turns out to be spherical basically, a strongly prolate
deformed band appears at low excitation energy in some nuclei, similarly to shape
coexistence known as a distinct phenomenon over decades [12–14]. The formation of
this band is discussed in relation to reduced shell gaps brought about by the proton-
neutron tensor force in major configurations (of single-particle orbits) of deformed
states. (We introduced, after the conference, a new type of shell evolution due to
configuration changes within the same nucleus, calling it Type II shell evolution. The
shell evolution by the change of N or Z [6] is then referred to as Type I.) We shall
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discuss other interesting features, e. g., magicity of doubly-magic 56,68,78Ni, shape
fluctuations including γ instability, and E(5)-like case [15].

We discuss, in this talk, the structure of Ni isotopes with even N = 28−50,
utilizing results obtained by the advanced Monte Carlo Shell Model (MCSM) calcu-
lation [16–18] run on K computer for ∼2 × 1010 core seconds in total. The model
space consists of the full pf shell, 0g9/2 and 1d5/2 orbits for both protons and neu-
trons. There is no truncation within this space as an advantage of MCSM. The
Hamiltonian is based on the A3DA Hamiltonian with minor revisions [16, 19]. The
spurious center-of-mass motion is removed by the Lawson method [20].

3 Results for Ni isotopes

Figure 2 shows yrast and yrare levels by the present calculation compared to ex-
periment [21]. Systematic behaviors are visible in experimental yrast levels as well
as Jπ = 0+2 and 2+2 yrare levels, with a remarkable agreement to the theoretical trends.
Such good agreement has been obtained with a single fixed Hamiltonian, and sug-
gests that the structure of Ni isotopes can be studied with it. The B(E2; 0+1 → 2+1 )
values with neutron and proton effective charges, 0.5 and 1.5, respectively, are shown
in Fig. 2 compared to experiment [23] with certain discrepancies for heavier isotopes,

Figure 2: Energy levels for (a) yrast and (b) yrare states of Ni isotopes with even N .
Symbols are experimental data for Jπ=0+ (black triangle), 2+ (open red square), 4+

(green filled square), 6+ (open blue circle) and 8+ (filled purple circle) [21,22]. Lines
are present MCSM calculations with the same color code. (c) B(E2; 0+1 → 2+1 ) values
by experiment [23] and by the present calculation.
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Figure 3: Energy levels of 68Ni by present calculation (left panel) and by experiment
(right panel) [21].

where uncertainties are larger and (p, p′) data is converted (N = 46) [24,25]. A more
systematic comparison with precise data is desired. Relevant shell model calculations
have been reported [26,27]. In particular, those of [26] are remarkable achievement of
large-scale conventional shell-model approach, with good agreement to experiment.
Many experimental data are, however, to be obtained, and it is not the purpose of
this work to compare different calculations. The primary objective here is to predict
novel systematic change of band structures in 68−78Ni isotopes.

We show, in Fig. 3, a more detailed level scheme for 68Ni, including negative-
parity states. This nucleus has attracted much attention [22, 27–34] from theoretical
and experimental sides. The positive-parity levels are classified according to their
shape categories: spherical, oblate and prolate. We shall come to this point later.
The correspondence between theoretical and experimental levels can be made with
rather good agreement. Note that this is the first report of calculated levels beyond 2+

and those of negative-parity.

4 Intrinsic shapes and wave functions

Figure 4 depicts, for selected states of 68,70,74,78Ni isotopes, potential energy surface
(PES) for the present Hamiltonian obtained by the Constraint Hartree–Fock (CHF)
method with usual constraints on quadrupole moments Q0 and Q2. We can see many
features: for instance, for 68Ni, there is a spherical minimum stretched towards modest
oblate region, as well as a prolate local minimum.

The MCSM wave function is expressed by a superposition of Slater determinants
with the angular-momentum and parity projector P [Jπ],

Ψ =
∑

i

ciP [Jπ] Φi . (1)

Here, ci denotes an amplitude, Φi stands for the Slater determinant consisting of

one-nucleon wave functions φ
(i)
1 , φ

(i)
2 , ... , φ

(i)
n with

φ
(i)
k =

∑

l

D
(i)
k,l ul, (2)

where ul is the l-th single-particle state in the original model space in m-scheme,
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Figure 4: Potential energy surfaces (PES) of Ni isotopes, coordinated by usual Q0

and Q2 (or γ). The energy relative to the minimum is shown by contour plots. Circles
on the PES represent shapes of MCSM basis vectors (see the text).

and D implies amplitude determined by MCSM process. Φi is the product of proton
and neutron sectors, with n being the number of valence protons or neutrons.

For each Φi, we take the following process. We calculate its quadrupole moment
matrix, and diagonalize. Three axes are obtained with Q0 and Q2 values. We then
place a circle on the PES at the point corresponding to these Q0 and Q2 values.
The size (i. e. area) of the circle is set to be proportional to the overlap probability
between Ψ and the normalized P [Jπ] Φi. Thus, the location of the circle implies the
intrinsic shape of Φi, and its size the importance of it in the eigenstate, Ψ. Note
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that the states P [Jπ] Φi (i = 1, 2, ...) are not orthogonal each other in general, but
the distribution pattern of the circles provides unique and clear message on intrinsic
shape of the shell-model eigenstate as we shall see.

Figure 4(a) shows such circles for the ground state of 68Ni. We see many large
circles near the spherical point, Q0 = Q2 = 0. In general, there can be many points
close to one another partly because each circle represents a Slater determinant and
a two-body interaction, particularly its pairing components, mixes different Slater
determinants. Those Slater determinants should have similar shapes so that the
mixing between them can occur. We see also notable spreading of circle distribution
from the spherical point. This implies the extent of the shape fluctuation. The 0+2
state in Fig. 4(b) shows similar spreading but the locations are shifted to moderately
oblate region (β2 ∼ −0.2). Although there is no clear potential barrier between the
spherical and oblate regions of the PES, the antisymmetrization pushes the 0+2 state
away from the 0+1 state. Figure 4(c) exhibits many circles in a profound prolate
minimum with Q0 ∼200 fm2 (β2 ∼ 0.4). We emphasize that we can analyze, in this
way, the intrinsic shape even for 0+ states without referring to E2 properties.

Figures 4(d, e) show the same plots for the 2+1,2 states, while Figs. 4(f, g) the same

plots for the 4+1,2 states. The 2+1 and 4+1 states exhibit patterns almost identical to that

of the 0+2 state, which suggests the formation of the modestly-oblate band. We would
like to emphasize that the present analysis is very useful to identify the band structure
buried in many-body calculations. Such striking similarity is found also among the 0+3 ,
2+2 and 4+2 states with a strong-prolate-band assignment. We mention that a band
similar to this prolate band has been pointed out by a shell-model calculation in [33].
The band structure is thus clarified, with further verification by E2 matrix elements,
and is presented in Fig. 3 including 4+ and 6+ members.

The prolate band being discussed comes down to the 0+2 and 2+2 states as N in-
creases from 40 to 42 or 44 [see Figs. 4(h, k)]. Observed 2+2 level of 70Ni is as low
as 2 MeV, which is reproduced well by the present calculation as shown in Fig. 2(b),
whereas this level has not been reproduced by calculations with limited configura-
tions [35, 36]. In addition, Fig. 2(a) depicts the 2+1 levels in good agreement to ex-
periment, while strong fluctuation is seen towards oblate shape in Figs. 4(h, k). This
work is the first report from theory for this low-lying 2+2 state.

In moving to 74Ni, Figs. 4(l, m) exhibit another interesting pattern. The distribu-
tion of the circles becomes wide in both magnitude and γ direction, i. e., triaxiality.
A similar distribution is obtained also for the 2+2 states, and the situation is the same
for 76Ni. It is of interest that this resembles the critical point symmetry E(5) [15].

Finally, we come to 78Ni. This is supposed to be a doubly closed shell nucleus.
Figures 4(n, o) show the PES and wave function distribution for the 0+1 and 2+1 states.
The PES goes up rapidly, but to be surprising, the wave functions are spread on the
bottom fully, in a almost identical ways between the 0+1 and 2+1 states, which clearly
differs from what we can expect from a closed shell. The distribution is much wider
than that of 68Ni. It is of much interest that comparing to 56Ni and 78Ni, 68Ni is the
closest to the doubly closed picture among the three doubly magic isotopes of Ni.

5 Summary

In summary, the advanced MCSM calculations present intriguing variations of shapes
analyzed in terms of intrinsic shapes. Thus, the shapes of exotic nuclei provide us with
many new features. In stable nuclei, the shape has been often discussed as functions
of N and Z, for instance, shape evolution from vibrational to rotational nuclei as N
increases. Such simple classification may no longer be appropriate in exotic nuclei.
The role of large-scale shell-model calculations is quite significant, and will become
even more important in future.
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Abstract

We report on our recent application of the Monte Carlo Shell Model (MCSM)
to no-core calculations. After the brief introduction, the performance of the
MCSM on the K computer is discussed. At the initial stage of the application,
we have performed benchmark calculations in the p-shell region. Results are
compared with those in the Full Configuration Interaction and No-Core Full
Configuration methods. These are found to be consistent with each other within
quoted uncertainties when they could be quantified. The preliminary results
in Nshell = 5 reveal the onset of systematic convergence pattern.

Keywords: Monte Carlo Shell Model; No-Core Shell Model; ab initio approach

1 Introduction

One of the major challenges in nuclear theory is to reproduce and to predict nu-
clear structure and reactions from ab initio calculations with realistic nuclear forces.
Among the ab initio nuclear many-body approaches for A ≥ 4 [1], the No-Core Shell
Model (NCSM) is one of the powerful methods for the study of nuclear structure and
reactions in the p-shell nuclei [2].

As the NCSM treats all the nucleons on an equal footing, computational de-
mands for the calculations explode exponentially as the number of nucleons increases.
Current computational resources limit the direct diagonalization of the Hamiltonian
matrix using the Lanczos algorithm to basis spaces with a dimension of around 1010.
Shell-model calculations in the Nshell truncation is limited in the lower p-shell re-
gion (Fig. 1). In order to access heavier nuclei beyond the p-shell region with larger
basis dimensions, many efforts have been devoted to the NCSM calculations. One
of these approaches is the Importance–Truncated NCSM (IT-NCSM) [3] where the
basis spaces are extended by using an importance measure evaluated using pertur-
bation theory. Another approach is the Symmetry–Adapted NCSM (SA-NCSM) [4]
where the basis spaces are truncated by the selected symmetry groups. Similar to
these attempts, the Monte Carlo NCSM (MC-NCSM) [5, 6] is one of the promising
candidates to go beyond the Full Configuration Interaction (FCI) method which is a
different truncation of the basis states that commonly used in the NCSM. Shell-model

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 294.
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calculations with an assumed inert core by the MCSM have succeeded in obtaining
the approximated solutions where the direct diagonalization is difficult due to large
dimensionalities as described in Fig. 2.

In these proceedings, we focus on the latest application of the MCSM toward the
ab initio no-core calculations, which has become feasible recently with the aid of the
major developments in the MCSM algorithm [7] and also a remarkable growth in the
computational power of the state-of-the-art supercomputers, such as the K computer.
Most of the benchmark results in the MC-NCSM presented here are summarized in
Ref. [6].

2 Monte Carlo Shell Model

2.1 Brief overview

The MCSM has been developed mainly for conventional shell-model calculations with
an assumed inert core [8]. Recently the algorithm and code itself have been heav-
ily revised and rewritten so as to accommodate massively parallel computing envi-
ronments [7]. Now we can apply the MCSM not only to conventional shell-model
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MCSM results, and black circles are for the conventional shell-model results by the
direct diagonalization with the Lanczos technique.
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calculations but also to no-core calculations.
The MCSM approach proceeds through a sequence of diagonalization steps within

the Hilbert subspace spanned by the deformed Slater determinants in the HO single-
particle basis. The many-body basis state |ΨJπM 〉 is approximated as a linear combi-
nation of non-orthogonal angular-momentum (J) and parity (π) projected deformed
Slater determinants with good total angular momentum projection (M),

|ΨJπM 〉 =

Nb∑

n=1

fn

J∑

K=−J

gnK P J
MK P π|φn〉, (1)

where Nb is the number of Slater determinants. P J
MK is the projection operator for

the total angular momentum J with its z-projection in the laboratory (body-fixed)
frame, M (K). P π is the projection operator for the parity. The coefficients f and g
are determined by the diagonalization of Hamiltonian matrix. The deformed Slater
determinant |φ〉 in Eq. (1) is described as

|φ〉 =
A∏

i=1

a†i |−〉, (2)

with the vacuum |−〉 and the creation operator, a†i =
∑Nsp

α=1 c
†
αDαi. Nsp is specified

by the cutoff of the single particle basis space, Nshell. The transformation coeffi-
cients D form the complexNsp×A matrix with the normalization condition, D†D = 1.
Importance-truncated bases |φ〉 are stochastically sampled so as to minimize the en-
ergy variationally. With increasing the number of importance-truncated basis states,
the computed energy converges from above to the exact value and gives the variational
upper bound. An exploratory no-core MCSM investigation of the proof-of-principle
type has been done for the low-lying states of the Be isotopes by applying the existing
MCSM algorithm with a core to a no-core problem [5].

Recent improvements on the MCSM algorithm have enabled significantly larger
calculations [7]. The crucial developments for no-core calculations achieve (1) the
efficient computation of matrix products for the most time-consuming part in the
MCSM calculations, (2) the conjugate gradient method in the basis-search process,
and (3) the energy-variance extrapolation for our MCSM (approximated) results into
the FCI (exact) ones in the finite basis spaces. Because of space limitations, we refer
for the details of these improvements to Ref. [7].

As a typical example of the implementation, the behavior of the ground-state
energies of 4He (0+) and 12C (0+) with respect to the number of basis states and to
the energy variance are shown in Fig. 3. From Fig. 3, one can see that the MCSM
results can be extrapolated into the FCI ones by using the quadratic fit function with
respect to the energy variance ∆E2 of E(∆E2) = E(∆E2 = 0) + c1∆E2 + c2(∆E2)2

with the fit parameters, E(∆E2 = 0), c1, and c2.

2.2 Tests on the K computer

At the initial stage of the implementation of K computer, we have performed some
test calculations to measure our code performance. In this subsection, we show some
of the test calculations: the ratio to the peak performance and the parallel efficiency
of our code.

In order to measure our code performance on K computer, we have chosen the
optimization of 15th basis dimension of the wave function in Nshell = 5 with 100 CG
iterations without the preprocessing as a test case. The code has run on K computer
by using MPI/OpenMP with 8 threads.

Figure 4 illustrate our recent MCSM code performance. The left panel of Fig. 4
shows the ratio to the peak performance in the calculation of the 4He 0+ ground
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Figure 3: 4He and 12C 0+ ground-state energies as functions of number of basis
states (left) and energy variance (right). From the above to the bottom, the symbols
(horizontal dashed lines in the left figure and open symbols at the zero energy variance
in the right figure) are the MCSM (FCI) results in Nshell = 2, 3, 4 and 5, respectively.
Note that the results of 12C in Nshell = 4 and 5 are obtained only by the MCSM. See
Ref. [6] for the details.

state. Although the performance decreases as the number of CPU cores increases, it
is around 30–40% up to 30720 cores (8 cores per node). The right panel of Fig. 4
shows the ratio to the peak performance as a function of the atomic numbers. The
nuclear states listed in the figure are for the ground state of each nucleus. From the
figure, the dependence of the performance on atomic number A is relatively weak for
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of nucleons (right). Red circles denotes the results with 30720 cores, and blue squares
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the number of nucleons at least up to A = 12.

For testing the parallel efficiency, we have measured the dependence on the number
of CPU cores. Figure 5 demonstrates the speedup (left) and the strong scaling (right)
of our MCSM code on K computer as a function of the cores. The test case is the
optimization of the 15th (48th) basis for 4He (0+) ground state in Nshell = 5 (6)
with 100 CG iterations without the preprocessing. Each setup has been chosen so
that the number of MPI tasks is divisible by Nprocs, for simplicity. 32× 32× 30 mesh
points are used for the angular momentum projection, and 2 for the parity projection.

The left panel describes the speedup with arbitrary unit. In Fig. 5, the dotted
line describes the perfect (ideal) scaling. The right panel of Fig. 5 is about the strong
scaling. Here αstrong is defined by the ratio of the time T with the number of CPU
cores Nprocs as αstrong ≡ T (Nprocs)/(T (Nprocs/2)× 2). In this definition, αstrong = 1
describes the perfect strong scaling. As seen in Fig. 5, the strong scaling is nearly
perfect up to 98304 cores both in Nshell = 5 and 6.

3 Benchmarks

The recent development of the MCSM algorithm [7] , together with significant com-
putational resources, enables us to perform a benchmark of no-core MCSM calcula-
tions [6]. Figure 6 is the recent comparison of the energies for each state and basis
space in the selected p-shell nuclei between the MCSM and FCI methods. The FCI
gives the exact energies in the finite basis spaces, while the MCSM provides approxi-
mate energies. Thus the comparisons between them show how well the MCSM works
in no-core calculations. Furthermore, we also plot the No-Core Full Configuration
(NCFC) [9] results for the states of 4 ≤ A ≤ 10 as the fully converged energies in the
infinite basis space.

For this benchmark comparison, the JISP16 two-nucleon interaction [10] is adopted
and the Coulomb force is turned off. The energies are evaluated for the optimal
harmonic oscillator frequencies where the calculated energies are minimized for each
state and basis space. Here the contributions from the spurious center-of-mass motion
are ignored for simplicity. The basis space ranges from Nshell = 2 to 5 where Nshell is
the number of the major shell included in the basis space. Some energies in Nshell = 4
and 5 are available only from the MCSM results, as the M -scheme dimensions for
these states are already close to or above the current computational limitation in the
FCI approach. We took 100 importance-truncated basis states and extrapolated the
results by the energy variance.

As seen in Fig. 6, the energies are consistent with each other to within ∼ 100 keV
where both results are available. Furthermore the Nshell = 5 results begin to show
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and 3 (green dotted lines) are almost overlapped with the MCSM results (red and
green solid lines), which means that the MCSM results are converged well to the FCI
results. Some results in Nshell = 4 and 5 were obtained only with MCSM.

the trend of the convergence to the NCFC results obtained by extrapolating the Nmax

truncated results to the infinite basis space. The next step is to extrapolate the Nshell

results to the infinite basis space by using the extrapolation techniques in the Nmax

truncation [9, 11, 12]. In principle, the results extrapolated to the infinite basis space
should be consistent with each other in spite of how the basis spaces are truncated.
It is interesting to examine whether the extrapolated results in the Nshell and Nmax

truncations converge to the same value within quantified uncertainties. The detailed
comparisons among the MCSM, FCI, and NCFC methods are discussed in Ref. [6].

4 Summary

By exploiting the recent development in the MCSM algorithm, no-core calculations
with the MCSM algorithm can be achieved on massively parallel supercomputers. As
a test on such environments, we have discussed the performance of the MCSM on the
K computer. From the benchmark calculations, the observables give good agreement
between the MCSM and FCI results in the p-shell nuclei. The Nshell = 5 results reveal
the onset of systematic convergence pattern. Further work is needed to investigate
the extrapolation to the infinite basis space in the Nshell truncation.
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Abstract

Neutron matter presents a unique system in chiral effective field theory (EFT),
because all many-body forces among neutrons are predicted to next-to-next-
to-next-to-leading order (N3LO). We discuss perturbative and first Quantum
Monte Carlo (QMC) calculations of neutron matter with chiral EFT interac-
tions and their astrophysical impact for the equation of state and neutron stars.

Keywords: Chiral EFT; three-body forces; QMC; neutron matter; neutron stars

1 Chiral EFT and many-body forces

Chiral EFT describes the interactions between nucleons at momentum scales of the
order of the pion mass Q ∼ mπ based on the symmetries of QCD [1, 2]. The re-
sulting nuclear forces are organized in a systematic expansion in powers of Q/Λb,
where Λb ∼ 500 MeV denotes the breakdown scale, leading to a typical expansion
parameter Q/Λb ∼ 1/3 for nuclei. At a given order this includes contributions from
one- or multi-pion exchanges that govern the long- and intermediate-range parts and
from short-range contact interactions. The short-range couplings are fit to few-body
data and thus capture all short-range effects relevant at low energies.

In particular, chiral EFT provides a systematic basis to investigate many-body
forces and their impact on few- and many-body systems [3]. In addition, it is possible
to estimate theoretical uncertainties in the EFT. An important feature of chiral EFT
is the consistency of two-nucleon (NN) and three-nucleon (3N) interactions. This
predicts the two-pion-exchange parts of the leading (N2LO) 3N forces, leaving only
two low-energy couplings cD, cE that encode pion interactions with short-range NN
pairs and short-range three-body physics. At the next-order, all many-body inter-
actions are predicted parameter-free with many new structures [1]. This makes the
application of N3LO 3N and 4N forces very exciting. This is especially the case, be-
cause 3N forces have been found to be key for neutron matter [4] and for neutron-rich
nuclei [3, 5], see, e.g., the recent work on the calcium isotopes [6–10].

2 Neutron matter from chiral EFT interactions

The physics of neutron matter ranges from universal properties at low densities [11,12]
to the densest matter in neutron stars. For neutrons, the cD, cE parts of N2LO
3N forces do not contribute due to the Pauli principle and the pion coupling to the

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 302.

http://www.ntse-2013.khb.ru/Proc/Schwenk.pdf.
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nucleon spin (also the c4 two-pion-exchange part does not contribute due to the isospin
structure) [4]. Therefore, all three- and four-neutron forces are predicted to N3LO. To
study these, we recently presented the first calculation of the neutron-matter energy
that includes all NN , 3N , and 4N interactions consistently to N3LO [13,14].

The largest contributions to the neutron-matter energy arise from NN interac-
tions. In Refs. [13,14] we studied the perturbative convergence of all existing NN po-
tentials at N2LO and at N3LO of Epelbaum, Glöckle, and Meißner (EGM) [15,16] with
cutoffs Λ/Λ̃ = 450/500, 450/700, 550/600, 600/600, and 600/700 MeV, where Λ and Λ̃
denote the cutoff in the Lippmann–Schwinger equation and in the two-pion-exchange
spectral-function regularization, respectively; as well as the available N3LO NN po-
tentials of Entem and Machleidt (EM) [2, 17] with cutoffs Λ = 500 and 600 MeV.

To study the perturbative convergence of the different NN potentials, we calcu-
lated the Hartree–Fock as well as second- and third-order energies, only including
particle-particle diagrams, with both free and Hartree–Fock single-particle energies.
The results for NN and N2LO 3N forces are shown in Fig. 1 for the perturbative NN
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Figure 1: Panels a–c: Neutron-matter energy per particle E/N as a function of density n
for the N3LO NN potentials that exhibit a perturbative convergence. The dashed lines
are Hartree–Fock results. The filled and shaded bands are second- and third-order results,
where at each order the band ranges from using a free to a Hartree–Fock spectrum. All
calculations include N2LO 3N forces with a 3N cutoff Λ = 2.0 fm−1 and low-energy cou-
plings c1 = 0.75GeV−1 and c3 = 4.77GeV−1. For details see Ref. [14]. Panel d: Same for
the POUNDerS N2LO NN potential (without 3N forces).
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interactions for a 3N cutoff Λ = 2.0 fm−1 and a particular choice of c1 = 0.75 GeV−1,
c3 = 4.77 GeV−1, although the general picture is unchanged for other coupling val-
ues. The bands result from using a free to a Hartree–Fock single-particle spectrum.
The N3LO EGM potentials with cutoffs 450/500 MeV and 450/700 MeV exhibit only
small energy changes from second to third order. This indicates that these potentials
are perturbative for neutron matter. For the EM 500 MeV potential the difference
between second and third order is larger compared to the EGM potentials. Since this
potential is most commonly used in nuclear structure calculations, we include it in
our complete N3LO calculation. The perturbative convergence for these potentials
in neutron matter is similar to renormalization-group-evolved interactions in nuclear
matter [18]. We have also studied in Fig. 1 the POUNDerS N2LO NN potential [19],
which is found to be perturbative as well. In addition, there are in-medium chiral per-
turbation theory schemes that treat the Fermi momentum as an explicit scale [20,21].

The larger-cutoff N3LO EGM 550/600 MeV and 600/600 MeV potentials as well
as the EM 600 MeV potential are not used in our calculations because they show large
changes from second to third order [14]. This demonstrates that these interactions
are nonperturbative. The N3LO EGM 600/600 MeV potential is not used because it
breaks Wigner symmetry (CT = 0) at the interaction level (as discussed in Ref. [14]).

The subleading N3LO 3N forces have been derived recently [22,23]. They can be
grouped into five topologies, where the latter two depend on the NN contacts CT/S :

V N3LO
3N = V 2π + V 2π-1π + V ring + V 2π-cont + V 1/m. (1)

V 2π, V 2π-1π, and V ring denote the long-range two-pion-exchange, the two-pion–one-
pion-exchange, and the pion-ring 3N interactions, respectively [22]. The terms V 2π-cont

and V 1/m are the short-range two-pion-exchange–contact 3N interaction and 3N rel-
ativistic corrections [23]. The N3LO 4N forces have been derived in Refs. [24, 25]
and in general depend on the contact CT , but in neutron matter the CT -dependent
parts do not contribute. There are seven 4N topologies that lead to non-vanishing
contributions. In neutron matter only two three-pion-exchange diagrams (in Ref. [24]
named V a and V e) and the pion-pion-interaction diagram (V f ) contribute [13].

The N3LO many-body interactions are evaluated in the Hartree–Fock approxima-
tion, which is expected to be reliable for neutron matter [4]. We show the individual
contributions of the 3N and 4N forces in Fig. 2, where the bands correspond to
the 3N/4N cutoff variation Λ = 2−2.5 fm−1. The N3LO two-pion-exchange expec-
tation value (panel 1) sets the expected scale of N3LO 3N interactions. Compared
to this, we find relatively large expectation values in the V 2π-1π, V ring, and V 2π-cont

topologies. This could indicate that in these topologies ∆ contributions shifted to
N4LO are expected to be important [14, 26]. The 3N relativistic corrections and the
contributions from N3LO 4N forces are small (see also Ref. [27]). However, also for 4N
forces additional larger contributions from ∆ excitations may arise at N4LO [28].

The complete N3LO result for neutron matter is shown in the left panel of Fig. 3,
which includes all NN , 3N , and 4N interactions to N3LO [13]. At saturation density,
we obtain for the energy per particle E/N = 14.1−21.0 MeV. This range is based
on different NN potentials, a variation of the couplings c1 = −(0.75−1.13) GeV−1,
c3 = −(4.77−5.51) GeV−1 [26], which dominates the total uncertainty, a 3N/4N -
cutoff variation Λ = 2−2.5 fm−1, and the uncertainty in the many-body calculation.

The neutron-matter energy in Fig. 3 is in very good agreement with NLO lattice
results [29] and QMC simulations [12] at very low densities (see also the inset). At
nuclear densities, we compare our N3LO results with variational calculations based
on phenomenological potentials (APR) [30], which are within the N3LO band, but do
not provide theoretical uncertainties. In addition, we compare the density dependence
with results from Auxiliary Field Diffusion MC (AFDMC) calculations (GCR) [31]
based on nuclear force models adjusted to a symmetry energy of 32 MeV.
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Figure 3: Left panel: Neutron-matter energy per particle E/N as a function of den-
sity n including NN , 3N and 4N forces to N3LO for the given EM/EGM NN poten-
tials [13]. The bands include uncertainty estimates due to the many-body calculation,
the low-energy ci couplings, and by varying the 3N/4N cutoffs. For comparison, re-
sults are shown at low densities (see also the inset) from NLO lattice [29] and QMC
simulations [12], and at nuclear densities from variational [30] and Auxiliary Field
Diffusion MC calculations (GCR) [31] based on phenomenological potentials. Right
panel: Neutron-matter energy per particle at N2LO (upper cyan band that extends
to the dashed line) and N3LO (lower red band) [13]. The bands are based on the
EGM NN potentials and include the same uncertainty estimates.

We also compare the convergence from N2LO to N3LO in the same calcula-
tional setup. For this comparison, we only consider the EGM potentials with
cutoffs 450/500 MeV and 450/700 MeV. This leads to an N3LO energy range
of 14.1−18.4 MeV per particle at n0. For the N2LO band in the right panel of Fig. 3,
we have estimated the theoretical uncertainties in the same way, and find an energy
of 15.5−21.4 MeV per particle at n0. The two bands overlap but the range of the
band is only reduced by a factor of 2/3 in contrast to the 1/3 expected from the EFT
power counting. We attribute this to ∆ effects (see the discussion in Refs. [13, 14]).

3 QMC calculations with chiral EFT interactions

Quantum Monte Carlo methods have not been used with chiral EFT interactions due
to nonlocalities in their present implementation in momentum space. Nonlocalities
are difficult to handle in QMC [32]. In the momentum-space interactions, there are
two sources of nonlocalities: first, due to regulator functions that lead to nonlocal
interactions upon Fourier transformation, and second, due to contact interactions that
depend on the momentum transfer in the exchange channel k and from k-dependent
parts in pion-exchange contributions beyond N2LO. For applications in QMC, we
have developed local chiral EFT interactions in Ref. [32].

To avoid regulator-generated nonlocalities for the long-range pion-exchange parts,
we use the local coordinate-space expressions for the LO one-pion-exchange as well
as NLO and N2LO two-pion-exchange interactions [33,34] and regulate them directly

in coordinate space using the function flong(r) = 1− e−(r/R0)
4

, which smoothly cuts
off interactions at short distances r < R0 while leaving the long-range parts un-
changed [32]. So, R0 takes over the role of the cutoff Λ in momentum space.

To remove the k-dependent contact interactions to N2LO, we make use of the
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freedom to choose a basis of short-range operators in chiral EFT interactions (similar
to Fierz ambiguities). At LO, one usually considers the two momentum-independent
contact interactions CS + CT σ1 · σ2. However, it is equivalent to choose any two
of the four operators 1, σ1 · σ2, τ1 · τ2, and σ1 · σ2 τ1 · τ2, with spin and isospin
operators σi, τi, because there are only two S-wave channels due to the Pauli principle.
It is a convention in present chiral EFT interactions to neglect the isospin dependence,
which is then generated from the exchange terms [15–17].

We use this freedom to keep at NLO (order Q2) an isospin-dependent q2 contact
interaction and an isospin-dependent (σ1·q)(σ2·q) tensor part in favor of a nonlocal k2

contact interaction and a nonlocal (σ1 · k)(σ2 · k) tensor part. This leads to the
following seven linearly independent contact interactions at NLO that are local [32],

V NLO
short = C1 q

2 + C2 q
2 τ1 · τ2 +

(
C3 q

2 + C4 q
2 τ1 · τ2

)
σ1 · σ2

+ i
C5

2
(σ1 + σ2) · q× k + C6 (σ1 · q)(σ2 · q) + C7 (σ1 · q)(σ2 · q) τ1 · τ2, (2)

where the only k-dependent contact interaction (C5) is a spin-orbit potential.
The low-energy couplings CS/T at LO plus C1−7 at NLO and N2LO are fit-

ted in Ref. [36] for different R0 to the NN phase shifts of the Nijmegen partial-
wave analysis [35] at laboratory energies Elab = 1, 5, 10, 25, 50, and 100 MeV, us-
ing a local regulator. The reproduction of the isospin T = 1 S- and P -waves is
shown order by order in Fig. 4, where the bands are obtained by varying R0 be-
tween 0.8−1.2 fm and provide a measure of the theoretical uncertainty. At N2LO,
an isospin-symmetry-breaking contact interaction (Cnn for neutrons) is added, which
is fitted to ann = −18.8 fm. As shown in Fig. 4, the comparison with NN phase
shifts is very good for Elab . 150 MeV. This is similar for higher partial waves and
isospin T = 0 channels. In cases where there are deviations for higher energies (such
as in the 3P2), the width of the band signals significant theoretical uncertainties due
to the chiral EFT truncation at N2LO. The NLO and N2LO bands nicely overlap or
are very close, but it is also apparent that the bands at N2LO are of a similar size
as at NLO. This is because the width of the bands at both NLO and N2LO shows
effects of the neglected order-Q4 contact interactions.

Since nuclear forces contain quadratic spin, isospin, and tensor operators (of the

form σα
i A

αβ
ij σ

β
j ), the many-body wave function cannot be expressed as a product of

single-particle spin-isospin states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential increase in the number of
possible states. However, the AFDMC method [37] is capable of efficiently handling
spin-dependent Hamiltonians. AFDMC rewrites the Green’s function by applying a
Hubbard–Stratonovich transformation using auxiliary fields to change the quadratic
spin-isospin operator dependences to linear. For the case of neutrons, it is also possible
to include spin-orbit interactions and 3N forces in AFDMC nonperturbatively [38,39].

In the upper panel of Fig. 5 we show first AFDMC calculations for the neutron-
matter energy with local chiral EFT NN interactions at LO, NLO, and N2LO [32].
At each order, the full interaction is used both in the propagator and when evaluating
observables. The bands in Fig. 5 give the range of the energy obtained by varying R0

between 0.8−1.2 fm, where the softer R0 = 1.2 fm interactions yield the lower energies.
At LO, the energy has a large uncertainty. The overlap of the bands at different orders
in Fig. 5 is very systematic. In addition, the result that the NLO and N2LO bands
are comparable is expected from the discussion of the phase-shift bands in Fig. 4 and
from the large ci entering at N2LO.

Our AFDMC results provide first nonperturbative benchmarks for chiral EFT
interactions at nuclear densities. We have performed perturbative calculations as in
the previous section based on the same local N2LONN interactions. The perturbative
energies are compared in the lower panel of Fig. 5 to the AFDMC N2LO results.
For the softer R0 = 1.2 fm (Λ ∼ 400 MeV) interaction, the third-order corrections
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Figure 4: Neutron-proton phase shifts as a function of laboratory energy in the 1S0,
3P0, 3P1, and 3P2 partial waves in comparison to the Nijmegen partial-wave analysis
(PWA) [35]. The LO, NLO, and N2LO local chiral potential bands are obtained by

varying R0 between 0.8−1.2 fm (with a spectral-function cutoff Λ̃ = 800 MeV) [32,36].

are small and the perturbative third-order energy is in excellent agreement with the
AFDMC results, while for the harder R0 = 0.8 fm (Λ ∼ 600 MeV) interaction, the
convergence is clearly slow. This is the first nonperturbative validation for neutron
matter of the possible perturbativeness of low-cutoff Λ ∼ 400 MeV interactions [40].

4 Astrophysical applications

The symmetry energy Sv and its density derivative L provide important input for
astrophysics [41]. To calculate these, we follow Ref. [42]. The predicted ranges for Sv

and L at saturation density are Sv = 28.9−34.9 MeV and L = 43.0−66.6 MeV. The Sv

and L ranges are in very good agreement with experimental constraints from nuclear
masses [43] and from the dipole polarizability of 208Pb [44], see the left panel of Fig. 6.
In addition, they also overlap with the results for RG-evolved NN interactions with
N2LO 3N forces [41, 42], but due to the additional density dependences from N3LO
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Figure 5: Upper panel: Neutron-matter energy per particle E/N as a function of den-
sity n calculated using AFDMC with chiral EFT NN interactions at LO, NLO, and
N2LO [32]. The statistical errors are smaller than the points shown. The lines give
the range obtained by varying R0 between 0.8−1.2 fm. Lower panel: The AFDMC
N2LO band in comparison to perturbative calculations using the same N2LO NN
interactions. The lower (upper) limit of the AFDMC N2LO band is for R0 = 1.2 fm
(R0 = 0.8 fm), corresponding to a momentum cutoff Λ ∼ 400 MeV (Λ ∼ 600 MeV).
Perturbative results are shown at second and third order. For the softer R0 = 1.2 fm
interaction (narrow purple bands), third-order corrections are small and the third-
order energy is in excellent agreement with the AFDMC results, while for the
harder R0 = 0.8 fm interaction (light red bands), the convergence is clearly slow.



310 I. Tews, T. Krüger, A. Gezerlis, K. Hebeler and A. Schwenk

28 30 32 34 36

SV  [MeV]

20

40

60

80

L 
[M

eV
]

Tamii et al. (2011)
Hebeler et al. (2010)

N3LO
(this work)

Ko
rte

la
in

en
 e

t a
l. 

(2
01

0) this work

n [fm−3]

Figure 6: Left panel: Range for the symmetry energy Sv and its density dependence L
obtained at N3LO [13] versus including 3N forces at N2LO (Hebeler et al. [42]). For
comparison, see Ref. [41], we show constraints obtained from energy-density function-
als for nuclear masses (Kortelainen et al. [43]) and from the 208Pb dipole polarizability
(Tamii et al. [44]). Right panel: Comparison of the N3LO neutron-matter energy of
the left panel of Fig. 3 (red band) with equations of state for core-collapse supernova
simulations provided by Lattimer–Swesty (LS with different incompressibilities 180,
220, and 375 MeV), G. Shen (FSU2.1, NL3), Hempel (TM1, SFHo, SFHx), and Typel
(DD2). For details see Ref. [14].

many-body forces, the correlation between Sv and L is not as tight.

The neutron-matter results also provide constraints for equations of state for core-
collapse-supernova simulations. In the right panel of Fig. 6, we compare the N3LO
neutron-matter band (red band) to the Lattimer–Swesty (LS) equation of state [45]
(with different incompressibilities 180, 220, and 375 MeV), which is most commonly
used in simulations, and to different relativistic mean-field-theory equations of state
based on the density functionals DD2 [46], FSU2.1 [47], NL3 [48], SFHo, SFHx [49],
and TM1 [50]. At low densities only the DD2, FSU2.1 and SFHx equations of state
are consistent with the N3LO neutron-matter band. The NL3 and TM1 equations
of state have a too strong density dependence, which leads to unnaturally large Sv

and L values. In addition, Fig. 6 exhibits a strange density dependence of SFHx.

Next, we use the N3LO neutron-matter results to provide constraints for the struc-
ture of neutron stars. We follow Refs. [42,51] for incorporating beta equilibrium and
for the extension to high densities using piecewise polytropes that are constrained by
causality and by the requirement to support a 1.97± 0.04M⊙ neutron star [52] (see
also the recent 2.01 ± 0.04M⊙ discovery [53]). In addition, we consider the case, if
a 2.4M⊙ neutron star were to be observed. The resulting constraints on the neutron
star mass-radius diagram are shown in Fig. 7 by the red bands. The bands represent
an envelope of a large number of individual equations of state reflecting the uncertain-
ties in the N3LO neutron-matter calculation and in the polytropic extensions to high
densities [42, 51]. The combination with the 2M⊙ neutron star (left panel) predicts
a radius range of 9.7−13.9 km for a 1.4M⊙ star [14, 42]. The maximal neutron star
mass is found to be 3.1M⊙, with a corresponding radius of about 14 km. We also
find very good agreement with the mass-radius constraints from the neutron-matter
calculations based on RG-evolved NN interactions with N2LO 3N forces [42], which
are shown by the thick dashed blue lines in the left panel of Fig. 7.

In addition, we show in Fig. 7 the mass-radius relations obtained from equations
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Figure 7: Constraints on the mass-radius diagram of neutron stars based on our
neutron-matter results at N3LO following Ref. [42, 51] for the extension to neutron-
star matter and to high densities (red band), in comparison to the constraints from
calculations based on RG-evolved NN interactions (thick dashed blue lines) [42]. We
also show the mass-radius relations obtained from the equations of state for core-
collapse supernova simulations shown in Fig. 6. Left panel: Band obtained with the
constraint of a 1.97M⊙ neutron star [14]. Right panel: Same for a 2.4M⊙ star.

of state for core-collapse supernova simulations [45, 47–50, 54, 55]. The inconsistency
in Fig. 6 of many of the equations of state with the N3LO neutron-matter band at
low densities results in a large spread of very low mass/large radius neutron stars,
where the red band is considerably narrower in Fig. 7. For typical neutron stars, our
calculations rule out the NL3 and TM1 equations of state, which produce too large
radii. Finally, we have also explored the constraints from N3LO calculations for the
chiral condensate in neutron matter [56].

All the very best for your 70th birthday, James, lots of good health and energy for
fun in life and physics (and many days like the one we enjoyed in Capri)! We would
like to thank E. Epelbaum, S. Gandolfi, J. M. Lattimer, A. Nogga, and C. J. Pethick,
who contributed to the results presented in this talk. This work was supported by
the DFG through Grant SFB 634, the ERC Grant No. 307986 STRONGINT, the
Helmholtz Alliance HA216/EMMI, and NSERC. Computations were performed at
the Jülich Supercomputing Center and at NERSC.
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312 I. Tews, T. Krüger, A. Gezerlis, K. Hebeler and A. Schwenk

[7] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt and T. Papenbrock,
Phys. Rev. Lett. 109, 032502 (2012).

[8] A. T. Gallant et al., Phys. Rev. Lett. 109, 032506 (2012).

[9] J. D. Holt, J. Menéndez and A. Schwenk, J. Phys. G 40, 075105 (2013).

[10] F. Wienholtz et al., Nature 498, 346 (2013).

[11] A. Schwenk and C. J. Pethick, Phys. Rev. Lett. 95, 160401 (2005).

[12] A. Gezerlis and J. Carlson, Phys. Rev. C 81, 025803 (2010); A. Gezerlis and
R. Sharma, ibid. 85, 015806 (2012).
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[43] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck,
M. Stoitsov and S. Wild, Phys. Rev. C 82, 024313 (2010).

[44] A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011).

[45] J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991).

[46] S. Typel, private communication.

[47] G. Shen, C. J. Horowitz and E. O’Connor, Phys. Rev. C 83, 065808 (2011).

[48] G. Shen, C. J. Horowitz and S. Teige, Phys. Rev. C 83, 035802 (2011).

[49] A. W. Steiner, M. Hempel and T. Fischer, arXiv:1207.2184 (2012).

[50] H. Shen, H. Toki, K. Oyamatsu and K. Sumiyoshi, Astrophys. J. Suppl. 197, 20
(2011).

[51] K. Hebeler, J. M. Lattimer, C. J. Pethick and A. Schwenk, Phys. Rev. Lett. 105,
161102 (2010).

[52] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and J. W. T. Hes-
sels, Nature 467, 1081 (2010).

[53] J. Antoniadis et al., Science 340, 448 (2013).

[54] M. Hempel, T. Fischer, J. Schaffner-Bielich and M. Liebendörfer, Astrophys. J.
748, 70 (2012).

[55] E. O’Connor, private communication; A. Kleiner, B. Sc. Thesis. Technische Uni-
versität Darmstadt, 2012.

[56] T. Krüger, I. Tews, B. Friman, K. Hebeler and A. Schwenk, Phys. Lett. B 726,
412 (2013).



Universal Properties of Infrared Extrapolations

in a Harmonic Oscillator Basis

Sidney A. Coona, Michael K. G. Kruseb

aDepartment of Physics, University of Arizona, Tucson, Arizona USA
bLawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California

94551, USA

Abstract

We continue our studies of infrared (ir) and ultraviolet (uv) regulators of
no-core shell model calculations. We extend our results that an extrapolation
in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction
is quite successful, not only for the eigenstates of the Hamiltonian but also for
expectation values of operators considered long range. The latter results are ob-
tained with Hamiltonians transformed by the similarity renormalization group
(SRG) evolution. On the other hand, a suggested extrapolation in the uv cutoff
when the ir cutoff is below the intrinsic ir scale is neither robust nor reliable.

Keywords: No-core shell model; convergence of expansion in harmonic oscil-
lator functions; ultraviolet regulator; infrared regulator

1 Introduction

Variational calculations based upon a harmonic oscillator (HO) basis expansion have
a long history in nuclear structure physics. If one views a shell-model calculation as
a variational calculation, expanding the configuration space merely serves to improve
the trial wave function [1]. A parallel program uses the HO eigenfunctions as a basis
of a finite linear expansion to make a straightforward variational calculation of the
properties of light nuclei [2]. Theorems based upon functional analysis established
the asymptotic convergence rate of these calculations as a function of the counting
number (N ) which characterizes the size of the expansion basis (or model space) [3,4].
The convergence rates of these theorems (inverse power laws in N for “non smooth”
potentials such as Yukawa’s with strong short range correlations and exponential in N
for “smooth” potentials such as gaussians) were demonstrated numerically in Ref. [3]
for the HO expansion and in Ref. [5] for the analogous expansion in hyperspherical
harmonics. These convergence theorems are used to extrapolate to the “infinite” basis
in few-body studies [6] and in “ab initio” “no-core shell model” (NCSM) calculations
of s- and p-shell nuclei [7]. However, the HO expansion basis has an intrinsic scale
parameter ~ω which does not naturally fit into an extrapolation scheme based upon N
as discussed in Refs. [3,4,8]. Indeed the model spaces of these NCSM approaches are
characterized by the ordered pair (N , ~ω). Here the basis truncation parameter N
and the HO energy parameter ~ω are variational parameters [7, 9, 10]. With the HO
basis in the nuclear structure problem, convergence has been discussed, in practice,
with an emphasis on obtaining those parameters which appear linearly in the trial
function (i. e. convergence with N ). In an early example, ~ω is simply fixed at a
value which gives the fastest convergence in N [6]. Later, for each N the non-linear
parameter ~ω is varied to obtain the minimal energy [9, 11] for a fixed N and then

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 314.

http://www.ntse-2013.khb.ru/Proc/Coon.pdf.
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the convergence with N is examined at that fixed value of ~ω. Other extrapolation
schemes have been proposed and used [10, 12].

It is the purpose of this contribution to continue an investigation of the extrapola-
tion tools introduced in Ref. [13] which use N and ~ω on an equal footing. These tools
are based upon the pair of ultraviolet (uv) and infrared (ir) cutoffs (each a function
of both N and ~ω) of the model space. These regulators were first introduced to the
NCSM by Ref. [14] in the context of an effective field theory (EFT) approach. For a
recent review of this program see Ref. [15].

The early ab initio calculations, both of the “no-core” shell model in which all
nucleons are active [1] and of the Moshinsky program attempted to overcome the
challenges posed by “non-smooth” two-body potentials by including Jastrow type
two-body correlations in the trial wave function. Nowadays, the NN potentials are
tamed by unitary transformations within the model space [16] or in free space by
either the similarity renormalization group (SRG) evolution [17] or the Vlow k trun-
cation [18, 19]. In all three cases, this procedure generates effective many-body in-
teractions in the new Hamiltonian. Neglecting these destroys the variational aspect
of the calculation (and changes the physics contained in the calculation, of course).
We retain the variational nature of our NCSM investigation by choosing a realistic
smooth nucleon-nucleon (NN) interaction Idaho N3LO [20] which has been used pre-
viously without renormalization within the model space for light nuclei (A ≤ 6) [9].
The Idaho N3LO potential is a rather soft one, with heavily reduced high-momentum
components (“super-Gaussian falloff in momentum space”) as compared to earlier
realistic NN potentials with a strongly repulsive core. Alternatively, in coordinate
space, the contact interaction and the Yukawa singularity at the origin are regulated
away so that this potential would be considered “smooth” by Delves and Schneider
and the convergence in N would be expected to be exponential [3, 4]. Even without
the construction of an effective interaction, convergence with the Idaho N3LO NN
potential is exponential in N , as numerous studies have shown [9, 17].

We refer the reader to a comprehensive review article [7] on the no-core shell model
(NCSM) for details and references to the literature. Inspired by EFT, one uses a trun-
cation parameter N which refers, not to the many-body system, but to the properties
of the HO single-particle states. The many-body truncation parameter Nmax is the
maximum number of oscillator quanta shared by all nucleons above the lowest HO
configuration for the chosen nucleus. One unit of oscillator quanta is one unit of the
quantity (2n+ l) where n is the principle quantum number and l is the angular quan-
tum number. If the highest HO single-particle state of this lowest HO configuration
has N0 HO quanta, then Nmax + N0 = N identifies the highest HO single-particle
states that can be occupied within this many-body basis. Since Nmax is the maximum
of the total HO quanta above the minimal HO configuration, we can have at most one
nucleon in such a highest HO single-particle state with N quanta. Note that Nmax

characterizes the many-body basis space, whereas N is a label of the corresponding
single particle space. Let us illustrate this distinction with two examples. 6He is an
open shell nucleus with N0 = 1 since the valence neutron occupies the 0p shell in the
lowest many-body configuration. Thus if Nmax = 4 the single particle truncation N
is 5. On the other hand, the highest occupied orbital of the closed shell nucleus 4He
has N0 = 0 so that N = Nmax.

2 Ultraviolet and infrared cutoffs inherent
to the finite HO basis

We begin by thinking of the finite single-particle basis space defined by N and ~ω
as a model space characterized by two momenta associated with the basis functions
themselves. We follow Ref. [14] and define Λ =

√
mN (N + 3/2)~ω as the momentum
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(in units of MeV/c) associated with the energy of the highest HO level. The nu-
cleon mass is mN = 938.92 MeV. To arrive at this definition one applies the virial
theorem to this highest HO level to establish kinetic energy as one half the total
energy [i. e., (N + 3/2)~ω] and solves the non-relativistic dispersion relation for Λ.
Thus, the usual definition of an ultraviolet cutoff Λ in the continuum has been ex-
tended to discrete HO states. It is then quite natural to interpret the behavior of
the variational energy of the system with addition of more basis states as the be-
havior of this observable with the variation of the ultraviolet cutoff Λ. Because the
energy levels of a particle in a HO potential are quantized in units of ~ω, the mo-
mentum difference between single-particle orbitals is λ =

√
mN~ω and that has been

taken to be an infrared cutoff [14]. That is, there is a low-momentum cutoff λ = ~/b

where b =
√

~

mNω plays the role of a characteristic length of the HO potential and ba-

sis functions. Note however that there is no external confining HO potential in place.
Instead the only ~ω dependence is due to the scale parameter of the underlying HO
basis. In Ref. [14] the influence of the infrared cutoff is removed by extrapolating
to the continuum limit, where ~ω → 0 with N → ∞ so that Λ is fixed. Clearly,
one cannot achieve both the ultraviolet limit and the infrared limit by taking ~ω to
zero in a fixed-Nmodel space as this procedure takes the ultraviolet cutoff to zero.
Other studies define the ir cutoff as the infrared momentum which corresponds to the
maximal radial extent needed to encompass the many-body system we are attempting
to describe by the finite basis space (or model space). These studies find it natural
to define the ir cutoff by λsc =

√
(mN~ω)/(N + 3/2) [17, 21]. Note that λsc is the

inverse of the root-mean-square (rms) radius of the highest single-particle state in the
basis; 〈r2〉1/2 = b

√
N + 3/2. We distinguish the two definitions by denoting the first

(historically) definition by λ and the second definition by λsc because of its scaling
properties demonstrated in the next Section.

3 Running of variational energies with cutoffs and

establishment of intrinsic regulator scales

We display in the next two figures the running of the ground-state eigenvalue of
the nucleus, 2H, on the truncated HO basis by holding one cutoff of (Λ, λir) fixed
and letting the other vary. In Fig. 1 and the following figures, |∆E/E| is defined
as |(E(Λ, λir)− E)/E| where E reflects a consensus ground-state energy from bench-
mark calculations with this NN potential, this nucleus, and different few-body meth-
ods.

In Fig. 1 we hold fixed the uv cutoff of (Λ, λir) to display the running of |∆E/E|
upon the suggested ir cutoff λsc. For fixed λsc, a larger Λ implies a smaller |∆E/E|
since more of the uv region is included in the calculation. But we immediately see a
qualitative change in the curves between the transition Λ=700 MeV and Λ=900 MeV;
for smaller Λ, |∆E/E| does not go to zero as the ir cutoff is lowered and more of the
infrared region is included in the calculation. This behavior suggests that |∆E/E|
does not go to zero unless Λ ≥ ΛNN , where ΛNN is some uv regulator scale of
the NN interaction itself. From this figure one estimates ΛNN ∼ 900 MeV/c for
the Idaho N3LO interaction. For Λ < ΛNN there will be missing contributions so
“plateaus” develop as λir → 0, revealing this missing contribution to |∆E/E|. The
“plateaus” that we do see are not flat as λir → 0 and, indeed, rise significantly with
decreasing Λ < ΛNN . This suggests that corrections are needed to Λ and λir which
are presently defined only to leading order in λir/Λ.

Around Λ ∼ 700 MeV/c and above the plot of |∆E/E| versus λsc in Fig. 1 begins
to suggest a universal pattern, especially at large λsc. For Λ ∼ 900 MeV/c and
above the pattern defines a universal curve for all values of λsc. This is the region
where Λ ≥ ΛNN indicating that nearly all of the ultraviolet physics set by the potential
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Figure 1: Dependence of the ground-state energy of 2H (compared to a converged
value; see text) upon the ir momentum cutoff λsc =

√
(mN~ω)/(N + 3/2) for

fixed Λ =
√
mN (N + 3/2)~ω.

has been captured. The universal curve can be fit by the |∆E/E| = a exp(−b/λsc)
which suggests immediately that λsc could be used for extrapolation to the ir limit,
provided that Λ is kept large enough to capture the uv region of the calculation,
i. e. Λ ≥ ΛNN . Figure 1 is also the motivation for our appellation λsc, which we read
as “lambda scaling”, since this figure exhibits the attractive scaling properties of this
regulator.

The originally suggested ir cutoff λ =
√
mN~ω, corresponding to the non-zero

energy spacing between HO levels, gives not a universal curve for Λ ≥ ΛNN but
instead a set of curves fit by |∆E/E| = a exp(−B(Λ)/λ) (see Fig. 3 of Ref. [13]).
That is, B is not a constant and independent of the uv cutoff Λ, as it should be
in an EFT framework. One can remove the dependence of B upon Λ to a large

extent by noting that λ =
√

Λλsc so that exp(−B/λ) becomes exp
(

−B/
√
Λ√

λsc

)
and this

multiplier of 1/
√
λsc is constant to within a few per cent. This trivial manipulation

demonstrates that the ir regulator which is independent of the uv cutoff is a function
of λsc. The point is not that the ir regulator λ cannot be used to remove ir effects
by extrapolating it to zero; indeed it works equally well to remove ir artifacts from a
calculation as does λsc [13]. Indeed, any momentum cutoff λsc ≤ λir ≤ Λ will remove
ir artifacts, but the ir regulator which is independent of the uv cutoff is some function
of λsc. It is λsc which causes the ir effects and one does not need to decrease an ir
cutoff below that of λsc to remove ir effects (i. e. extrapolate to zero).

In Fig. 2 we hold fixed the ir cutoff of (Λ, λir) to display the running of |∆E/E|
upon the cutoff Λ. Again plateaus are evident. Such a plateau-like behavior was
attributed in Fig. 1 to a uv regulator scale characteristic of the NN interaction.
Another “missing contributions” argument leads to a universal behavior at low Λ
only if λsc ≤ λNN

sc where λNN
sc is a second characteristic ir regulator scale implicit in

the NN interaction itself. One can envisage such an ir cutoff as related to the lowest
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Figure 2: Dependence of the ground-state energy of 2H (compared to a converged
value; see text) upon the uv momentum cutoff Λ for different values of the ir momen-
tum cutoff λsc.

energy configuration that the NN potential could be expected to describe. This
would be in the range of the deuteron binding momentum Q = 45 MeV/c down to
about 16 MeV/c which is the average of the four inverse scattering lengths. However
the behavior of the running as Λ ≥ ΛNN again suggests that corrections are needed
to Λ and λir which are presently defined only to leading order in λir/Λ.

Can one make an estimate of the uv and ir regulator scales of the NN interac-
tions used in nuclear structure calculations? It is easy with the JISP16 potential [22].
The S wave parts of JISP16 potential are fit to data in a HO space of N = 8
and ~ω = 40 MeV. Nucleon-nucleon interactions are defined in the relative coor-

dinates of the two-body system so one should calculate ΛNN =
√
m(N + 3/2)~ω

with the reduced mass m rather than the nucleon mass mN appropriate for the
single-particle states of the model space. Taking this factor into account, one

finds ΛJISP16 ∼ 600 MeV/c and λJISP16
sc ∼ 63 MeV/c. In practice, the uv region

seems already captured at Λ > 500−550 MeV/c [13]. The Idaho N3LO interaction
was fit to data with a high-momentum cutoff of the “super-Gaussian” regulator set
at ΛN3LO = 500 MeV/c [20]. What is the uv regulator scale of the Idaho N3LO inter-
action appropriate to the discrete HO basis of this study? A published emulation of
this interaction in a harmonic oscillator basis uses ~ω = 30 MeV and Nmax ≈ 2n = 40.
A more systematic study of emulations gave a few more sets of (N, ~ω) which de-
scribed 3He ground state energy equally well [23]. The successful emulation of the
Idaho N3LO interaction in a HO basis suggests that ΛN3LO ∼ 900−1100 MeV/c
and λN3LO

sc ∼ 21−42 MeV/c, consistent with Figs. 2 and 3. In practice from calcula-
tions of a variety of light nuclei the uv region seems already captured
at Λ > 800 MeV/c [13].
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4 Extrapolations

The extrapolation scheme proposed in [13] gives N and ~ω equal roles by employing
uv and ir cutoffs which should be taken to infinity and to zero, respectively to achieve
a converged result (see Fig. 3).

From Fig. 1 we conclude uv cutoff Λ =
√
mN (N + 3/2)~ω should be greater

than the intrinsic ΛNN of the NN interaction. Figure 2 suggests that the ir cut-

off λsc =
√

(mN~ω)/(N + 3/2) should be less than the intrinsic λNN
sc of the chosen

NN interaction. Noting that N = Λ/λsc − 3/2 and ~ω = (Λλsc)/mN , one can es-
tablish the minimum values of N and ~ω needed for a converged result (see Table 1).
The intrinsic λNN

sc corresponding to the lowest energy configuration of two nucleons
is not well determined by numerical investigations (see Figs. 4 and 8 of Ref. [13]) so
we include a range of values in Table 1. It is a computational challenge to increase N
which gets harder the more particles there are in the nucleus. From this Table one

Table 1: Intrinsic regulator scales determine N and ~ω for a converged result.

Λ ≥ ΛNN = 800 MeV/c

λNN
sc ≈ 10 MeV/c λNN

sc ≈ 20 MeV/c λNN
sc ≈ 40 MeV/c

N ≥ 80 N ≥ 40 N ≥ 20
~ω ≥ 8 MeV ~ω ≥ 16 MeV ~ω ≥ 32 MeV

Λ ≥ ΛNN = 500 MeV/c

λNN
sc ≈ 10 MeV/c λNN

sc ≈ 20 MeV/c λNN
sc ≈ 40 MeV/c

N ≥ 50 N ≥ 25 N ≥ 12
~ω ≥ 5 MeV ~ω ≥ 10 MeV ~ω ≥ 20 MeV
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concludes that one must extrapolate for all but the lightest nuclei and the softest of
interactions.

We now utilize the scaling behavior displayed on Fig. 1 to suggest an extrapolation
procedure which we illustrate in Figs. 4, 5, and 6. We plot the ground state energy
eigenvalue, the root mean square radius, and the total dipole strength of 4He obtained
by a NCSM calculation [24], done in a translationally invariant basis which depends
only on Jacobi coordinates [25]. The NN interaction is the Idaho N3LO [20] softened
by the similarity renormalization group (SRG) evolution according to the method
described in Ref. [17]. Transforming the Hamiltonian induces the appearance of higher
order many-body forces which should be kept to preserve the unitary nature of the
transformation. If they are not kept results become dependent on the SRG flow
parameter. It is of interest to learn if the scaling behavior apparent in Fig. 1 and
the many examples in Ref. [13] is also true for the induced many-body forces and the
three-body forces added to the Hamiltonian (see Refs. [17, 24] for a full description
of the SRG scheme and nomenclature). For this exercise, we utilized calculations
with ~ω = 22 and 28 MeV and N ≤ 18. The SRG parameter was 1.8 fm−1 and our
own study of the results suggest that the intrinsic uv cutoff of this SRG transformed
interaction is less than 440 MeV/c (see Figures). Then according to Table 1, the
calculations should be fully converged with this model space.

The extrapolation is performed by a fit of an exponential plus a constant to
each set of results at fixed Λ. That is, we fit the ground state energy with three
adjustable parameters using the relation Egs(λsc) = a exp(−b/λsc) + Egs(λsc = 0).
The rms radius and the total dipole strength are obtained by similar fits: r(λsc) =
a exp(−b/λsc) + r(λsc = 0) and D2(λsc) = a exp(−b/λsc) + D2(λsc = 0). The extrap-
olation formulae work equally well for the induced three-body forces and the added
three-body forces. It should be noted that our extrapolations in these figures employ

an exponential function whose argument 1/λsc =
√

(N + 3/2)/(mN~ω) is propor-

tional to
√
N/(~ω). This extrapolation procedure of taking λsc downward from the



Infrared extrapolations 321

B

B

B

B
BBB

B
BBBBB

J

J

J

J
J

JJ

J

J
JJJJ

H

H

H
H

HHH

H
HHHHH

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

0 10 20 30 40 50 60 70

rm
s
 m

a
tt

e
r 

ra
d
iu

s
 (

fm
)

B

J

H

NN-only

NN+NNN-induced

NN+NNN

λsc (MeV/c)

4He

Idaho N3LO
SRG 1.8 fm−1

443 ≤ Λ ≤ 716 MeV/c

Figure 5: The rms radius 〈0|r2|0〉1/2 of 4He calculated as in Fig. 4.

smallest value allowed by computational limitations treats both N and ~ω on an

equal basis. The exponential extrapolation in
√
N/(~ω) is therefore distinct from the

popular extrapolation which employes an exponential in Nmax (= N for this s-shell
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case) [7, 9, 10, 17]. The convergence of all three operators is the same with the λsc
extrapolation, in contrast to the traditional extrapolation for the same data which
found slower and slower convergence for the ground state energy eigenvalue, the root
mean square radius, and the total dipole strength [24]. As the model space is large
and the intrinsic uv cutoff is small, the extrapolated results obtained here agree with
those of the traditional extrapolation of Ref. [24].

Finally, we return to Fig. 2 and restrict our attention to the sector Λ ≤ ΛNN .
The universal curve in that sector is generalized to three s-shell nuclei in Fig. 7
where all momenta are scaled by the binding momentum Q of the considered nu-
cleus in order to put them on the same plot. For such low fixed momenta λsc,
|∆E/E| does go to zero with increasing Λ because λsc ≤ λNN

sc . The “high” Λ tails
of these curves were fit by Gaussians (shifted from the origin) in the variable Λ/Q
in Ref. [13]. This behavior suggests another possible extrapolation scheme; fixing
the ir physics first and then extrapolating in the uv cutoff. A later paper did ad-
vocate such an extrapolation with Λ2 in the exponential fit function [26]. We have

tried to fit our data with the ansatz, Egs(Λ) = A exp(−2Λ2/ΛNN2
) + E(Λ =∞),

of that paper and failed. Because the Gaussians are shifted from the origin, a fit

requires Egs(Λ/Q) = a exp
[
−(Λ/Q− b)2/2c2

]
+ E(Λ/Q=∞), provided that one re-

stricts to values of Λ/Q ≤ ΛNN/Q. Such fits are shown in Fig. 8.
Unfortunately, the extrapolated energies of Fig. 8 do not agree with those obtained

from independent calculations. The extrapolated energies are always lower: 2 keV
for the deuteron, 300 keV (or 4%) for the triton and 20 keV(or 2.4 %) for the alpha
particle. It is difficult to achieve consistent extrapolations with different values of
fixed (low) λsc. For example, if one takes λsc = 12 MeV/c, seemingly closer to the ir
limit so that even more of the ir physics is captured, the extrapolated triton energy
is −10.149 MeV; 2.3 MeV below the accepted value. Only with the SRG transformed
potentials does the extrapolation illustrated in Fig. 8 agree with other independent
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calculations.
In conclusion, we have established that an extrapolation in the ir cutoff with the

uv cutoff above the intrinsic uv scale of the interaction is quite successful, not only
for the eigenstates of the Hamiltonian but also for expectation values of operators
considered long range. On the other hand, the suggested extrapolation [26] in the uv
cutoff when the ir cutoff is below the intrinsic ir scale is neither robust nor reliable.
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Abstract

The rapid falloff of the oscillator functions at large radius (Gaussian asymp-
totics) makes them poorly suited for the description of the asymptotic properties
of the nuclear wave function, a problem which becomes particularly acute for
halo nuclei. We consider an alternative basis for ab initio no-core configuration
interaction (NCCI) calculations, built from Coulomb–Sturmian radial functions,
allowing for realistic (exponential) radial falloff. NCCI calculations are carried
out for the neutron-rich He isotopes, and estimates are made for the RMS radii
of the proton and neutron distributions.

Keywords: No-core configuration interaction; Coulomb–Sturmian basis; neu-
tron halo; nuclear radii

1 Introduction

The ab initio theoretical description of light nuclei is based on direct solution of the
nuclear many-body problem given realistic nucleon-nucleon interactions. In no-core
configuration interaction (NCCI) calculations [1, 2], the nuclear many-body problem
is formulated as a matrix eigenproblem. The Hamiltonian is represented in terms of
basis states which are antisymmetrized products of single-particle states for the full
A-body system of nucleons, i. e., with no assumption of an inert core.

In practice, the nuclear many-body calculation must be carried out in a trun-
cated space. The dimension of the problem grows combinatorially with the size of
the included single-particle space and with the number of nucleons in the system.
Computational restrictions therefore limit the extent to which converged results can
be obtained, for energies or for other properties of the wave functions. Except for
the very lightest systems (A . 4), convergence is generally beyond reach. Instead, we
seek to approach convergence as closely as possible. Based on the still-unconverged
calculations which are computationally feasible, we would then ideally be able to ob-
tain a reliable estimate of the true values of observables which would be obtained
in the full, untruncated space. Therefore, progress may be pursued both by seeking
accelerated convergence, e. g., through the choice of basis, as considered here, and by
developing means by which robust extrapolations can be made [3–7].

NCCI calculations have so far been based almost exclusively upon bases con-
structed from harmonic oscillator single-particle wave functions. The harmonic oscil-
lator radial functions have the significant limitation that their asymptotic behavior is

Gaussian, i. e., falling as e−αr2 for large r. The actual asymptotics for nucleons bound

by a finite-range force are instead expected to be exponential, i. e., falling as e−βr.
The problem encountered in using an oscillator basis to describe a system with

exponential asymptotics may be illustrated through the simple one-dimensional ex-
ample of the Schrödinger equation with a Woods–Saxon potential. In Fig. 1, we see
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and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 325.

http://www.ntse-2013.khb.ru/Proc/Caprio.pdf.

325



326 M. A. Caprio, P. Maris and J. P. Vary

r

V
Hr
L

HO

WS

4 5 6 7 8

10
-2

10
-1

10
0

r
2
»j
Hr
L»
2

0 2 4 6 8 10

r HfmL

Figure 1: The calculated wavefunction obtained when a problem with exponential
asymptotics — here, the Woods–Saxon problem is taken for illustration — is solved in
a finite basis of oscillator functions. The radial probability density r2|ϕ(r)|2 is shown
on a logarithmic scale, so that exponential asymptotics would appear as a straight
line. The Woods–Saxon and oscillator potentials are shown in the inset. (Solutions
are for the Woods–Saxon 1s1/2 function, with potential parameters appropriate to
neutrons in 16O [8], with maximal basis radial quantum numbers n as indicated.)

the results of solving for a particular eigenfunction in terms of successively larger
bases of oscillator radial functions. In the classically forbidden region, where the po-
tential is nearly flat, the tail of the wave function should be exponential. It should
thus appear as a straight line on the logarithmic scale in Fig. 1. Inclusion of each
additional basis function yields a small extension to the region in which the expected
straight-line behavior is reproduced, but, for any finite number of oscillator functions,
there is a radius beyond which the calculated tail is seen to sharply fall below the
true asymptotics.

Observables which are sensitive to the large-radius asymptotic portions of the
nuclear wave function therefore present a special challenge to convergence in NCCI
calculations with a conventional oscillator basis. Such “long-range” observables in-
clude the RMS radius and E2 moments and transitions, since the r2 dependence of
the relevant operators in both cases preferentially weight the larger-r portions of the
wave-function. The results for these observables in NCCI calculations are in general
highly basis-dependent [9, 10].

Furthermore, a prominent feature in light nuclei is the emergence of halo struc-
ture [11], in which one or more loosely-bound nucleons surround a compact core,
spending much of their time in the classically-forbidden region. A realistic treat-
ment of the long-range properties of the wave function is essential for an accurate
reproduction of the halo structure [12].

We are therefore motivated to consider alternative bases which might be better
suited for expanding the nuclear wave function in its asymptotic region. The frame-
work for carrying out NCCI calculations with a general radial basis is developed in
Ref. [13]. We explore the use of the Coulomb–Sturmian functions [14–16], which form
a complete set of square-integrable functions and have exponential asymptotics.

In the present work, we apply the Coulomb–Sturmian basis to NCCI calculations
for the neutron halo nuclei 6,8He — as well as to the baseline case 4He, for which con-
verged results can be obtained. We examine the possibility of extracting RMS radii
for the proton and neutron distributions based on a relatively straightforward esti-
mate, the “crossover point” [9,10], pending further development of more sophisticated
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extrapolation schemes [5]. Motivated by the disparity between proton and neutron
radial distributions in the neutron-rich halo nuclei, we also explore the use of proton-
neutron asymmetric bases, with different length scales for the proton and neutron
radial basis functions. The basis and methods are first reviewed (Section 2), after
which the results for 4,6,8He are discussed (Section 3).

2 Basis and methods

The harmonic oscillator basis functions, as used in conventional NCCI calculations,
constitute a complete, discrete, orthogonal set of square-integrable functions and are
given by Ψnlm(b; r) = Rnl(b; r)Ylm(r̂)/r, with radial wave functions

Rnl(b; r) ∝ (r/b)l+1Ll+1/2
n

[
(r/b)2

]
e−

1
2 (r/b)

2

, (1)

where the Lα
n are generalized Laguerre polynomials, the Ylm are spherical harmonics, n

is the radial quantum number, l and m are the orbital angular momentum and its
z-projection, and b is the oscillator length. The Coulomb–Sturmian functions likewise
constitute a complete, discrete, orthogonal set of square-integrable functions, while
also possessing exponential asymptotics more appropriate to the nuclear problem.
They are given by Λnlm(b; r) = Snl(b; r)Ylm(r̂)/r, with radial wave functions

Snl(b; r) ∝ (2r/b)l+1L2l+2
n (2r/b)e−r/b, (2)

where b again represents a length scale. Further details may be found in Ref. [13].
Both sets of radial functions are shown in Fig. 2, for comparison.

For either basis, the single-particle basis states |nljm〉 are then defined by coupling
of the orbital angular momentum with the spin, to give total angular momentum j,
and the many-body basis is defined by taking antisymmetrized products of these
single-particle states. Thus, the structure of the many-body calculation is independent
of the details of the radial basis. The choice of radial basis only enters the calculation
through the values of the Hamiltonian two-body matrix elements (or higher-body
matrix elements, if present), which we must first generate as the input to the many-
body calculation.
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Figure 2: Radial functions (a) Rnl(b; r) of the harmonic oscillator basis and
(b) Snl(bl; r) of the Coulomb–Sturmian basis, with bl given by the node-matching
prescription (see text). These functions are shown arranged according to the har-
monic oscillator principal quantum number N ≡ 2n + l, and are labeled by l. The
dotted curves show the same functions dilated outward by a factor of

√
2 ≈ 1.414.
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The nuclear Hamiltonian for NCCI calculations has the form H = Trel + V ,
where Trel is the Galilean-invariant, two-body relative kinetic energy operator, and V
is the nucleon-nucleon interaction.1 The relative kinetic energy decomposes into one-
body and two-body terms as

Trel ≡
1

4AmN

∑′

ij

(pi − pj)
2 =

1

2AmN

[
(A− 1)

∑

i

p2
i −

∑′

ij

pi · pj

]
. (3)

Since the two-body term is separable, matrix elements of Trel may be calculated
in a straightforward fashion for any radial basis, in terms of one-dimensional radial
integrals of the operators p and p2 [13].

Calculation of the interaction two-body matrix elements becomes more involved
if one moves to a general radial basis. The nucleon-nucleon interaction is defined in
relative coordinates. The oscillator basis is special, in that matrix elements in a rela-
tive oscillator basis, consisting of functions Ψnl(r1 − r2), can readily be transformed
to the two-body oscillator basis, consisting of functions Ψn1l1(r1)Ψn2l2(r2), by the
Moshinsky transformation. We therefore still begin by carrying out the transforma-
tion to two-body matrix elements 〈cd; J |V |ab; J〉 with respect to the oscillator basis,
and only then carry out a change of basis to the Coulomb–Sturmian basis in the
two-body space, as [13]

〈c̄d̄; J |V |āb̄; J〉 =
∑

abcd

〈a|ā〉〈b|b̄〉〈c|c̄〉〈d|d̄〉 〈cd; J |V |ab; J〉, (4)

where we label single-particle orbitals for the oscillator basis by unbarred symbols a =
(nalaja) and those for the Coulomb–Sturmian basis by barred symbols ā = (n̄a l̄aj̄a).
The coefficients 〈a|ā〉 required for the transformation are obtained from straight-
forward one-dimensional overlaps of the harmonic oscillator and Coulomb–Sturmian
radial functions, 〈Rnl|Sn̄l〉 =

∫∞
0 dr Rnl(bint; r)Sn̄l(b; r). The oscillator length bint

with respect to which the interaction two-body matrix elements are defined and the
length scale b of the final Coulomb–Sturmian basis functions may in general be dif-
ferent. The change-of-basis transformation in (4) is, in practice, limited to a finite
sum, e. g., with a shell cutoff Na, Nb, Nc, Nd ≤ Ncut. The cutoff Ncut must be chosen
high enough to insure that the results of the subsequent many-body calculation are
cutoff-independent, which may in general depend upon the oscillator and Coulomb–
Sturmian length parameters, interaction, nucleus, and observable at hand.

Any single particle basis, including (1) or (2), has a free length scale b. For the
oscillator basis, this is traditionally quoted as the oscillator energy ~Ω, where

b(~Ω) =
(~c)

[(mN c2)(~Ω)]1/2
. (5)

In deference to the convention of presenting NCCI results as a function of the basis
“~Ω”, we nominally carry over this relation to define an ~Ω parameter for general
radial bases, although ~Ω no longer has any direct physical meaning as an energy
scale. Regardless, the inverse square-root dependence remains, so that a factor of two
change in ~Ω describes a factor of

√
2 change in radial scale, as illustrated for both

harmonic oscillator and Coulomb–Sturmian bases by the dotted curves in Fig. 2.
Furthermore, there is much additional freedom in the basis, since the many-body

basis states (antisymmetrized product states) constructed from a single-particle basis
are orthonormal so long as the single-particle states are orthonormal. Orthogonal-
ity for single-particle states of different l or j follows entirely from the angular and

1A Lawson term proportional the number Nc.m. of center-of-mass oscillator quanta can also be
included, to shift center-of-mass excitations out of the low-lying spectrum, but it is not essential for
the ground-state properties considered here. The implications of center-of-mass dynamics for general
bases are addressed in Ref. [13].
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spin parts of the wave function. Only orthogonality within the space of a given l
and j follows from the radial functions, e. g., for the Coulomb–Sturmian functions,
〈n′l′j′|nlj〉 =

[∫
dr Sn′l(b; r)Snl(b; r)

]
δl′lδj′j . We are therefore free to choose b in-

dependently, firstly, for each l space (or j space), as bl (or blj), and, secondly, for
protons and neutrons, as bp and bn.

The first observation raises the possibility, still to be explored, of obtaining signif-
icant improvements in the efficacy of the basis by optimizing the l-dependence of the
length parameter. In Ref. [13], the radial scale of the Coulomb–Sturmian functions,
for each l, was fixed by matching the first node of the n = 1 Coulomb–Sturmian
function to the first node of the n = 1 oscillator function, at that l, yielding the
prescription bl = [2/(2l+ 3)]1/2b(~Ω) [13].

The second observation raises the possibility of proton-neutron asymmetric length
scales, which might be advantageous for nuclei with significant disparities between the
proton and neutron distributions, in particular, halo nuclei. Therefore, in the present
work, we adopt

bl,p =

√
2

2l+ 3
b(~Ω), bl,n = β

√
2

2l+ 3
b(~Ω), (6)

where β sets an overall relative scale bn/bp. For example, if the solid and dotted
curves in Fig. 2(b) are taken to represent the proton and neutron radial functions,
respectively, then the figure illustrates the case in which bn/bp =

√
2 ≈ 1.414.

3 Results for the He isotopes

We carry out calculations for the isotopes 4,6,8He using both the harmonic oscillator
and Coulomb–Sturmian bases. These calculations are based on the JISP16 nucleon-
nucleon interaction [17], plus Coulomb interaction. The bare interaction is used, i. e.,
without renormalization. The proton-neutron M -scheme code MFDn [18, 19] is em-
ployed for the many-body calculations. Results are calculated with basis truncations
up to Nmax = 14 for 4He, Nmax = 12 for 6He, and Nmax = 10 for 8He.2

The last neutrons in 6He and 8He are only weakly bound, with two-neutron separa-
tion energies of 0.97 MeV and 2.14 MeV, respectively. These isotopes are interpreted
as consisting of neutron halos surrounding an α core [11]. The basic observables indi-
cating halo properties are the RMS radii of the proton and neutron distributions, rp
and rn, respectively.3 Moving from 4He to 6He, rp increases by ∼32%. This may be
understood as resulting from the recoil of the α core against the halo neutrons, and
potentially core polarization, as well. In turn, rn is larger than rp by ∼42%, reflecting
the extended halo neutron distribution. The radii for 8He are comparable to those
for 6He.

We first consider calculations for 4He as a baseline. Results are shown over two
doublings in ~Ω, i. e., representing a doubling in basis length scale, in Fig. 3. Energy
convergence is reached for the harmonic oscillator basis, as evidenced by approxi-
mate Nmax and ~Ω independence of the higher Nmax results over a range of ~Ω val-
ues, in Fig. 3(a, b). Convergence is obtained at the ∼10 keV level by Nmax = 14. The

2The harmonic oscillator many-body basis is normally truncated according to the Nmax scheme,
based on the total number of oscillator quanta. That is, the many-body basis states are characterized
by a total number of oscillator quanta Ntot ≡

∑
i Ni, where Ni ≡ 2ni + li. If Ntot is written as

Ntot = N0 +Nex, where N0 in the lowest Pauli-allowed number of quanta, then the basis is subject
to the restriction Nex ≤ Nmax. We formally carry this truncation over to the Coulomb–Sturmian
basis, although N ≡ 2n+ l no longer has significance as an oscillator principal quantum number.

3Specifically, rp and rn are the RMS radii of the point-proton and point-neutron distributions,
measured relative to the center of mass. See Ref. [20] for definitions, and Ref. [13] for evaluation of the
two-body relative RMS radius observable with a general radial basis. From the analysis of experimen-
tal charge and matter radii in Ref. [11], 4He has rp = 1.457(10) fm (≈ rn), 6He has rp = 1.925(12) fm
and rn = 2.74(7) fm, and 8He has rp = 1.807(28) fm and rn = 2.72(4) fm.
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Figure 3: The calculated 4He ground state energy (top) and RMS point-
proton radius rp (bottom), using the conventional oscillator (left) and Coulomb–
Sturmian (right) bases. These are shown as functions of the basis ~Ω parameter,
for Nmax = 4 to 14 (as labeled), and for transformation cutoffs Ncut = 9, 11, and 13
(Coulomb–Sturmian basis only, indicated by dashing, curves nearly indistinguishable).
The converged energy is indicated by the horizontal line (at top), the crossover radii
by dashed horizontal lines (at bottom), and the spread in radius values by vertical
bars (again at bottom).

binding energies for 4He computed with the Coulomb–Sturmian basis lag significantly
behind those obtained with the oscillator basis, by about two steps in Nmax. This
should perhaps not be surprising, given that 4He is tightly bound, and the structure
can thus be expected to be driven by short-range correlations rather than asymptotic
properties. Incidentally, it may be seen from Fig. 3(b, d) that stability with respect to
the cutoff in the change-of-basis transformation (4) has been obtained — calculations
with Ncut = 9, 11, and 13 are virtually indistinguishable (the transformation has been
carried out from oscillator basis interaction matrix elements at ~Ωint = 40 MeV).

Convergence of the computed RMS radii, for both the oscillator and Coulomb–
Sturmian bases, is again indicated by approximate Nmax and ~Ω independence over a
range of ~Ω values, which appears as a shoulder in the curves of Fig. 3(c, d). The ~Ω
dependence for the Coulomb–Sturmian calculations appears to be moderately shal-
lower, over the range (two doublings) of ~Ω shown, than for the harmonic oscillator
calculations [see vertical bars in Fig. 3(c, d)].

It was proposed in Refs. [9, 10] that the radius can be estimated — even before
convergence is well-developed — by the crossover point between the curves obtained
for successive Nmax values. This is an admittedly ad hoc prescription, rather than a
theoretically motivated extrapolation. However, we can test it — for both oscillator
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Figure 4: The 4He ground state RMS point-proton radius rp, as estimated from
the crossover point (see text), calculated for the harmonic oscillator and Coulomb–
Sturmian bases. The experimental value is from Ref. [11].

and Coulomb–Sturmian bases — in this case of 4He, where the final converged value is
known. The crossover radii are shown as a function of Nmax, for both bases, in Fig. 4.
The curves used in deducing these crossovers are computed by cubic interpolation of
the calculated data points at different ~Ω. The crossovers already serve to estimate
the final converged value to within ∼0.05 fm at Nmax = 6. It may be noted, from
Fig. 4, that the converged radius obtained with the JISP16 interaction agrees with
experiment to within ∼0.03 fm.

Let us now consider the calculations for the halo nuclei 6,8He. The computed
ground state energies, proton radii, and neutron radii are shown in Figs. 5 and 7.
Results are included (at right in each figure) for a Coulomb–Sturmian basis with
proton-neutron asymmetric length scales in the ratio bn/bp = 1.414, which is com-
parable to the ratio rn/rp of neutron and proton distribution radii for these nuclei.
Energy convergence in the Coulomb–Sturmian basis lags that of the harmonic os-
cillator basis, but less dramatically than seen above for 4He. A basic three-point
exponential extrapolation of the energy with respect to Nmax, at each ~Ω value, is in-
dicated by the dashed curves in Figs. 5 and 7. The extrapolated energy is remarkably
~Ω-independent in the bn/bp = 1.414 calculations, still with some Nmax dependence.
It appears to be approximately consistent with the harmonic oscillator extrapolations
as well. However, such extrapolations must be viewed with caution, as both theoreti-
cal arguments and empirical studies suggest that other functional forms may be more
appropriate, over at least portions of the ~Ω range [4–6].

Comparing the results for radii obtained with the various bases, for 6,8He, we see
that the Coulomb–Sturmian results (for either bn/bp = 1 or bn/bp = 1.414) again have
a moderately shallower ~Ω dependence than obtained with the harmonic oscillator
basis. Well-defined and stable crossover points are visible in Figs. 5 and 7, especially
for the bn/bp = 1.414 calculations (at right). The extracted crossover radii are shown,
as functions of Nmax, in Figs. 6 and 8. The radii obtained for the Coulomb–Sturmian
calculations with different ratios of neutron and proton length scales (bn/bp = 1,
1.189, and 1.414) track each other closely from Nmax ≈ 8 onward, agreeing with
each other to within ∼0.1 fm. For rp, the values are stable with respect to Nmax

and agree with the values obtained from the harmonic oscillator basis crossover as
well. For rn, it appears that the values might be drifting systematically with Nmax,
although they do remain within an ∼0.2 fm range from Nmax = 6 onward. (The
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Figure 5: The calculated 6He ground state energy (top) and RMS point-proton
radius rp and point-neutron radius rn (bottom), using the conventional oscilla-
tor basis (left), Coulomb–Sturmian basis (center), and Coulomb–Sturmian basis
with bn/bp = 1.414 (right). Exponentially extrapolated energies are indicated by
dashed curves (at top), and crossover radii by dashed horizontal lines (at bottom).

1.000

1.000

1.189

1.189

1.414

1.414

HO Expt.

CS

6
He

1.5

2.0

2.5

3.0

r
Hf
m
L

4 6 8 10 12

Nmax

Figure 6: The 6He ground state RMS point-proton radius rp (lower curves) and point-
neutron radius rn (upper curves), as estimated from the crossover point (see text),
calculated for the harmonic oscillator basis and for Coulomb–Sturmian bases with
bn/bp = 1, 1.189, and 1.414 (as indicated). Experimental values are from Ref. [11].
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Figure 8: The 8He ground state RMS point-proton radius rp (lower curves) and point-
neutron radius rn (upper curves), as estimated from the crossover point (see text),
calculated for the harmonic oscillator basis and for Coulomb–Sturmian bases with
bn/bp = 1, 1.189, and 1.414 (as indicated). Experimental values are from Ref. [11].
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crossover radii obtained from the harmonic oscillator calculations are fluctuating over
a wider range.) Therefore, it is not possible to give a definitive value, but an estimate
of rn ≈ 2.5–2.6 fm can reasonably be made, for both 6,8He.

Thus, ab initio NCCI calculations for 6,8He with the JISP16 interaction, using
both conventional and Coulomb–Sturmian bases, yield consistent estimates of the
RMS point-proton and point-neutron radii, when these are extracted by the crossover
prescription. The results qualitatively reproduce the trend in proton and neutron
radii across the He isotopes, while quantitatively suggesting that the JISP16 inter-
action may yield radii which are smaller than experimentally observed, by as much
as ∼0.2–0.3 fm for the 6,8He neutron radii.
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Abstract

I start with a historical review of the attempts to construct theories for the
origin of nuclear forces, for which I also summaries the most important proper-
ties. The review then shifts to its main focus, which is the chiral effective field
theory approach to nuclear forces. I summarize the current status of this ap-
proach and discuss the most important open issues: the proper renormalization
of the chiral two-nucleon potential and sub-leading three-nucleon forces.

Keywords: Nuclear forces; nucleon-nucleon scattering; low-energy QCD; effec-
tive field theory; renormalization; few-nucleon forces

1 Introduction and overview

The nuclear force problem is as old as James Vary, namely seven decades. What a
coincidence!

The development of a proper theory of nuclear forces has occupied the minds
of some of the brightest physicists and has been one of the main topics of physics
research in the 20th century. The original idea was that the force is caused by the
exchange of lighter particles (than nucleons) known as mesons, and this idea gave
rise to the birth of a new sub-field of modern physics, namely, (elementary) particle
physics. The modern perception of the nuclear force is that it is a residual interaction
(similar to the van der Waals force between neutral atoms) of the even stronger force
between quarks, which is mediated by the exchange of gluons and holds the quarks
together inside a nucleon.

1.1 Early history

After the discovery of the neutron in 1932, it was clear that the atomic nucleus is
made up from protons and neutrons. In such a system, electromagnetic forces cannot
be the reason why the constituents of the nucleus are sticking together. Therefore, the
concept of a new strong nuclear interaction was introduced. In 1935, the first theory
for this new force was developed by the Japanese physicist Yukawa [1], who suggested
that the nucleons would exchange particles between each other and this mechanism
would create the force. Yukawa constructed his theory in analogy to the theory of the
electromagnetic interaction where the exchange of a (massless) photon is the cause
of the force. However, in the case of the nuclear force, Yukawa assumed that the

1Dedicated to James Vary on the occasion of his 70th birthday.
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“force-makers” (which were eventually called “mesons”) carry a mass of a fraction
of the nucleon mass. This would limit the effect of the force to a finite range, since
the uncertainty principal allows massive particles to travel only a finite distance. The
meson predicted by Yukawa was finally found in 1947 in cosmic ray and in 1948 in the
laboratory and called the pion. Yukawa was awarded the Nobel Prize in 1949. In the
1950’s and 60’s more mesons were found in accelerator experiments and the meson
theory of nuclear forces was extended to include many mesons. These models became
know as one-boson-exchange models, which is a reference to the fact that the different
mesons are exchanged singly in this model. The one-boson-exchange model is very
successful in explaining essentially all properties of the nucleon-nucleon interaction
at low energies [2–6]. In the 1970’s and 80’s, also meson models were developed that
went beyond the simple single-particle exchange mechanism. These models included,
in particular, the explicit exchange of two pions with all its complications. Well-known
representatives of the latter kind are the Paris [7] and the Bonn potential [8].

Since these meson models were quantitatively very successful, it appeared that
they were the solution of the nuclear force problem. However, with the discovery (in
the 1970’s) that the fundamental theory of strong interactions is quantum chromo-
dynamics (QCD) and not meson theory, all “meson theories” had to be viewed as
models, and the attempts to derive a proper theory of the nuclear force had to start
all over again.

1.2 QCD and the nuclear force

The problem with a derivation of nuclear forces from QCD is two-fold. First, each
nucleon consists of three quarks such that the system of two nucleons is already a
six-body problem. Second, the force between quarks, which is created by the ex-
change of gluons, has the feature of being very strong at the low energy-scale that
is characteristic of nuclear physics. This extraordinary strength makes it difficult to
find “converging” mathematical solutions. Therefore, during the first round of new
attempts, QCD-inspired quark models became popular. The positive aspect of these
models is that they try to explain nucleon structure (which consists of three quarks)
and nucleon-nucleon interactions (six-quark systems) on an equal footing. Some of
the gross features of the two-nucleon force, like the “hard core” are explained success-
fully in such models. However, from a critical point of view, it must be noted that
these quark-based approaches are yet another set of models and not a theory. Alter-
natively, one may try to solve the six-quark problem with brute computing power, by
putting the six-quark system on a four dimensional lattice of discrete points which
represents the three dimensions of space and one dimension of time. This method has
become known as lattice QCD and is making progress. However, such calculations
are computationally very expensive and cannot be used as a standard nuclear physics
tool.

1.3 Chiral effective field theory

Around 1990, a major breakthrough occurred when the nobel laureate Steven Wein-
berg applied the concept of an effective field theory (EFT) to low-energy QCD [9,10].
He simply wrote down the most general theory that is consistent with all the prop-
erties of low-energy QCD, since that would make this theory identical to low-energy
QCD. A particularly important property is the so-called chiral symmetry, which is
“spontaneously” broken. Massless particles observe chiral symmetry, which means
that their spin and momentum are either parallel (“right-handed”) or anti-parallel
(“left-handed”) and remain so forever. Since the quarks, which nucleons are made of
(“up” and “down” quarks), are almost mass-less, approximate chiral symmetry is a
given. Naively, this symmetry should have the consequence that one finds in nature
mesons of the same mass, but with positive and negative parity. However, this is
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not the case and such failure is termed a “spontaneous” breaking of the symmetry.
According to a theorem first proven by Goldstone, the spontaneous breaking of a
symmetry creates a particle, here, the pion. Thus, the pion becomes the main player
in the production of the nuclear force. The interaction of pions with nucleons is weak
as compared to the interaction of gluons with quarks. Therefore, pion-nucleon pro-
cesses can be calculated without problem. Moreover, this effective field theory can be
expanded in powers of momentum/scale, where “scale” denotes the “chiral symmetry
breaking scale” which is about 1 GeV. This scheme is also known as chiral pertur-
bation theory (ChPT) and allows to calculate the various terms that make up the
nuclear force systematically power by power, or order by order. Another advantage
of the chiral EFT approach is its ability to generate not only the force between two
nucleons, but also many-nucleon forces, on the same footing [11]. In modern theoret-
ical nuclear physics, the chiral EFT approach is becoming increasingly popular and
is applied with great success [12, 13].

1.4 Main properties of the nuclear force and
phenomenological potentials

Some properties of nuclear interactions can be deduced from the properties of nuclei.
The property of saturation suggests that nuclear forces are of short range (a few fm)
and strongly attractive at that range, which explains nuclear binding. But the nu-
clear force has also a very complex spin-dependence. First evidence came from the
observation that the deuteron (proton-neutron bound state, smallest atomic nucleus)
deviates slightly from a spherical shape. This suggests a force that depends on the
orientation of the spins of the nucleons with regard to the line connecting the two
nucleons (tensor force). In heavier nuclei, a shell structure has been observed which
according to a suggestion by Mayer and Jensen can be explained by a strong force be-
tween the spin of the nucleon and its orbital motion (spin-orbit force). More clear-cut
evidence for the spin-dependence is extracted from scattering experiments where one
nucleon is scattered off another nucleon. In such experiments, the existence of the nu-
clear spin-orbit and tensor forces has clearly been established. Scattering experiments
at higher energies (more than 200 MeV) show indications that the nucleon-nucleon
interaction at very short distances (smaller than 0.5 fm) becomes repulsive (“hard
core”). Besides the force between two nucleons (2NF), there are also three-nucleon
forces (3NF), four-nucleon forces (4NF), etc. However, the 2NF is much stronger than
the 3NF, which in turn is much stronger than the 4NF, etc. In exact calculations of
the properties of light nuclei based upon the bare nuclear forces, it has been shown
that 3NFs are important. Their contribution is small, but crucial. The need for 4NF
for explaining nuclear properties has not (yet) been clearly established.

Phenomenological nucleon-nucleon (NN) potentials are constructed in close
relationship to the empirical facts. In this regard, the most faithful method of
construction is inverse scattering theory, which the so-called JISP-16 potentials are
based upon [14].

In the following sections, I will elaborate more on the theory of nuclear forces
with particular emphasis on the view according to which the forces between nucleons
emerge from low-energy QCD via an effective field theory.

2 Effective field theory for low-energy QCD

Quantum chromodynamics (QCD) is the theory of strong interactions. It deals with
quarks, gluons and their interactions and is a part of the Standard Model of Particle
Physics. QCD is a non-Abelian gauge field theory with color SU(3) as the underlying
gauge group. The non-Abelian nature of the theory has dramatic consequences. While
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the interaction between colored objects is weak at short distances or high momentum
transfer (“asymptotic freedom”); it is strong at long distances (& 1 fm) or low energies,
leading to the confinement of quarks into colorless objects, the hadrons. Consequently,
QCD allows for a perturbative analysis at large energies, whereas it is highly non-
perturbative in the low-energy regime. Nuclear physics resides at low energies and
the force between nucleons is a residual color interaction similar to the van der Waals
force between neutral molecules. Therefore, in terms of quarks and gluons, the nuclear
force is a very complicated problem that, nevertheless, can be attacked with brute
computing power on a discretized, Euclidean space-time lattice (known as lattice
QCD). In a recent study [15], the neutron-proton scattering lengths in the singlet
and triplet S-waves have been determined in fully dynamical lattice QCD. This result
is then extrapolated to the physical pion mass with the help of chiral perturbation
theory. The pion mass of 354 MeV is still too large to allow for reliable extrapolations,
but the feasibility has been demonstrated and more progress can be expected for the
near future. In a lattice calculation of a very different kind, the NN potential was
studied [16]. The central part of the potential shows a repulsive core plus attraction of
intermediate range. This is a very promising result, but it must be noted that also in
this investigation still rather large pion masses are being used. In any case, advanced
lattice QCD calculations are under way and continuously improved. However, since
these calculations are very time-consuming and expensive, they can only be used to
check a few representative key-issues. For everyday nuclear structure physics, a more
efficient approach is needed.

The efficient approach is an effective field theory. For the development of an EFT,
it is crucial to identify a separation of scales. In the hadron spectrum, a large gap
between the masses of the pions and the masses of the vector mesons, like ρ(770)
and ω(782), can clearly be identified. Thus, it is natural to assume that the pion
mass sets the soft scale, Q ∼ mπ, and the rho mass is associated with the hard
scale, Λχ ∼ mρ, also known as the chiral-symmetry breaking scale. This is suggestive
of considering an expansion in terms of the soft scale over the hard scale, Q/Λχ.
Concerning the relevant degrees of freedom, we noticed already that, for the ground
state and the low-energy excitation spectrum of an atomic nucleus as well as for
conventional nuclear reactions, quarks and gluons are ineffective degrees of freedom,
while nucleons and pions are the appropriate ones. To make sure that this EFT is
not just another phenomenology, it must have a firm link with QCD. The link is
established by having the EFT to observe all relevant symmetries of the underlying
theory. This requirement is based upon a ‘folk theorem’ by Weinberg [9]:

If one writes down the most general possible Lagrangian, including all
terms consistent with assumed symmetry principles, and then calculates
matrix elements with this Lagrangian to any given order of perturbation
theory, the result will simply be the most general possible S-matrix con-
sistent with analyticity, perturbative unitarity, cluster decomposition, and
the assumed symmetry principles.

In summary, the EFT program consists of the following steps:

1. Identify the soft and hard scales, and the degrees of freedom (DOF) appro-
priate for (low-energy) nuclear physics. Soft scale: Q ∼ mπ, hard scale:
Λχ ∼ mρ ∼ 1 GeV; DOF: pions and nucleons.

2. Identify the relevant symmetries of low-energy QCD and investigate if and how
they are broken: explicitly and spontaneously broken chiral symmetry (sponta-
neous symmetry breaking generates the pions as Goldstone bosons).

3. Construct the most general Lagrangian consistent with those symmetries and
symmetry breakings, see Ref. [13].
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4. Design an organizational scheme that can distinguish between more and less
important contributions: a low-momentum expansion, (Q/Λχ)ν , with ν deter-
mined by ‘power counting’. For an irreducible diagram that involves A nucleons,
we have:

ν = −2 + 2A− 2C + 2L+
∑

i

∆i . (1)

where

∆i ≡ di +
ni

2
− 2 , (2)

with C being the number of separately connected pieces and L being the number
of loops in the diagram; di is the number of derivatives or pion-mass insertions
and ni is the number of nucleon fields (nucleon legs) involved in vertex i; the
sum runs over all vertices i contained in the diagram under consideration. Note
that for an irreducible NN diagram (A = 2, C = 1), the power formula collapses
to the very simple expression

ν = 2L+
∑

i

∆i . (3)

5. Guided by the expansion, calculate Feynman diagrams for the problem under
consideration to the desired accuracy (see next Section).

3 The hierarchy of nuclear forces in chiral EFT

Chiral perturbation theory and power counting imply that nuclear forces emerge as
a hierarchy controlled by the power ν, Fig. 1.

+... +... +...

+...

2N Force 3N Force 4N Force

LO

(Q/Λχ)0

NLO

(Q/Λχ)2

NNLO

(Q/Λχ)3

N
3
LO

(Q/Λχ)4

Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and
dashed lines pions. Small dots, large solid dots, solid squares, and solid diamonds
denote vertices of index ∆i = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.
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In the lowest order, better known as leading order (LO, ν = 0), the NN ampli-
tude is made up by two momentum-independent contact terms (∼Q0), represented
by the four-nucleon-leg graph with a small-dot vertex shown in the first row of Fig. 1,
and static one-pion exchange (1PE), the second diagram in the first row of the fig-
ure. This is, of course, a rather rough approximation to the two-nucleon force (2NF),
but it accounts already for some important features. The 1PE provides the tensor
force, necessary to describe the deuteron, and it explains NN scattering in periph-
eral partial waves of very high orbital angular momentum. At this order, the two
contacts which contribute only in S-waves provide the short- and intermediate-range
interaction which is somewhat crude.

In the next order, ν = 1, all contributions vanish due to parity and time-reversal
invariance.

Therefore, the next-to-leading order (NLO) is ν = 2. Two-pion exchange (2PE)
occurs for the first time (“leading 2PE”) and, thus, the creation of a more sophis-
ticated description of the intermediate-range interaction is starting here. Since the
loop involved in each pion-diagram implies already ν = 2 [cf. Eq. (3)], the vertices
must have ∆i = 0. Therefore, at this order, only the lowest order πNN and ππNN
vertices are allowed which is why the leading 2PE is rather weak. Furthermore, there
are seven contact terms of O(Q2), shown by the four-nucleon-leg graph with a solid
square, which contribute in S and P waves. The operator structure of these con-
tacts include a spin-orbit term besides central, spin-spin, and tensor terms. Thus,
essentially all spin-isospin structures necessary to describe the two-nucleon force phe-
nomenologically have been generated at this order. The main deficiency at this stage
of development is an insufficient intermediate-range attraction.

This problem is finally fixed at order three (ν = 3), next-to-next-to-leading order
(NNLO). The 2PE involves now the two-derivative ππNN seagull vertices (propor-
tional to the ci LECs) denoted by a large solid dot in Fig. 1. These vertices represent
correlated 2PE as well as intermediate ∆(1232)-isobar contributions. It is well-known
from the meson phenomenology of nuclear forces [7, 8] that these two contributions
are crucial for a realistic and quantitative 2PE model. Consequently, the 2PE now
assumes a realistic size and describes the intermediate-range attraction of the nuclear
force about right. Moreover, first relativistic corrections come into play at this order.
There are no new contacts.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-
nucleon forces are created on an equal footing and emerge in increasing number as we
go to higher and higher orders. At NNLO, the first set of nonvanishing three-nucleon
forces (3NF) occur [17, 18], cf. column ‘3N Force’ of Fig. 1. In fact, at the previous
order, NLO, irreducible 3N graphs appear already, however, it has been shown by
Weinberg [11] that these diagrams all cancel. Since nonvanishing 3NF contributions
happen first at order (Q/Λχ)3, they are very weak as compared to 2NF which start
at (Q/Λχ)0.

More 2PE is produced at ν = 4, next-to-next-to-next-to-leading order (N3LO), of
which we show only a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show
up for the first time and so does three-pion exchange (3PE) which necessarily involves
two loops. 3PE was found to be negligible at this order [19, 20]. Most importantly,
15 new contact terms ∼Q4 arise and are represented by the four-nucleon-leg graph
with a solid diamond. They include a quadratic spin-orbit term and contribute up
to D-waves. Mainly due to the increased number of contact terms, a quantitative
description of the two-nucleon interaction up to about 300 MeV lab. energy is possible,
at N3LO (see red solid line in Fig. 2 and cf. Table 1). Besides further 3NF, four-
nucleon forces (4NF) start at this order. Since the leading 4NF come into existence
one order higher than the leading 3NF, 4NF are weaker than 3NF. Thus, ChPT
provides a straightforward explanation for the empirically known fact that 2NF ≫
3NF ≫ 4NF ... .
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Figure 2: Phase shifts of np scattering as calculated from NN potentials at dif-
ferent orders of ChPT. The black dotted line is LO(500), the blue dashed is
NLO(550/700) [21], the green dash-dotted NNLO(600/700) [21], and the red solid
N3LO(500) [22], where the numbers in parentheses denote the cutoffs in MeV. Partial
waves with total angular momentum J ≤ 2 are displayed. The solid dots and open
circles are the results from the Nijmegen multi-energy np phase shift analysis [23] and
the VPI/GWU single-energy np analysis SM99 [24], respectively.
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Table 1: χ2/datum for the reproduction of the 1999 np database [25] below 290 MeV
by various np potentials. Tlab denotes the kinetic energy of the incident neutron in
the laboratory system.

Tlab bin (MeV) # of np data N3LO [22] NNLO [21] NLO [21] AV18 [26]

0–100 1058 1.05 1.7 4.5 0.95
100–190 501 1.08 22 100 1.10
190–290 843 1.15 47 180 1.11

0–290 2402 1.10 20 86 1.04

During the past decade or so, chiral two-nucleon forces have been used in many
microscopic calculations of nuclear reactions and structure [27–33] and the combi-
nation of chiral two- and three-nucleon forces has been applied in few-nucleon re-
actions [18, 34–37], structure of light- and medium-mass nuclei [38–46], and nuclear
and neutron matter [47–50] — with a great deal of success. The majority of nuclear
structure calculations is nowadays based upon chiral forces.

However, in spite of this progress, we are not done. Due to the complexity of the
nuclear force issue, there are still many subtle and not so subtle open problems. We
will not list and discuss all of them, but instead just focus on the two open issues,
which we perceive as the most important ones:

• The proper renormalization of chiral nuclear potentials and

• Subleading chiral few-nucleon forces.

4 Renormalization of chiral nuclear forces

4.1 The chiral NN potential

In mathematical terms, the various orders of the irreducible graphs in Fig. 1, which
define the chiral NN potential, are given by:

VLO = V
(0)
ct + V

(0)
1π , (4)

VNLO = VLO + V
(2)
ct + V

(2)
1π + V

(2)
2π , (5)

VNNLO = VNLO + V
(3)
1π + V

(3)
2π , (6)

VN3LO = VNNLO + V
(4)
ct + V

(4)
1π + V

(4)
2π + V

(4)
3π , (7)

where the superscript denotes the order ν of the low-momentum expansion. Contact
potentials carry the subscript “ct” and pion-exchange potentials can be identified by
an obvious subscript.

Multi-pion exchange, which starts at NLO and continues through all higher orders,
involves divergent loop integrals that need to be regularized. An elegant way to
do this is dimensional regularization which (besides the main nonpolynomial result)
typically generates polynomial terms with coefficients that are, in part, infinite or
scale dependent. One purpose of the contacts is to absorb all infinities and scale
dependencies and make sure that the final result is finite and scale independent. This
is the renormalization of the perturbatively calculated NN amplitude (which, by
definition, is the “NN potential”). It is very similar to what is done in the ChPT
calculations of ππ and πN scattering, namely, a renormalization order by order, which
is the method of choice for any EFT. Thus, up to this point, the calculation fully meets
the standards of an EFT and there are no problems. The perturbative NN amplitude
can be used to make model independent predictions for peripheral partial waves.
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4.2 Nonperturbative renormalization of the NN potential

For calculations of the structure of nuclear few and many-body systems, the lower
partial waves are the most important ones. The fact that in S waves we have large
scattering lengths and shallow (quasi) bound states indicates that these waves need
to be treated nonperturbatively. Following Weinberg’s prescription [10], this is ac-
complished by inserting the potential V into the Lippmann-Schwinger (LS) equation:

T (~p ′, ~p) = V (~p ′, ~p) +

∫
d3p′′ V (~p ′, ~p ′′)

MN

p2 − p′′2 + iǫ
T (~p ′′, ~p) , (8)

where MN denotes the nucleon mass.

In general, the integral in the LS equation is divergent and needs to be regularized.
One way to do this is by multiplying V with a regulator function

V (~p ′, ~p) 7−→ V (~p ′, ~p) e−(p′/Λ)2n e−(p/Λ)2n . (9)

Typical choices for the cutoff parameter Λ that appears in the regulator are Λ ≈
0.5 GeV < Λχ ≈ 1 GeV.

It is pretty obvious that results for the T -matrix may depend sensitively on the
regulator and its cutoff parameter. This is acceptable if one wishes to build models.
For example, the meson models of the past [4] always depended sensitively on the
choices for the cutoff parameters which, in fact, were important for the fit of the NN
data. However, the EFT approach wishes to be fundamental in nature and not just
another model.

In field theories, divergent integrals are not uncommon and methods have been
developed for how to deal with them. One regulates the integrals and then removes
the dependence on the regularization parameters (scales, cutoffs) by renormalization.
In the end, the theory and its predictions do not depend on cutoffs or renormalization
scales. So-called renormalizable quantum field theories, like QED, have essentially one
set of prescriptions that takes care of renormalization through all orders. In contrast,
EFTs are renormalized order by order.

Weinberg’s implicit assumption [10, 51] was that the counterterms introduced to
renormalize the perturbatively calculated potential, based upon naive dimensional
analysis (“Weinberg counting”), are also sufficient to renormalize the nonperturba-
tive resummation of the potential in the LS equation. In 1996, Kaplan, Savage, and
Wise (KSW) [52] pointed out that there are problems with the Weinberg scheme if
the LS equation is renormalized by minimally-subtracted dimensional regularization.
This criticism resulted in a flurry of publications on the renormalization of the non-
perturbative NN problem. The literature is too comprehensive to elaborate on all
contributions. Therefore, we will restrict ourselves, here, to discussing just a few as-
pects that we perceive as particularly important. A more comprehensive consideration
can be found in Ref. [13]

Naively, the most perfect renormalization procedure is the one where the cutoff
parameter Λ is carried to infinity while stable results are maintained. This was done
successfully at LO in the work by Nogga et al. [53]. At NNLO, the infinite-cutoff
renormalization procedure has been investigated in [54] for partial waves with total
angular momentum J ≤ 1 and in [55] for all partial waves with J ≤ 5. At N3LO, the
1S0 state was considered in Ref. [56], and all states up to J = 6 were investigated in
Ref. [57]. From all of these works, it is evident that no counter term is effective in
partial-waves with short-range repulsion and only a single counter term can effectively
be used in partial-waves with short-range attraction. Thus, for the Λ → ∞ renor-
malization prescription, even at N3LO, there exists either one or no counter term per
partial-wave state. This is inconsistent with any reasonable power-counting scheme
and prevents an order-by-order improvement of the predictions.
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To summarize: In the infinite-cutoff renormalization scheme, the potential is ad-
mitted up to unlimited momenta. However, within the EFT, this potential is derived
from has validity only for momenta smaller than the chiral symmetry breaking scale
Λχ ≈ 1 GeV. The lack of order-by-order convergence and discrepancies in lower
partial-waves demonstrate that the potential should not be used beyond the limits of
the effective theory [57] (see Ref. [58] for a related discussion). The conclusion then
is that cutoffs should be limited to Λ . Λχ (but see also Ref. [59]).

A possible solution of this problem was proposed already in [53] and reiterated in
a paper by Long and van Kolck [60]. A calculation of the proposed kind has been
performed by Valderrama [61] for the S, P , and D waves. The author renormalizes the
LO interaction nonperturbatively and then uses the LO distorted wave to calculate the
2PE contributions at NLO and NNLO perturbatively. It turns out that perturbative
renormalizability requires the introduction of about twice as many counter terms as
compared to Weinberg counting, which reduces the predictive power. The order-by-
order convergence of the NN phase shifts appears to be reasonable.

However, even if one considers the above method as successful for NN scattering,
there is doubt if the interaction generated in this approach is of any use for applications
in nuclear few- and many-body problems. In applications, one would first have to
solve the many-body problem with the re-summed LO interaction, and then add
higher order corrections in perturbation theory. It was shown in a recent paper [62]
that the renormalized LO interaction is characterized by a very large tensor force
from 1PE. This is no surprise since LO is renormalized with Λ → ∞ implying that
the 1PE, particulary its tensor force, is totally uncut. As a consequence of this,
the wound integral in nuclear matter, κ, comes out to be about 40%. The hole-line
and coupled cluster expansions are known to converge ∝ κn−1 with n the number
of hole-lines or particles per cluster. For conventional nuclear forces, the wound
integral is typically between 5 and 10% and the inclusion of three-body clusters (or
three hole-lines) are needed to obtain converged results in the many-body system.
Thus, if the wound integral is 40%, probably, up to six hole-lines need to be included
for approximate convergence. Such calculations are not feasible even with the most
powerful computers of today and will not be feasible any time soon. Therefore, even
if the renormalization procedure proposed in [60] will work for NN scattering, the
interaction produced will be highly impractical (to say the least) in applications in
few- and many-body problems because of convergence problems with the many-body
energy and wave functions.

Crucial for an EFT are regulator independence (within the range of validity of
the EFT) and a power counting scheme that allows for order-by-order improvement
with decreasing truncation error. The purpose of renormalization is to achieve this
regulator independence while maintaining a functional power counting scheme.

Thus, in the spirit of Lepage [63], the cutoff independence should be examined
for cutoffs below the hard scale and not beyond. Ranges of cutoff independence
within the theoretical error are to be identified using Lepage plots [63]. Recently,
we have started a systematic investigation of this kind. In our work, we quantify
the error of the predictions by calculating the χ2/datum for the reproduction of the
neutron-proton (np) elastic scattering data as a function of the cutoff parameter Λ
of the regulator function Eq. (9). We have investigated the predictions by chiral
np potentials at order NLO and NNLO applying Weinberg counting for the counter
terms (NN contact terms). We show our results for the energy range 35–125 MeV
in the upper frame of Fig. 3 and for 125–183 MeV in the lower frame. It is seen that
the reproduction of the np data at these energies is generally poor at NLO, while at
NNLO the χ2/datum assumes acceptable values (a clear demonstration of order-by-
order improvement). Moreover, at NNLO one observes “plateaus” of constant low χ2

for cutoff parameters ranging from about 450 to 850 MeV. This may be perceived as
cutoff independence (and, thus, successful renormalization) for the relevant range of
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Figure 3: χ2/datum for the reproduction of the np data in the energy range 35–
125 MeV (upper frame) and 125–183 MeV (lower frame) as a function of the cutoff
parameter Λ of the regulator function Eq. (9). The (black) dashed curves show the
χ2/datum achieved with np potentials constructed at order NLO and the (red) solid
curves are for NNLO.

cutoff parameters.

5 Few-nucleon forces and what is missing

We will now discuss the other issue we perceive as unfinished and important, namely,
subleading chiral few-nucleon forces.

Nuclear three-body forces in ChPT were initially discussed by Weinberg [11]. The
3NF at NNLO, was derived by van Kolck [17] and applied, for the first time, in
nucleon-deuteron scattering by Epelbaum et al. [18]. The leading 4NF (at N3LO)
was constructed by Epelbaum [64] and found to contribute in the order of 0.1 MeV to
the 4He binding energy (total 4He binding energy: 28.3 MeV) in a preliminary calcu-
lation [65], confirming the traditional assumption that 4NF are essentially negligible.
Therefore, the focus is on 3NFs.

For a 3NF, we have A = 3 and C = 1 and, thus, Eq. (1) implies

ν = 2 + 2L+
∑

i

∆i . (10)

We will use this equation to analyze 3NF contributions order by order. The first
non-vanishing 3NF occurs at ν = 3 (NNLO), which is obtained when there are no
loops (L = 0) and

∑
i ∆i = 1, i.e., ∆i = 1 for one vertex while ∆i = 0 for all other

vertices. There are three topologies which fulfill this condition, known as the two-pion
exchange (2PE), one-pion exchange (1PE), and contact graphs (cf. Fig. 1).

The 3NF at NNLO has been applied in calculations of few-nucleon reactions [35],
structure of light- and medium-mass nuclei [38–46], and nuclear and neutron mat-
ter [47–50] with a great deal of success. However, the famous ‘Ay puzzle’ of nucleon-
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(a) (b) (c) (d) (e)

Figure 4: 3NF one-loop contributions at N4LO (ν = 5). We show one representa-
tive diagram for each of five topologies, which are: (a) 2PE, (b) 2PE-1PE, (c) ring,
(d) 1PE-contact, and (e) 2PE-contact. Notation as in Fig. 1.

deuteron scattering [18] and the analogous problem with the analyzing power in p-3He
scattering [37] is not resolved. Furthermore, the spectra of light nuclei leave room for
improvement [39]. Since we are dealing with a perturbation theory, it is natural to
turn to the next order when looking for improvements.

The next order is N3LO, where we have loop and tree diagrams. For the loops, we
have L = 1 and, therefore, all ∆i have to be zero to ensure ν = 4. Thus, these one-
loop 3NF diagrams can include only leading order vertices, the parameters of which
are fixed from πN and NN analysis. One sub-group of these diagrams (the 2PE
graphs) has been calculated by Ishikawa and Robilotta [66], and the other topologies
have been evaluated by the Bochum–Bonn group [67, 68]. The N3LO 2PE 3NF has
been applied in the calculation of nucleon-deuteron observables in Ref. [66] causing
little impact. Very recently, the long-range part of the chiral N3LO 3NF has been
tested in the triton [69] and in three-nucleon scattering [70] yielding only moderate
effects. The long- and short-range parts of this force have been used in neutron matter
calculations (together with the N3LO 4NF) producing relatively large contributions
from the 3NF [71]. Thus, the ultimate assessment of the N3LO 3NF is still outstanding
and will require more few- and many-body applications.

In the meantime, it is of interest to take already a look at the next order of 3NFs,
which is N4LO or ν = 5 (of the ∆-less theory to which the present discussion is
restricted because of lack of space). The loop contributions that occur at this order
are obtained by replacing one vertex in the N3LO loops by a ∆i = 1 vertex (with
LEC ci), Fig. 4, which is why these loops may be more sizable than the N3LO loops.
The 2PE topology turns out to be of modest size [72]; moreover, it can be handled
in a practical way by summing it up together with the 2PE topologies at NNLO and
N3LO [72]. The 2PE-1PE and ring topologies have also been derived [73]. Finally,
there are also tree topologies at N4LO (Fig. 5) which include a new set of 3N contact
interactions (graph (c)). These 3N contacts have recently been derived by the Pisa
group [74]. Contact terms are typically simple (as compared to loop diagrams) and
their coefficients are unconstrained (except for naturalness). Therefore, it would be
an attractive project to test some terms (in particular, the spin-orbit terms) of the
N4LO contact 3NF [74] in calculations of few-body reactions (specifically, the p-d and
p-3He Ay) and spectra of light nuclei.

(a) (b) (c)

Figure 5: 3NF tree graphs at N4LO (ν = 5) denoted by: (a) 2PE, (b) 1PE-contact,
and (c) contact. Solid triangles represent vertices of index ∆i = 3.
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6 Conclusions and Outlook

The past 15 years have seen great progress in our understanding of nuclear forces
in terms of low-energy QCD. A key to this development was the realization that
the low-energy QCD is equivalent to an effective field theory which allows for a per-
turbative expansion that has become known as chiral perturbation theory. In this
framework, two- and many-body forces emerge on an equal footing and the empirical
fact that nuclear many-body forces are substantially weaker then the two-nucleon
force is explained automatically.

In spite of the great progress and success of the past 15 years, there are still some
unresolved issues. One problem is the proper renormalization of the chiral two- and
many-nucleon potentials, where systematic investigations are already under way (cf.
Sec. 4).

The other unfinished business is the few-nucleon forces beyond NNLO (“sub-
leading few-nucleon forces”) which are needed to hopefully resolve some important
outstanding nuclear structure problems. At orders N3LO and N4LO very many new
3NF structures appear, some of which have already been tested. However, in view
of the multitude of 3NF topologies it will take a while until we will have a proper
overview of impact and convergence of these contributions.

If the open issues discussed in this paper will be resolved within the next few
years, then, after 70 years of desperate struggle, we may finally claim that the nuclear
force problem is essentially under control. The greatest beneficiaries of such progress
will be the ab initio nuclear structure physicists, including James Vary. May this be
a birthday present for him.

This work was supported in part by the U.S. Department of Energy under
Grant No. DE-FG02-03ER41270.
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Abstract

I discuss computational challenges in the relativistic few-nucleon problem
and the resolution of some of these challenges. I also discuss the outlook for the
future.
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1 Introduction

Studying nuclear physics at distance scales that are potentially sensitive to sub-
nucleon physics requires a relativistic treatment of the dynamics. This scale is
interesting because QCD is non-perturbative at this scale; of particular concern is
that it is not yet known how to compute mathematical error bounds, even for non-
perturbative methods, making the accuracy of calculations based directly on QCD
difficult to assess. This is also the scale where transition from meson-nucleon to
sub-nucleon degrees of freedom is poorly understood.

Relativistic quantum mechanics provides a means for studying few-body problems
at this scale. It provides a quantum mechanical description of the dynamics of the
relevant degrees of freedom consistent with the exact Poincaré symmetry of under-
lying theory. Because few-body models can be solved exactly, comparison of these
computations to experiment provides the direct feedback needed to construct realistic
models based on a given set of degrees of freedom.

Normally the relevant degrees of freedom are the experimental degrees of freedom
which are the particle spins and momenta that are observed in reactions at this scale.
A suitable model Hilbert space is the direct sum of tensor products of the single-
nucleon spaces,

H = ⊕(⊗Hmi ji), (1)

which are irreducible representation spaces for the Poincaré group.
Any relativistic model formulated on this space is necessarily characterized by a

unitary representation of the Poincaré group [1]

U(Λ, a) : H → H. (2)

The dynamical unitary representation U(Λ, a) of the Poincaré group necessarily differs
from the natural free-particle representation, U0(Λ, a), given by the direct sum of
tensor products free-particle irreducible representations on H.

The ability to perform local tests of special relativity requires that the unitary
representations of the Poincaré group corresponding to different subsystems be related

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 352.

http://www.ntse-2013.khb.ru/Proc/Polyzou.pdf.

352



Relativistic few-nucleon problem 353

to U(Λ, a) by cluster properties

lim
|rij−rk|→∞

‖
(
U(Λ, a)− Uij(Λ, a)⊗ Uk(Λ, a)

)
|ψ〉‖ = 0. (3)

The problem of relativistic few-body physics is to construct mathematical models
U(Λ, a) with the above properties that provide a realistic quantitative and consistent
description of few-GeV scale structure and reactions for few-hadron systems. This
problem is a natural extension of the corresponding non-relativistic problem; but the
relativistic treatment leads to a number of computational issues that do not arise in
the non-relativistic formulation of the same problem.

In the non-relativistic case it is useful to work in a frame where the total mo-
mentum P is zero. In that frame the Hamiltonian is replaced by the center of mass
Hamiltonian, h = H −P2/2M , where M is the Galilean mass of the system. In the
relativistic case the corresponding operator is the invariant mass operator, which is
the rest energy of the system. We denote the mass operator by M .

The first complication in formulation of a relativistic few-body dynamics arises be-
cause the Hamiltonian appears on the right-hand side of three different commutators.
As a consequence, the Poincaré commutation relations require that at least three of
the Poincaré generators have an interaction dependence. The commutation relations
impose a set of non-linear constraints on these interactions. One way to satisfy these
constraints is to notice that all ten generators can be expressed in terms of the two
Casimir operators (mass and spin), four commuting functions of the generators, and
four functions of the generators that are conjugate to the four commuting functions
of the generators. If interactions are added to the non-interacting mass operator,
keeping these other nine operators free of interactions, and the ten generators are
expressed as functions of these nine operators and the interacting invariant mass,
the resulting generators will satisfy the Poincaré commutation relations provided the
interaction terms commute with these nine-non-interacting operators. This is the as-
sumption that defines the Bakamjian–Thomas [2] method. These nine commutators
with the relativistic interaction are the relativistic equivalent of the nine constraints
on the non-relativistic interactions that result from the requirements that the interac-
tions be translationally invariant, rotationally invariant, and independent of the total
momentum.

Solving for the mass eigenvalue problem in a suitable irreducible free-particle basis
leads to an explicit dynamical unitary representation of the Poincaré group, Ūij(Λ, a),
on the two particle Hilbert space.

If this method is applied to the three-nucleon system, the resulting three-nucleon
mass operator [3] has the form

M̄ := M̄12,3 + M̄23,1 + M̄31,2 − 2M0, (4)

M̄ij,k = M0 + V̄ij , (5)

M0 =

√
q2
k +

(√
k2
ij +m2

i +
√
k2
ij +m2

j

)2
+
√
q2
k +m2

k , (6)

where the relativistic Jacobi momenta

qi := ΛΛΛ(P/M0)−1pi, kij := ΛΛΛ
(qi + qj
m0ij

)−1

qi (7)

are obtained by Lorentz transforming single-particle momenta to the two and three-
body rest frames with non-interacting Lorentz transformations. We call these vari-
ables relativistic Jacobi momenta because the usual Jacobi momenta can be con-
structed in the same manner by replacing the Lorentz boost by a Galilean boost.

Because all three of the interactions commute with the same nine functions of the
three-nucleon Poincaré generators, the interactions can be combined algebraically in
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the three-nucleon mass operator and the result will commute with these same nine
operators. Poincaré generators can then be expressed in terms of the interacting mass
operator and the nine-other three-body kinematic operators. Again, diagonalizing M̄
in a suitable irreducible free-particle basis gives a dynamical unitary representation
of the Poincaré group, Ū(Λ, a), for a system of three interacting particles.

The commutator of the interaction with the free spin operator, j20,

[V̄ij , j
2
0] = 0, (8)

is incompatible with cluster properties of the three-body Poincaré generators. The
problem is that the relative orbital angular momentum, which contributes to the total
spin, gets modified as a consequence of the interactions. Here the failure means that

Ū(Λ, a)→ Ūij,k(Λ, a) 6= Ūij ⊗ Uk(Λ, a), (9)

where Ūij,k(Λ, a) is obtained from Ū(Λ, a) by turning off the interactions involving
particle k. The way that cluster properties fail at the operator level is that interactions
that should survive in the cluster limit actually vanish.

While cluster properties of Ū(Λ, a) in the sense the equation (3) do not hold, it
turns our that the S matrices associated with the 2 + 1 representations of Ūij,k(Λ, a)
and Ūij ⊗ Uk(Λ, a) are identical.

The equivalence of the 2+1 S matrices to the corresponding S matrices for the
tensor product dynamics

S̄ij,k = S̄ij ⊗ Ik (10)

implies the existence [4] of an S-matrix preserving unitary transformation, Aij,k,
satisfying

Aij,k Ūij,k(Λ, a)A†
ij,k = Ūij ⊗ Uk(Λ, a), (11)

Aij,k M̄ij,k A
†
ij,k = Mij⊗k, (12)

Aij,k j
2
0A

†
ij,k = j2ij⊗k 6=j20. (13)

Using these unitary operators for each pair of interacting particles we construct
their Cayely transforms, add the Cayley transforms, and inverse Cayley transform
the sum of the individual Cayley transforms to get a new unitary operator A [5]:

Cij,k := i(Aij,k − I)(Aij,k + I)−1, (14)

C := C12,3 + C23,1 + C31,2, (15)

A := (I − iC)(I + iC)−1, A→ Aij,k → I. (16)

The resulting transformation A is an S-matrix preserving unitary transformation.
Using it to transform Ū(Λ, a) gives a new unitary representation [6] of the Poincaré
group

U(Λ, a) := A†Ū(Λ, a)A

satisfying cluster properties (3) of the unitary representation of the Poincaré group

U(Λ, a)→ Ūij(Λ, a)⊗ Uk(Λ, a). (17)

The Poincaré generators for this representation include sums of the different pairwise
interactions. The operators A and Aij,k also generate additional three-nucleon forces
that are needed to satisfy the commutation relations. These three-nucleon forces are
different from standard three-nucleon forces because they are frame-dependent and
are explicit functions of the underlying two-nucleon forces.

The resulting invariant mass operator has the form

M = A
(∑

A†
ij,kMij⊗kAij,k − 2M0

)
A† = AM̄A†. (18)
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The important property is that because A is S-matrix preserving it means that M̄
leads to the same S matrix as M , so even though the representation Ū(Λ, a) fails to
satisfy (3), it has the same S matrix as the model satisfying cluster properties. This
means that for scattering and bound state calculations, it is sufficient to solve the
Faddeev equations for M̄ .

This avoids that complications of computing the additional three-nucleon interac-
tion that appears in M in the three-body case, however it is important to remark that
this equivalence does not extend to the four-nucleon case unless the corresponding
generated three-body interactions appear in the four-body mass operator. We also
remark that two-body interactions V̄γ are really three-body operators due to the role
of the spectator momentum — one can think of them as frame-dependent two-body
interactions.

The next set of complications is more technical. In order to formulate relativistic
Faddeev equations for the dynamics given by the mass operator M̄ we define the
operators

M̄ = M0 + V̄ , V̄ =
∑

α

V̄α, α ∈ {(12, 3), (23, 1), (31, 2)}, (19)

V̄α = M̄α −M0, V̄ α = M̄ − M̄α. (20)

Using time-dependent methods [7] it is possible to show that the S matrix can be
expressed in terms of the following relativistic transition operator:

T̄αβ(m) := V̄ β + V̄ α(m− M̄ + i0+)−1V̄ β , (21)

〈a0|Sαβ |b0〉 = 〈a0|b0〉 − 2πi〈a0|δ(ma −mb)T̄
αβ(ma + i0+)|b0〉. (22)

The different components of T̄αβ(m) satisfy the relativistic Faddeev equation

T̄αβ(z) = V̄ β +
∑

γ 6=α

T̄γ(z −M0)
−1T̄ γβ(z). (23)

The input to (23) equation is the 2 + 1 transition operators

T̄γ(z) = V̄γ + V̄γ(z −M0)−1T̄γ(z). (24)

As in the non-relativistic case the Faddeev equation can be solved with mathemat-
ically controlled errors because the iterated kernel is compact and can be uniformly
approximated by a finite dimensional matrix:

T̄ (z) = D̄(z) + K̄(z)T̄ (z), K̄(z)2 compact, (25)

T̄ (z) = (I − K̄(z)2)−1(D̄(z) + K̄(z)T̄ (z)). (26)

The first technical problem is to construct realistic two-nucleon interactions. Re-
peating what was done for the non-relativistic problem, by carefully fitting models to
two-nucleon phase shifts, can also be done in the relativistic case, but because both
the relativistic and non-relativistic interactions are fit to the same data, refitting is
not necessary. The trick was first given by Coester, Pieper and Serduke [8].

The mass operator in the Bakamjian–Thomas representation has the form

M̄ := M0 + V̄12 + V̄23 + V̄31, (27)

where

V̄ij :=

√
q2
k +

(√
k2
ij +m2

i + 2µijvnr ij +
√
k2
ij +m2

j + µijvnr ij

)2

−
√
q2
k +

(√
k2
ij +m2

i +
√
k2
ij +m2

j

)2
,

M̄ij,k = Mij,k(hnr ij), (28)
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and µij is the two-nucleon reduced mass. The important property of this interaction
is that the corresponding 2 + 1 mass operator is a function of the non-relativistic

nucleon-nucleon rest Hamiltonian, hij = Hij − (pi+pj)
2

2(mi+mj)
. This means that the S

matrix in both the relativistic and non-relativistic models have the same internal
wave functions and phase shifts as a function of the center of mass momentum k:

〈p,qr,kr|Sij,k r|p′,q′
r,k

′
r〉 = δ(p− p′)δ(qr − q′

r)〈kr |sij |k′
r〉, (29)

〈p,qnr,knr |Sij,k nr|p′,q′
nr,k

′
nr〉 = δ(p− p′)δ(qnr − q′

nr)〈knr |sij |k′
nr〉. (30)

In order to take advantage of this relationship we recall that the two-body input to
the relativistic Faddeev equation can be expressed in the following ways:

〈p,qr ,kr|T̄α|p′,q′
r,k

′
r〉=〈p,qr ,kr|V̄α|p′,q′

r,k
′−
r 〉=〈p,qr,kr|(M̄α−M0)|p′,q′

r,k
′−
r 〉.
(31)

Since for the above choice of interaction the internal relativistic and non-relativistic
wave functions are identical we get the identifications

〈k|k′−
nr〉 = 〈k|k′−

r 〉. (32)

Using this it follows that the Faddeev kernel can be written as

〈qα,kα|Tα(z)(z − M̄0)
−1|q′

α,k
′
α〉

= δ(qα − q′
α)

m0α(k) +m0α(k′)√
q2
α +m2

0α(kα) +
√
q2
α +m2

0α(k′
α)

× 〈kα|tr(z)|k′
α〉

1

M0(qα,kα)−M0(qα,k′
α) + i0+

, (33)

where

m0α(kα) :=
√
k2
α +m2

i +
√
k2
α +m2

j (34)

and

z = M0(qαkα) + i0+,

〈kα|tr(z)|k′
α〉

=


 2µ
√
k2
α +m2

i +
√
k′2
α +m2

j

+
2µ

√
k2
α +m2

i +
√
k′2
α +m2

j


〈kα|tnr(k2

α/2µ+ i0+)|k′
α〉.

(35)

These relations express the Faddeev kernel in terms of the non-relativistic transition
matrix elements. The identity of the wave functions, which was used to derive the
result, is limited to the case that the transition matrix elements are half-on shell. This
relation does not extend to the off-shell transition matrix elements which appear in
the Faddeev kernel.

The fully off-shell two-body T̄α(z) embedded in the three-nucleon Hilbert space
can be computed by solving the first resolvent equation [9]:

T̄α(z) = T̄α(z′) + T̄α(z)
z′ − z

(z −M0)(z′ −M0)
T̄α(z′). (36)

Finally we note that while it is natural to use variables to label two-nucleon in-
teractions to be associated with the two-nucleon rest frames, with theses variables
the permutation operators involve Wigner rotations. The Wigner rotations can be
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removed from the permutation operators by expressing everything in terms of vari-
ables associated with the three-nucleon rest frame. In this representation the Wigner
rotations appear in the elementary nucleon-nucleon interactions:

〈qi, µi,qj , µj|tr(z)|q′
i, µ

′
i,q

′
j , µ

′
j〉 =

(
ωi(qi) + ωj(qj)

ωi(kij) + ωj(kji)

ωi(kij)

ωi(qi)

ωj(kji)

ωj(qj)

)1/2

×
∑

Dji
µiνi

[
Rwc(Bc(qij), kij)

]
Djj

µjνj

[
Rwc(Bc(qij), kji)

]
〈kij , νi, νj |tr(z)|k′

ij , ν
′
i, ν

′
j〉

×Dji
ν′

iµ
′

i

[
Rwc(B

−1
c (qij), qi)

]
D

jj
ν′

jµ
′

j

[
Rwc(B

−1
c (qij), qj)

]

×
(
ωi(q

′
i) + ωj(q

′
j)

ωi(k′
ij) + ωj(k′

ji)

ωi(k
′
ij)

ωi(q′
i)

ωj(k
′
ji)

ωj(q′
j)

)1/2
. (37)

The final technical challenge is that at the few-hundred MeV scale partial-wave
projections begin to loose their underlying advantage. This is in part because the
transition operator is a relatively smooth operator, so there is necessarily a lot of
cancellations involved in the partial wave expansions, especially at large angles. As
a practical matter double precision three-nucleon calculations based on partial wave
methods are limited to about 300 MeV. Direct integration calculations are stable over
a wider range of energies [9], extending to the few-GeV scale.

The final computational challenge is that the natural input to direct-interaction
three-nucleon calculations is a momentum-space interaction in operator form. One of
the few realistic interactions in operator form is the Argonne V18 interaction which
is given in a configuration-space representation. It has been Fourier transformed [10]
in an operator form. The resulting interaction can be expanded in terms of 24 spin-
isospin operators.

It is possible to reduce the number of required operators using symmetry proper-
ties. The most general nucleon-nucleon interactions can be expanded in terms of the
following spin operators:

〈k|vnr |k′〉 =
∑

VnWn, (38)

W1 := I, (39)

W2 := j1 · j2, (40)

W3 := (j1 · K̂)⊗ (j2 · K̂), (41)

W4 := (j1 · Q̂)⊗ (j2 · Q̂), (42)

W5 := (j1 · N̂)⊗ I2 + I1 ⊗ (j2 · N̂), (43)

W6 := (j1 · K̂)⊗ (j2 · Q̂) + (j1 · Q̂)⊗ (j2 · K̂), (44)

where
K := k′ − k, Q := k′ + k, N := k′ × k. (45)

The coefficients of these operator expansions are simply related to the Wolfenstein
parameters [11], which facilitates the computation of spin observables. The remaining
computational difficulty is related to the observation that there are five independent
operators on shell, and one more off shell.

Numerical instabilities can arise when the independent on-shell and off-shell op-
erators are not simply related [12]. For the choice above five of the off-shell operators
become the five on-shell operators in the on-shell limit.

The last dynamical consideration is the computation of current matrix elements,
which are needed to study few-nucleon systems with few-GeV scale hadronic probes.
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The important observation is that any change of representation of the Poincaré gen-
erators requires a corresponding change of representation of the current operator in
order to leave the physical observables unchanged. In principle one expects both the
strong dynamics and electromagnetic current to satisfy cluster properties. This sug-
gests that currents that have well-behaved cluster expansions should not be used in
Bakamjian–Thomas representation of the dynamics. In general one expects that one
must first transform either the current operator or the dynamics with an operator
like (16):

〈Ψf |Jµ(0)|Ψi〉 = 〈Ψ̄f |A†Jµ(0)A|Ψ̄i〉 ≈ 〈Ψ̄f |Jµ(0)|Ψ̄i〉. (46)

When A is close to the identity, which appears to be the case for nuclear physics
scales [7], this operator can be ignored, resulting in a significant increase in compu-
tational efficiency.

As a result of these various simplifications and tricks it has been possible to per-
form three-nucleon calculations with realistic interactions [13]. Figure 1 show the
differential cross section for p-d elastic scattering for relativistic and non-relativistic
three-nucleon models with realistic two- (CD Bonn) and three-nucleon (TM99) inter-
actions. The calculations show that for elastic scattering the relativistic effects are
small, except at back angles, where there is some enhancement due to relativity for
the 250 MeV curves. Comparison of these calculations with measurements from [14]
shows that there is missing physics that is not explained by the combination of the
TM99 three-nucleon force and relativity. Elastic spin observables also show a weak de-
pendence on relativistic effects. The comparison that we show is only sensitive to the
difference in how the two-nucleon subsystem is embedded in the three nucleon system.
Breakup calculations, on the other hand, exhibit strong relativistic effects in certain
observables. The calculations in Fig. 2 [15] provide a beautiful illustration of some of
these effects. These calculations were at a much higher energy than the calculations
of Fig. 1 however they use the spin-independent Malfliet–Tjon interaction. Figure 2
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Figure 1: Relativistic effects in elastic p-d scattering.
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Figure 2: Relativistic effects in n-d breakup reactions.

shows the fivefold differential cross section where the scattered protons emerge sym-
metric at different angles relative to the beam line. These are plotted against the
energy of one of the scattered protons. This figure shows a dramatic crossing of the
non-relativistic and relativistic results as the angle is changed. The data is from [16].

In this manuscript we have discussed many of the complications involved in making
realistic relativistic three-nucleon calculations. We have discussed tricks that make
realistic calculations possible at relativistic energies. The calculations suggest that the
relativistic effects are small for nucleon-meson degrees of freedom, except in certain
areas of breakup phase space, however realistic relativistic calculations have not been
performed at the few-GeV scale. The discrepancy of the calculated large-angle elastic
scattering cross section with data suggests some missing short distance physics in the
three-nucleon forces.

We anticipate that relativistic few-body methods will be an important tool for
understanding physics at scales between the chiral perturbation theory and pertur-
bative QCD scales. Modern computers have made realistic few-GeV scale few-body
calculations feasible. The approach that we advocate, using models with the domi-
nant degrees of freedom and symmetries is similar to the approach used in condensed
mater physics. It is far easier than attempting to get mathematical convergent ap-
proximations of QCD at the few GeV scale.

This research supported by the U.S. Department of Energy Office of Science.
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Three-Nucleon Forces Revisited —

Some Historical Thoughts

Peter U. Sauer
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Abstract

Historic steps in the emergence, the derivation and the use of three-nucleon
forces, genuine and effective, for calculations of few-nucleon systems and of the
structure of heavier nuclei are recalled. The research focus is on few-nucleon
systems. The need of three-nucleon forces for a successful description of some
data and the remaining puzzles of other data, not explainable despite the inclu-
sion of three-nucleon forces, are discussed.

Keywords: Nuclear forces; shell model; few-nucleon systems

1 Introduction

The shell-model theme of this conference is not my current research territory. I would
not have attended, would the conference not also celebrate James Vary with whom I
shared early stages of my carrier. I decided against a standard talk on actual research.
Instead, I want first to reflect on what drove our research then, before coming to the
Here and Now , which is the nuclear shell model for James and few-nucleon systems
for me.

I got to know James in 1970/71, when we were both postdocs in the nuclear theory
group of MIT. We started to collaborate on the challenge of that time, the derivation
of nuclear properties from the interaction between free nucleons. And that challenge
is still with us today, as this conference proves.

2 My personal view on the nuclear shell model,
then and now

Doing microscopic nuclear structure in 1970/71, i. e., calculating the properties of
nuclear matter, of doubly closed-shell nuclei and of simple shell-model systems in
terms of a realistic two-nucleon (2N) interaction, was a courageous enterprise: The
suggested 2N potentials were scary beasts, their short-ranged core was conceptually
unknown and, furthermore, it was parametrized in form of a strong repulsion which
had to be smoothened into the in-medium reaction matrix of Brueckner theory [1].

At that time, James’s and my common nuclear-structure playground was the shell-
model of 18O, described by an inert 16O core with two active neutrons outside the core.
The latter nucleons formed the active Hilbert space, the model space, consisting of
2s-1d states only, the corresponding effective interaction being the 2N reaction matrix,
modified by core-polarization, shown in Fig. 1(a); core polarization acts technically
as an effective interaction between the two active nucleons, though, physically, it
involves three nucleons. Kuo and Brown [2] had initiated this game and appeared to

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 361.
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(b)(a) (c)

shell model shell model
with-core no-core

Figure 1: Strategies describing the contribution of core polarization to the effective
shell-model interaction. Plot (a) represents the contribution in calculations with an
inert core; plots (b) and (c) represent the same process when resolved in no-core
calculations. The vertical lines without an arrow stand for nucleons in the model
space, the horizontal wavy lines for the 2N Brueckner reaction matrix derived from
the 2N potential. In plot (a), the backward arrow indicates a hole state in the inert
core, the forward arrow is a particle state outside the core; plot (a) is an irreducible 2N
contribution to the effective interaction, irrespectively, if the particle state is within
or outside the model space. However, if the particle state is inside the model space of
a no-core calculation, the process is reducible into two subsequent interactions within
the model space, as plot (b) shows. In contrast, if the particle state is outside the
model space as in plot (c), the process remains irreducible within the model space
and is a part of an effective 3N contribution to the shell-model interaction.

have also closed the issue by their impressive achievement in describing data. But
our revolutionary minds were challenged. We improved the calculation by better
numerics [3] and found the numerical inadequacy of the effective interaction in use,
therefore the distortion of our names Vary, Sauer and Wong in the author list by the
community to Very sorry, wrong!; others [4, 5] challenged the whole shell-model
strategy of that time on more fundamental grounds than we did. This was the dark
moment of the early microscopic shell model.

Increasing computational capability of theoretical physics allowed a novel, more
physical shell-model strategy, e. g., the description of 18O without an inert 16O
core [6, 7]: Use a model space, numerically manageable and physically large enough
for accommodating the considered physics phenomena realistically, accompanied by
a corresponding effective interaction, which should stay as simple as possible. This
fact is illustrated in Figs. 1(b) and 1(c) for the core-polarization contribution to the
effective shell-model interaction in the no-core description. Of course, in the search
for balance between model space and effective interaction the truncation of the full
Hilbert space to the active model space generally remains necessary in shell-model
calculations: The usually employed oscillator basis is advantageous for the symmetry
and geometry of finite nuclei, but awkward when having to build up the tail behavior
of single-particle states and when having to punch the correlation hole into the 2N
wave function. Thus, the truncation of Hilbert space remains physically severe and
makes effective many-body contributions to the interaction important. Even without
genuine 3N forces, effective ones arise as from core polarization, shown in Fig. 1(c).
This search for an efficient balance between Hilbert space and interaction is a basic
nuclear-structure problem also in a broader context outside the shell model; it is my
theme throughout this talk.

At this special occasion, another paper with James and Pradhan of that early
time [8] comes to my mind, a paper whose idea still echos in modern shell-model ap-



Three-nucleon forces 363

proaches: The core region of the 2N force — now in meson theory the realm of omega-
and rho-meson exchanges, in chiral effective field theory (EFT) the realm of two- and
many-nucleon contact contributions — was for us terra incognita which we wanted to
explore by the technique of short-ranged phase-equivalent off-shell variations, hoping
to stumble on a novel, more pleasing parametrization of the 2N potential. In retro-
spect, we did not learn anything about that unknown part of the 2N force, since we
were searching rather randomly in that paper. Our hope for information on the force
from nuclear structure was a naive illusion at that time. But that hope is still behind
the so-called ab exitu approach to the effective interaction [9] in no-core shell-model
calculations, and it is still behind the modern and really clever use of phase-equivalent
variations [10], in fact a smoothening procedure of the 2N potential — a similar strat-
egy as Brueckner theory used with its reaction matrix by the ladder summation of
highly excited states, — the prize to be payed being the rise of effective many-nucleon
interactions even without a proper truncation of Hilbert space.

The basic assumption of nuclear theory, before the advent of quantum chromody-
namics and still now, is: Rigid nucleons, the only active degrees of freedom in nuclei,
interact through genuine two-, three- and possibly many-nucleon forces according to
the rules of non-relativistic quantum mechanics. That assumption confronts us with
two distinct problems which in 1970/71 also defined different fields of research: First,
assuming a parametrization of nuclear dynamics, how can we solve the many-nucleon
problem throughout the periodic table? This is still the challenge for present-day
shell-model calculations. But second, more basic, how can we learn details about
those forces from some nuclear properties, if they are really reliably described theo-
retically? Our paper on phase-equivalent off-shell variations [8] mixed up both fields
of research, and therefore hopelessly dealt with too complex problems. The second
question is the field of few-nucleon systems. I chose that path of few-body physics for
my later research which I discuss next, but I shall remember, how my early research
with James influenced what I am doing today.

3 Few-nucleon systems

The many-body problem is for few-nucleon bound and scattering states conceptually
under control due to Faddeev [11] and Alt, Grassberger and Sandhas [12], and it is
getting, step-by-step, also calculationally under control by various numerical tech-
niques. My collaborators and me adopted integral equations in momentum space as
our numerical technique; compared to shell-model calculations of bound-state sys-
tems, the calculations are quite tricky for few-nucleon scattering due to singularities,
though the singularities are integrable; they arise from open inelastic channels. Re-
sults shown later on are obtained by that technique. The latest important technical
achievements were the inclusion of the Coulomb interaction between protons (p) in
the scattering equations [13], a stumbling block for the theoretical description during
decades, and the description of 4N scattering above the four-particle breakup thresh-
old [14]. On the experimental side, there is a multitude of data, especially now data
of reactions with polarized particles. From those data one can hope to get more and
more information on nuclear forces. I describe that project in its important steps.

3.1 Choice of dynamics

The form of the nuclear dynamics to be tested has to be specified. We had to decide
on our form, when pion factories were en vogue; the inclusion of pion production
and absorption was necessary: Thus, the important active degrees of freedom to be
considered were, besides the nucleon (N), the pion (π) and the Delta-isobar (∆), which
strongly mediates π production in the 2N isospin-triplet partial waves; experimentally,
the ∆ isobar is observed as P33 πN resonance; single-π production dominates well
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Figure 2: Hilbert space for the description of nuclear phenomena at low and interme-
diate energies. Compared with the purely nucleonic one, it is expanded by sectors, in
which one N is turned into a ∆ isobar and one π is added to the N ’s. πN scattering
is described in the corresponding Hilbert space of baryon number one. The 2N reac-
tions without and with a single π are described in the corresponding Hilbert space of
baryon number two.

above 2π- and 3π-production thresholds. The chosen Hilbert space is shown in Fig. 2;
in fact, the choice of an expanded Hilbert space is conceptually based on the same
strategy which the no-core shell model took when including the physically important
core degrees explicitly in the active model space: Active degrees of freedom belong
to the Hilbert space, they cannot be simulated well by a complicated Hamiltonian.
That strategy [15] allows a unified description of nuclear phenomena at low and at
intermediate energies, e. g., the simultaneous description of 2N reactions, elastic and
inelastic with single-π production and absorption.

The Hamiltonian corresponding to the chosen Hilbert space was taken from meson
theory which was without alternative at that time. It is illustrated in Fig. 3, it
consists of a one-baryon piece, mediating πN scattering in the P33 partial waves —
a πN potential is to be added for the non-resonant partial waves — and mediating
π production and absorption, and it consists of two-baryon potentials derived from
all possible meson exchanges. That Hamiltonian has a particular characteristic for
the ∆ isobar [16]; it cannot be produced experimentally; the corresponding S-matrix
element is exactly zero; observables are the coupled πN states. For that ambitious
Hamiltonian we were able to do calculations in most of its aspects [15], e. g., for all
reactions in the two-baryon sector NN → NN , NN → dπ, NN → NNπ, dπ → dπ,
dπ → NNπ and dπ → NN up to 0.5 GeV c. m. energy — d standing for the deuteron.
But the Hamiltonian was not well tuned to low-energy 2N data and therefore was not
reliable enough for the description of few-nucleon systems at low energies, my more
recent research focus.

Figure 3: Hamiltonian describing the nuclear dynamics in the Hilbert space of Fig. 2.
The interactions are of two-baryon nature, coupling purely nucleonic channels with
those containing a ∆ isobar; the latter ones are coupled to the pionic channels by a
single-baryon vertex.
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Fujita–Miyazawa higher order 3N force

4N force

Figure 4: ∆-mediated 3N and 4N forces, consistent with each other and with the
2N interaction. The upper row shows examples for the arising 3N force, the Fujita-
Miyazawa process being the one of lowest order [18]. The lower row shows examples
for the arising 4N force. All possible meson exchanges are considered.

The explicit treatment of the ∆ isobar has an important and wanted effect; it yields
effective 3N , 4N and many-N forces; they are irreducible in the purely nucleonic
Hilbert sector, but are resolved into two-baryon pieces in the expanded Hilbert space
of Fig. 2. In standard meson theory and in standard EFT, 2N , 3N and many-N
potentials arise from freezing non-nucleonic degrees of freedom; but vice versa, as
done in the present approach, an important contribution to genuine 3N and many-N
forces can be resolved, when keeping the ∆-isobar degree of freedom explicitly. And
without active pions, i. e., without the one-baryon piece of Fig. 3, the Hamiltonian is
tuned well for the purposes of low energies [17], i. e., below π-production threshold.
The coupled two-baryon potential will be referred to as CD Bonn + ∆; its purely
nucleonic reference potential is CD Bonn, whose extension it is. Even that truncated
Hamiltonian provides consistent 2N , 3N and 4N forces, in general many-N forces,
for what Fig. 4 shows examples; their forms and strengths are fixed, they do not
allow any further tuning to 3N and 4N data; physicswise, those arising forces are still
incomplete, since other mechanisms leading to irreducible many-N forces besides the
∆-mechanism are left out.

I have discussed 3N and many-N forces from various angles. It is now appropriate
to come to a conclusive summary: There are genuine and effective nuclear forces.

The genuine forces are derived in the form of instantaneous potentials of a many-N
Hamiltonian in a complete Hilbert space for the quantum-mechanical description of
many-N systems; they incorporate accepted knowledge of the nuclear forces as the
one-π exchange tail; the remainder of the genuine 2N potential was phenomenological
in the early days, was later on derived from meson theory and is now usually derived
from EFT, i. e., from field theories with non-nucleonic degrees of freedom; in the
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step to the potential all non-nucleonic degrees are frozen; this step is non-unique.
In the same way, 3N and many-N potentials are not made by God, they are babies
of theoreticians and therefore in principle non-observable. When we loosely speak
that some experimental data signal the dynamic need of a contribution from the 3N
potential, we mean that in a chosen dynamic description the use of a 2N potential
alone is insufficient.

The effective forces are by-products of particular solution techniques for the nu-
clear many-nucleon problem in the frame work of non-relativistic quantum mechanics.
They arise when the complete Hilbert space has to be truncated, the arising 2N, 3N
and many-N forces then correct for that truncation; those forces are often energy-
dependent, i. e., time-delayed; the 2N reaction matrix of Brueckner theory is such an
energy-dependent 2N force, it is also dependent on the amount of truncation. The
effective forces also arise when the Hamiltonian is transformed to act dominantly in a
particular and convenient subspace, even without truncation, most conveniently in a
subspace of low momenta; they are by-products of a particular smoothing technique.
Effective 3N and many-N forces arise, even if the underlying Hamiltonian consists of
2N genuine forces only.

In structure calculations of heavier nuclei effective many-N forces arise in the
process of solving the nuclear many-body problem. In the description of few-nucleon
systems at low and intermediate energies genuine many-N forces can be simulated as
in Fig. 4 by keeping non-nucleonic degrees of freedom explicitly in the active Hilbert
space.

3.2 Results for few-nucleon bound states

Hadronic and electromagnetic properties of 3H, 3He and 4He are calculated. The
effect of the 3N force on binding is sizable according to Ref. [19], its Fujita–Miyazawa
part [18] being the dominant contribution, usually twice the other 3N -force contribu-
tions. In contrast, the effect of the 4N force on binding is small, in fact, an order of
magnitude smaller than the 3N -force effect. This observation is the first solid confir-
mation of the general folklore on the hierarchy in many-N forces. Since the chosen
dynamics cannot be tuned anymore, the resulting binding energies still fail the ex-
perimental values slightly. That miss of binding is therefore carried to the thresholds
of reactions, a disadvantage for the description of 4N scattering close to thresholds.
In contrast, the experimental binding-energy difference between 3H and 3He is well
accounted for.

3.3 Results for few-nucleon reactions

The few-nucleon community is able to account for a very large amount of experimental
3N and 4N data at low energies, i. e., at energies up to the π-production threshold.
This is quite satisfying. The inclusion of Coulomb and of a 3N interaction is often
needed; I give an example for both effects. Besides those successes which are in
the overwhelming majority, there are, however, puzzles, i. e., there is a persistent
disagreement between theoretical prediction and data without any hint for a solution;
in fact that is the much more interesting situation, since we hope to learn from such
cases; I shall also give an example for such a puzzle. In the presented figures, the
predictions derived from the coupled-channel potential CD Bonn + ∆ with Coulomb,
indicated by ∆+Coulomb and by the red curves, are the most complete ones, including
the effect of Coulomb and of many-N forces mediated by the ∆ isobar simultaneously.
The predictions derived from the purely nucleonic reference potential CD Bonn with
Coulomb, indicated by N + Coulomb and by the green curves, include the effect of
Coulomb, but leave out the effect of many-N forces mediated by the ∆ isobar; the
difference between red and green curves indicate the effect of many-N forces on the
considered observable. The predictions derived from the coupled-channel potential
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Figure 5: dp breakup at 130 MeV d energy. The Coulomb effect is quite pronounced
due to the correlation between the two protons in the final state. The angles of the
two outgoing p’s are fixed; their energies are constrained by the kinematical locus S.
There is no evidence for the need of a 3N force. The experimental data and the
theoretical predictions are from Ref. [20].

CD Bonn + ∆ without Coulomb, indicated by ∆ and by blue curves, leave out the
effect of Coulomb, but include the effect of many-N forces mediated by the ∆ isobar;
the difference between red and blue curves indicate the effect of Coulomb on the
considered observable.

The inclusion of the Coulomb repulsion between the two p’s is necessary for the
successful description of 3N and 4N elastic scattering at low energies. But Fig. 5
shows that Coulomb can be quite important also at much higher beam energies, when,
in the breakup situation, the two outgoing p’s are strongly correlated at rather low
relative energies. Signals for the working of the 3N force in the considered dynamic
model are shown in Fig. 6.

A very long-standing puzzle is the spin observable Ay in elastic pd, but also in
elastic p3He scattering in a particular low-energy window. Another observable which
is extremely hard to describe is the total elastic neutron-3H (n3H) cross section. I
like to discuss a further puzzle arising at low-energy pd breakup in the space-star
kinematics. Data and the theoretical predictions are shown in Fig. 7. That space-star
kinematics was believed by experimentalists to show the effect of the 3N force most
strongly; in fact, that effect is not seen at all. At 13 MeV N lab energy there are
pd and nd data; since the nd experiments are especially difficult, the data were twice
remeasured, but appear now to be confirmed; the pd data were taken only once. There
is a sizable difference between pd and nd data; theory is unable to account for that
difference; the Coulomb effect is minor; if the data were true beyond any doubt, an
extremely large nuclear charge-asymmetry effect shows up. Such an effect appears,
however, conceptually rather unlikely.

3.4 Summary

In the past, the theoretical fields of nuclear structure and few-nucleon systems were
entirely disjoint with respect to research goals, to employed dynamics and to numerical
techniques used for solving the nuclear many-body problems. Research settled on
different banks of the river “nuclear theory”. That situation passed; there are now
interesting cross-overs between those fields as this conference in Iowa is witness for,
and the beautiful bridges of Iowa as the one of Fig. 8 are pictures for those cross-overs.
The talk discussed genuine and effective 2N and many-N forces, their appearance
and their different roles in nuclear-structure and in few-nucleon calculations. The
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Figure 8: One of the covered bridges of Iowa.

talk presented some examples for the achievements of few-nucleon theory, but also for
outstanding puzzles in the description of data.

At the end, I wish the man of honor at this conference, James Vary, further
success in his admirable engagement for the advancement of nuclear physics, which
has been and will be stimulating to others.

The shown results for few-nucleon systems were obtained in a long successful
collaboration with A. Deltuva and A. C. Fonseca, University of Lisbon, for which I
am very grateful.
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High-Resolution Probes of Low-Resolution Nuclei

R. J. Furnstahl

Department of Physics, Ohio State University, Columbus, OH 43085

Abstract

Renormalization group (RG) methods used to soften Hamiltonians allow
large-scale computational resources to be used to greater advantage in calcula-
tions of nuclear structure and reactions. These RG transformations lower the
effective resolution of the nuclei, which raises questions about how to calcu-
late and interpret high-momentum transfer probes of nuclear structure. Such
experiments are conventionally explained in terms of short-range correlations,
but these disappear with the evolution to low-momentum scales. We highlight
the important issues and prospects in the context of recent developments in RG
technology, with guidance from the analogous extraction of parton distributions.

Keywords: Renormalization group; nuclear structure

1 Introduction

Recent electron scattering experiments on nuclei that use large four-momentum trans-
fers to knock out nucleons have been interpreted in terms of short-range correlations
(SRCs) in the nuclear wave function [1,2]. As indicated schematically in Fig. 1 (top),
the dominant source of ejected back-to-back nucleons is identified as the break-up
of an SRC formed by low-momentum nucleons being coupled to high-momentum by
the nucleon-nucleon (NN) interaction. At the same time, the use of softened (“low-
momentum”) Hamiltonians has had great success in pushing the limits of microscopic
calculations of nuclear structure and reactions [3–5]. This success is in large part
due to the absence of SRCs in the corresponding nuclear wave functions. We seek to
reconcile these results by applying a renormalization group (RG) viewpoint, which
manifests the scale (and scheme) dependence of nuclear Hamiltonians and operators
by continuous changes in the resolution. RG transformations shift the physics be-
tween structure and reaction mechanism so that the same data can have apparently
different explanations. We use the RG perspective to discuss implications in light of
the current and future possibilities of applying new RG technology.

The RG is a powerful and versatile tool for this purpose. The common features
of the RG for critical phenomena and high-energy scattering are discussed by Steven
Weinberg in an essay in Ref. [6]. He summarizes:

“The method in its most general form can I think be understood as a
way to arrange in various theories that the degrees of freedom that you’re
talking about are the relevant degrees of freedom for the problem at hand.”

This is the essence of what we do by evolving to low-momentum interactions: we
arrange for the degrees of freedom to be the relevant ones for nuclear structure (and
reactions). This does not mean that other degrees of freedom cannot be used (includ-
ing SRCs from high-momentum interactions), but we need to be mindful of Weinberg’s

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 371.
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Figure 1: Schematic two-nucleon knock-out experiment with SRC interpretation (top)
and diagrammatic illustration that the contribution of decoupled high-momentum
modes in intermediate states is replaced by (regularized) contact interactions
(bottom).

adage [6]:

“You can use any degrees of freedom you want, but if you use the wrong
ones, you’ll be sorry.”

The benefits of applying RG to high-energy (particle) physics include improving per-
turbation theory, e. g., in QCD. A mismatch of energy scales can generate large log-
arithms that ruins perturbative convergence even when couplings by themselves are
small. The RG shifts strength between loop integrals and coupling constants to re-
duce these logs. For critical phenomena in condensed matter systems, the RG reveals
the nature of observed universal behavior by filtering out short-distance degrees of
freedom.

Both these aspects are seen in applications of RG to nuclear structure and reac-
tions. As the resolution is lowered, nuclear calculations become more perturbative,
implying that scales are more appropriately matched. In addition, the potentials flow
toward universal form (e. g., see Fig. 3) as model dependent short-distance details are
suppressed. The end result might be said to make nuclear physics look more like quan-
tum chemistry calculationally, opening the door to a wider variety of techniques (such
as many-body perturbation theory) and simplifying calculations (e. g., by improving
convergence of basis expansions). However, maintaining RG-induced three-nucleon
(NNN) forces (and possibly four-nucleon forces) has been found to be essential for
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accurate and scale-independent results. Recently developed RG technology to handle
three-body evolution [4, 7, 8] will be critical to realize the power of the RG.

2 Similarity renormalization group flow

Renormalization group methods and applications to nuclear systems are well docu-
mented in the literature (see Refs. [3,5] and references therein) and in contributions to
these proceedings. A popular approach, which we focus on here, is the similarity renor-
malization group (SRG). In most implementations of the SRG, an initial Hamiltonian
(typically with both NN and NNN interactions) is driven by a series of continuous
unitary transformations toward more diagonal form in momentum representation.
This flow toward the diagonal is illustrated for both NN and NNN matrix elements
in Fig. 2 [8]. More diagonal means greater decoupling of low- and high-momentum
modes, making interactions more perturbative. The changes in many-body interac-
tions highlight the need to be able to control this part of the evolution.

Where does the physics of the decoupled high-momentum modes go? It flows to
modifications of the low-momentum parts of both the two- and three-nucleon inter-
actions, which effective field theory (EFT) tells us can be absorbed into regulated
contact interactions (as indicated schematically in the bottom in Fig. 1). That the
leading change in the NN potential induced by the SRG does have this form can
be shown using the operator product expansion (see Section 3 and Refs. [10,11]) but
it is implicit in the NN 1S0 partial wave in Fig. 3, where the off-diagonal matrix
elements of a set of chiral EFT NN potentials with different regularization schemes
(left) are evolved to low resolution (right). We directly see the suppression of off-
diagonal strength for k > λ and a flow to universal values when the high-momentum
model dependence is suppressed (evidence for universal flow has also been observed in
three-body evolution [7,8]). The dominant change in the potential at low momentum
is a constant shift, as would be expected from changing the strength of a regulated
(smeared) delta function in coordinate space.

A visualization of how two-nucleon interactions evolve in coordinate representation
is given for two potentials in the 1S0 partial wave in Fig. 4, where local projections
are applied to the intrinsically non-local SRG evolved potentials [12]. The melting
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Figure 4: Evolution by the SRG of two NN interactions in coordinate space as visualized by local projections (see Ref. [12] for definitions and details).
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of the hard repulsive core is manifest as well as the flow to universal form. The soft
NN (and NNN) potentials after evolution are much more amenable to many-body
methods that use basis expansions, such as the no-core shell model, coupled cluster,
and the in-medium SRG (see Ref. [5] for recent results). Indeed, nuclear structure
and low-energy reactions are more natural with low-momentum interactions, because
the Fermi momentum sets the scale rather than a repulsive core. The successes of
this approach with the SRG and other RG methods (e. g., which enable many-body
perturbation theory for the shell model) are reviewed elsewhere [3,5]. But because the
repulsive core is the dominant source of SRCs, the nuclear wave functions have variable
SRCs as the resolution is changed (i. e., as λ is lowered). This is illustrated in Fig. 5
for the deuteron (left) and nuclear matter (right). What then are the implications for
RG evolution for the high-resolution (that is, high four-momentum transfer) electron
scattering experiments? How does the resolution of the nuclear states even enter the
analysis? To address these questions, we must ask about the evolution of operators
other than the Hamiltonian.

3 Operator evolution by the SRG

To gain insight into how RG changes in scale should enter the analysis of nuclear
knock-out experiments, we can use the extraction of parton distribution functions
from deep inelastic scattering (DIS) as a paradigm. The key property that make
parton distributions well defined is the controlled factorization of the cross section into
structure and reaction parts at hard scales (meaning sufficiently large Q2) [14]. By
this means, a structure function such as F2(x,Q2) is decomposed into short-distance
physics from the electron-quark scattering that is captured in Wilson coefficients in

F̂ a
2

(
x, Q

µf

)
and the remainder, which is the soft, long-distance physics defining the

parton distribution fa(x, µf ) (where a labels quarks):

F2(x,Q2) ∼
∑

a

fa(x, µf )⊗ F̂ a
2

(
x,
Q

µf

)
. (1)
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The choice of the factorization scale µf defines the border between the long- and
short-distance contributions. It is not unique! But because the observable F2 must be
independent of µf , knowing how the short-distance part changes with µf determines
the RG running of the parton distribution. A typical choice is µf = Q (to minimize
logarithmic contributions to the Wilson coefficient for the optimal extraction of PDFs
from experiment), so this running translates into a Q2 dependence in the parton
distribution [14].

An example of this RG running is shown for the u-quark PDF in a proton as
a function of x and Q2 in Fig. 6. In the top panel, the combination xu(x,Q2)

Figure 6: Parton distribution xu(x,Q2) for the u-quarks in the proton as a function
of x and Q2 (top, calculated from [16]) and deuteron momentum distribution nλ

d(k)
at different SRG resolutions λ (bottom).
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measures the share of momentum carried by u-quarks in a proton within a particular
x-interval [15, 16]. This momentum distribution changes as a function of the resolu-
tion scale Q2 according to RG evolution equations. Thus u(x,Q2) is scale dependent
(as well as scheme dependent, see Ref. [14]). In the bottom panel, we see that the
deuteron momentum distribution nλ

d(k) is also scale and scheme dependent. Plotted
is nλ

d(k) for an initial AV18 potential [13] (the choice of potential is a scheme de-
pendence), which is SRG-evolved from λ =∞ (corresponding to the initial potential
and high resolution) down to λ = 1.5 fm−1 (lowest resolution). It is evident that the
high-momentum tail, which is identified with SRC physics, is highly scale dependent
and is essentially eliminated at lower resolution.

The extraction of momentum distributions or quantities such as spectroscopic
factors from nuclear experiments is also predicated on factorization assumptions just
as in DIS. That is, the observable cross sections are separated into the structure
and reaction parts according to some assumptions, which is once again not a unique
decomposition but depends on the factorization scale. If the impulse approximation is
accurate for some scale, then the separation is clean. But this is rarely true in nuclear
physics (at least not to the precision we hope to reach). Therefore we should ask for
the nucleon knock-out experiments the same questions that are carefully addressed
in DIS: Is the factorization robust? Is it process dependent? What is necessary for
consistency between structure and reaction models? What are the trade-offs between
using different scales (and schemes)?

Let’s see how the scale dependence like in DIS works out in the language of SRG
unitary transformations. The measured cross section is a convolution: reaction ⊗
structure, but the separate parts are not unique, only the combination. A (short-

range) unitary transformation Û leaves matrix elements of an operator Ô invariant:

Omn ≡ 〈Ψm|Ô|Ψn〉 =
(
〈Ψm|Û †) ÛÔÛ † (Û |Ψn〉

)
= 〈Ψ̃m|Õ|Ψ̃n〉 ≡ Õm̃ñ . (2)

RG unitary transformations change the decoupling scale, which means that the effec-
tive factorization scale (which determines what goes into the operator and what into

the wave function) is changed. Note that matrix elements of the operator Ô itself
between the transformed states are in general modified:

Om̃ñ ≡ 〈Ψ̃m|Ô|Ψ̃n〉 6= Omn =⇒ e. g., 〈ΨA−1
n |aα|ΨA

0 〉 changes, (3)

where the latter is a spectroscopic factor. In a low-energy effective theory, trans-
formations that modify short-range unresolved physics yield equally valid states, so
matrix elements such as spectroscopic factors (SFs) or momentum distributions (see
Fig. 6) are scale/scheme dependent observables.

All ingredients for the analysis of an experimental cross section mix under a unitary
transformation that changes the resolution. A one-body current becomes a many-
body current:

Û ρ̂(q)Û † = + α + · · · ,

final-state interactions are modified, and new wave function correlations appear (or
disappear in the case of short-range calculations at lower resolution):

Û |ΨA
0 〉 = Û + · · · =⇒ Z + α + · · ·
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Again, this means that quantities such as SFs are scale dependent. The bottom line
is that the cross section is unchanged only if all pieces are included with the same U :
the Hamiltonian, the current operator, and the final state interactions.

Now consider again the high resolution experiment from Fig. 1 and what happens
when RG unitary transformations act to change the resolution. In particular, how
does the SRC explanation of nuclear scaling, which accounts for plateaus in inclusive
cross section ratios, evolve with the resolution scale? This explanation is based on the
dominant role played by the one-body current, the two-body interaction, and SRCs.
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The underlying physics is most simply isolated by considering the high-resolution
momentum distributions in nuclei. In Fig. 7 on top, we see that ratios of the these
momentum distributions in various nuclei to that in the deuteron are almost flat in
the high momentum region associated with SRCs (i. e., above k = 2 fm−1). The con-
tribution highlighted in the circle in Fig. 1 yields a k dependence largely independent
of the nuclear environment, so nA(k) simply scales with A. If we now evolve to lower
momentum through unitary transformations, this can no longer explain the cross sec-
tion, because the softening of the interaction and therefore the wave function means
the momentum distribution has no support at these high momenta (e. g., as in Fig. 6
for the deuteron).

But the cross section must be unchanged, because it is a unitary transformation.
With RG evolution, the probability of high momentum in a nucleus decreases, but if
we transform the wave functions and operators:

n(k) ≡ 〈A|a†kak|A〉 =
(
〈A|Û †) Ûa†kakÛ † (Û |Ψn〉

)
= 〈Ã|Ûa†kakÛ †|Ã〉, (4)

then the original momentum distribution is unchanged! We know that the trans-
formed state |Ã〉 is easier to calculate, but is the new operator too difficult to calculate
or even pathological (e. g., does it explode to compensate for the super-exponential
suppression of the low-resolution momentum distribution)?

Let us consider the SRG operator flow for the momentum distribution graphically.
The evolution with λ of any operator Ô is given by:

Ôλ = Ûλ Ô Û
†
λ , (5)

which can be carried out by a flow equation similar to that used to evolve the Hamil-
tonian. In practice it is more efficient to construct the unitary transformation from
Ûλ =

∑
i |ψi(λ)〉〈ψi(0)| or by solving the dUλ/dλ flow equation. In any case, ma-

trix elements of evolved operators are unchanged by construction (for the deuteron)
but the distribution of strength flows. The integrand of the momentum distribution
〈ψd|a†qaq|ψd〉 in the deuteron at q ≈ 3.0 fm−1 is shown in Fig. 8. In the top figure,

the initial integrand of Ûλa
†
qaqÛ

†
λ at λ =∞ has a delta function at k = k′ = q. In the

Figure 8: Integrand of the deuteron momentum distribution at q ≈ 3 fm−1 without
(top) and with (bottom) the deuteron wave functions included [10].
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SRG flow, one-body operators such as a†qaq do not evolve, and their contribution is
in fact unchanged with λ. However, there is a clear flow to lower momentum, which
must be entirely due to a two-body operator. In the bottom figure, the deuteron
wave functions are folded in (such that the integrated area is the invariant value of
the original momentum distribution at q = 3 fm−1). We see there is negligible ampli-
tude at small λ from the original one-body operator (nothing explodes!), but instead
a smooth contribution at low momenta from the induced two-body operator, which
is reminiscent of a regularized delta function.

We might wish to conclude that this operator flow implies a type of “conservation
of difficulty” with the simplification of the wave function countered by the complica-
tion of the operator. But in this situation the separation of momentum scales leads
to an important generic factorization of the unitary transformation operator Uλ. In
particular, Uλ-factorization says that the two-body unitary transformation becomes
a simple product (in each partial wave): Uλ(k, q) → Kλ(k)Qλ(q) whenever k < λ
and q ≫ λ. This result follows from applying effective interaction methods or the op-
erator product expansion (OPE) for nonrelativistic wavefunctions; we refer the reader
to Refs. [10, 11] for the technical details. Here we rely on a visual demonstration. In
particular, we test Uλ-factorization by considering the ratio of Uλ(k, q) at fixed q but
variable k. In the factorization region:

Uλ(ki, q)

Uλ(k0, q)

k<λ
−→
q≫λ

Kλ(ki)Qλ(q)

Kλ(k0)Qλ(q)
=
Kλ(ki)

Kλ(k0)
≈ 1, (6)

so for q ≫ λ we expect the ratio to go to a constant, which is in fact unity because
Kλ(k) becomes independent of k to leading order in the OPE. In Fig. 7 (bottom), we
plot this ratio in the 3S1 channel and see clear plateaus close to one (at the 10–15%
level) for those curves with ki < λ in the q > λ region, just as expected. It works
similarly in other channels [10].

We emphasize that because the leading order for Kλ(k) is constant for k < λ, the
factors Kλ(k)Kλ(k′) to good approximation play the role of a contact term. Then
the contribution from large λ in the diagram in Fig. 1 (bottom) with an implied
integration over q and q′ has the simplification:

∆Vλ(k, k′) =

∫

q,q′
Uλ(k, q)Vλ(q, q′)U †

λ(q′, k′) for k, k′ < λ, q, q′ ≫ λ

Uλ→K·Q−→ K(k)

[∫

q,q′
Q(q)Vλ(q, q′)Q(q′)

]
K(k′) with K(k) ≈ 1, (7)

which is a constant times a smeared delta function, as advertised. Further, we can un-
derstand why nuclear scaling is expected directly from Uλ-factorization, if we can ar-
gue that the deuteron channel dominates (as in the SRC argument [1,2]). When k < λ
and q ≫ λ, the ratio of original momentum distributions becomes (in a schematic no-
tation):

nA(q)

nd(q)
=
〈Ã|Ûa†qaqÛ †|Ã〉
〈d̃|Ûa†qaqÛ †|d̃〉

=
〈Ã|
∫
Uλ(k′, q′) δq′q U

†
λ(q, k)|Ã〉

〈d̃|
∫
Uλ(k′, q′) δq′q U

†
λ(q, k)|d̃〉

=
〈Ã|

∫
Kλ(k′)[

∫
Qλ(q′) δq′qQλ(q)]Kλ(k)|Ã〉

〈d̃|
∫
Kλ(k′)[

∫
Qλ(q′) δq′qQλ(q)]Kλ(k)|d̃〉

=
〈Ã|

∫
Kλ(k′)Kλ(k)|Ã〉

〈d̃|
∫
Kλ(k′)Kλ(k)|d̃〉

≡ CA, (8)

where CA is the scaling ratio. A proof of principle test in a toy one-dimensional
model verified that this scenario can work [10]. For the realistic nuclear case, we need
to examine all contributions quantitatively, including from three-body operators, but
the pattern in Eq. (8) is promising.
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We might further speculate that the recent observation that the A dependences of
scaling ratios and the slope of the EMC effect dRA(x)/dx (where RA(x) is the large
Q2 ratio of nuclear cross sections for 0.7 < x < 1.0) are linearly correlated [1] could be
understood by Uλ-factorization and subsequent cancellations in cross section ratios.
The EFT treatment of Chen and Detmold [18] predict an analogous factorization in
the EMC ratio. In particular, they assert:

“The x dependence of RA(x) is governed by short-distance physics, while
the overall magnitude (the A dependence) of the EMC effect is gov-
erned by long distance matrix elements calculable using traditional nuclear
physics.”

If the same leading operators dominate in the two types of processes (i. e., two-body
contact operators with deuteron quantum numbers), then we would expect precisely
this sort of linear A dependence. Quantitative calculations are needed!

To do such calculations, we need many-body operator contributions, as shown by
Neff for 4He relative momentum distributions [19]. Fortunately, the recently developed
technology for evolution of three-body forces can be adopted for more general operator
evolution. This will enable direct calculations by ab initio methods in lighter nuclei
and many-body perturbation theory for operators in heavier nuclei.

4 Summary and outlook

We have presented a brief overview of high-resolution probes of low-resolution nuclei
based on the RG/EFT perspective. Some summary observations:

• Lower resolution means more natural nuclear structure.

• While scale and scheme-dependent observables can be (to good approximation)
unambiguous for some systems, they are often (generally?) not so for nuclei.
And while cross sections are invariant, the physics interpretation can change
with resolution!

• Working with scale and scheme dependence requires consistent Hamiltonian and
operators. Be wary of treating experimental analysis in independent pieces (as
is often done).

• Unitary transformations can be used to reveal natural scheme dependence.

The RG/EFT perspective and associated tools can help to address whether we can
have controlled factorization at low energies, to identify the roles of short-range ver-
sus long-range correlations, and to quantitatively assess the scheme-dependence of
spectroscopic factors and related quantities.

An overreaching question is how should one choose the appropriate scale in differ-
ent situations (with the RG to evolve the scale as needed). One general motivation
is to make calculations easier or more convergent, such as using the QCD running-
coupling scale to improve perturbation theory. For nuclear structure and low-energy
reactions, low-momentum potentials are chosen to improve convergence in configura-
tion interaction or coupled cluster calculations or to make a microscopic connection
to the shell model. Conversely, local potentials (which until recently were only high
resolution) are favored for quantum Monte Carlo. The scale could also be chosen for
interpretation or intuition; the SRC phenomenology is such an example. But the most
important issue for knock-out experiments is to have the cleanest and most controlled
extraction of quantities analogous to PDFs from experiment; this might mean opti-
mizing the validity of the impulse approximation but there are other possibilities (e. g.,
optimizing Uλ-factorization). To make progress, the plan is to make test calculations
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with a range of scales starting from initial Hamiltonians and operators matched in
an EFT framework, with the RG used to consistently relate scales and quantitatively
probe ambiguities (e. g., in spectroscopic factors). A priority calculation in the short
term is deuteron electrodisintegration, which is well controlled because of the absence
of three-body forces and operators.

I thank my collaborators E. Anderson, S. Bogner, B. Dainton, K. Hebeler,
H. Hergert, S. More, R. Perry, A. Schwenk, and K. Wendt. This work was supported
in part by the National Science Foundation under Grant No. PHY–1002478 and the
U.S. Department of Energy under Grant No. DE-SC0008533 (SciDAC-3/NUCLEI
project).
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Abstract

The conference summary observes how the presented talks reflect the diverse
research interests of Professor James P. Vary and how, as a whole, they lead to
the underlying goals of the International Conference on Nuclear Theory in the
Supercomputing Era — 2013.
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1 Introduction

As the schedule for the International Conference on Nuclear Theory in the Super-
computing Era — 2013 (NTSE-2013) clearly shows, this was an exciting, diverse and
highly informative conference, reflecting, appropriately, the research interests of Pro-
fessor James P. Vary, the meeting honoree, on his 70th birthday. (See the conference
schedule of presented talks, appearing earlier in these proceedings.) Looking back on
the 50 talks presented over the last five days, I see the synthesis of the three ma-
jor themes of this meeting, i. e., 1) High Performance Computing, 2) from Quantum
Chromodynamics (QCD) to Nuclear Structure, and 3) ab initio Nuclear Structure
and Reaction Theory, into one underlying goal, or physics driver, as James would say.
I would state this goal as “the collaboration of computer scientists and nuclear physi-
cists (both theorists and experimentalists) to determine the nucleon-nucleon (NN)
and higher-nucleon interactions, based on QCD, and to use these interactions in mi-
croscopic calculations of nuclear properties for structure and reactions with predictive
power and error quantification,” i. e., we want a reliable, predictive theory of nuclei
with proper error estimates.

One could say that James’ research program is like a three-legged stool, in which
all three legs are necessary in order to have a stable, final entity. I will consider these
three legs in the order given in the previous paragraph, instead of the order of the
talks, as given during the conference.

2 High performance computing:
Large scale computational science in support

of nuclear physics

Speakers: {Ng, Çatalyürek, Fann, Nam, Sosonkina, Yang}

Performing calculations at the forefront of computing technology has always been
a priority for James Vary, so it is no surprise that he quickly adapted to the new

Proceedings of International Conference ‘Nuclear Theory in the Supercomputing
Era — 2013’ (NTSE-2013), Ames, IA, USA, May 13–17, 2013. Eds. A. M. Shirokov
and A. I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 383.

http://www.ntse-2013.khb.ru/Proc/Barrett.pdf.
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paradigm that physical scientists will need to collaborate with computer scientists, if
the former want to take full advantage of the new developments in computer hardware
and software.

Exascale computing is coming, roughly between 2016 and 2020. When it does
arrive, it will produce a time of disruptive change. Although it will be difficult and
challenging, it will also be a perfect storm of opportunities for new investigations. As
the speakers in this section made clear, collaborations between nuclear theorists and
computer scientists will be crucial in the exascale era. Or as one slide in the keynote
talk by Esmond Ng indicted — in the form of a demonstrator with a sign reading
“Collaborate or Die!”.

Even though there is much to do to get ready for the exascale era, we should
remember that high performance computers, such as Titan, currently exist, as well
as Graphics Processing Units (GPUs). These tools should be used now for training
and preparation for the exascale era.

3 From Quantum Chromodynamics

to nuclear structure

The scales of nuclear physics go from the quark and gluon degrees of freedom to those
of the nucleons, the interactions among the nucleons and nuclear structure. One of
the principal goals of nuclear physics is to unite the physics of quarks and gluons,
i. e., Quantum Chromodynamics in the form of the QCD Lagrangian, with nuclear
structure, i. e., the physics of nucleons and mesons in nuclei. Two approaches to
achieving this goal were discussed during NTSE-2013: 1) Lattice Gauge Theory (or
Lattice QCD) and 2) Light Front QCD.

3.1 Lattice QCD

Speakers: {Savage, Qiu}

In recent years, significant progress and advances have been made in Lattice QCD.
As the keynote talk by Martin Savage made clear, everything that is required to do
calculations at the physical quark masses now exists. What is required are more
resources in order to perform these calculations. Doing this will allow Lattice QCD,
combined with chiral Effective Field Theory and nuclear many-body techniques, to
provide first principles, predictive capabilities for nuclear physics with quantifiable
uncertainties. Consequently, the main, outstanding problem for nuclear physicists is
to determine how to optimally match the results of Lattice QCD calculations, namely,
well-calculated energy eigenvalues, to the nuclear many-body machinery. This is a
current, major problem of interest in nuclear physics and rapid progress is being made
in attacking it.

3.2 Light front QCD

Speakers: {Brodsky, Chakrabarti, Honkanen, Karmanov, D. S. Kulshreshtha, U.
Kulshreshtha, Li, Vary, Wiecki, Zhao}

The second approach, Light Front QCD, is the method being investigated by
James Vary and his collaborators. The keynote talk on this topic by Stanley Brod-
sky emphasized the fact that AdS + Light Front Holography yields an analytic first
approximation to QCD, which is as simple as Schrödinger theory in atomic physics.
This talk was then followed by a number of presentations by Iowa State University
physicists and other collaborators on numerous applications of this Basic Light Front
Quantization.
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4 Ab initio nuclear structure and reaction theory

I will divide this section into three major parts: 1) the efforts to determine the
fundamental interactions among the nucleons, 2) many-body nuclear-structure theory
and experiment, and 3) nuclear-reaction theory and experiment: scattering, reactions,
loosely bound/unbound nuclei.

4.1 NN , NNN , and higher-N interactions

Speakers: {Machleidt, Epelbaum, Polyzou, Sauer}

The keynote talk by Ruprecht Machleidt gave a comprehensive overview of the
origin and properties of strong inter-nucleon interactions, both historically and the-
oretically. One of the facts, which was clearly brought forward at this conference, is
that the field of nuclear physics is still waiting for QCD based strong interactions,
i. e., based on lattice QCD and/or Light Front QCD. Until then, one will need to use
the best-fit NN and NNN interactions to the scattering data. Fortunately, the new
POUNDerS (Practical Optimization Using No Derivatives) routine is now providing
truly high quality fits to the experimental data.

Talks at this meeting also pointed out that NN and NNN interactions derived
from Effective Field Theory and Chiral Perturbation Theory (CPT) still have some
unresolved problems, which need to be addressed. In this regard, the important role
of NNN interactions in understanding nuclear structure microscopically has become
apparent. Consequently, CPT NN interactions need consistent NNN interactions
at the same order, e. g., next-to-next-to-next-lowest order (N3LO). There is also the
problem of whether or not to include deltas into the CPT expansion.

4.2 Many-body nuclear-structure theory and experiment

Speakers: {Hagen, Draayer, Abe, Bogner, Caprio, Carlson, Coon, Dean, Dytrych,
Furnstahl, Ginocchio, Hjorth-Jensen, Kim, Maris, Miller, Otsuka, Pieper, Papen-
brock, Roth, Rotureau, Schwenk, Sosonkina, Tuchin, Vary, Weidenmüller, Wiringa}

As pointed out in the keynote presentation by Gaute Hagen, many excellent ab
initio nuclear many-body approaches now exist, such as, Quantum Monte Carlo,
Lattice EFT, NCSM (both Effective Interaction and Configuration Interaction),
Monte Carlo NCSM, NCSM with the Continuum (NCSMC), NCSM with a Core,
NC-Gamow-SM (NCGSM), Coupled Cluster method (CCM), In-Medium Similarity
Renormalization Group (SRG), Self-Consistent Green’s Functions, Effective Interac-
tion Hyperspherical Harmonics method, etc. All these methods compete with each
other and at the same time complement each other. As such, it is definitely time
to start new benchmark calculations among these different approaches, such as be-
tween the In-Medium SRG and the NCSM with a Core and among the NCSMC, the
NCGSM and the CCM with the Berggren basis.

The important role of symmetry in understanding nuclear structure and the strong
interaction was emphasized in the keynote talk by Jerry Draayer. Nuclear shell models
and nuclear collective models were shown to be complementary methods. This led
to the application of symmetry approaches to the NCSM, in what is known as the
Symmetry Adapted NCSM (SA-NCSM), which builds on the exact and approximate
symmetries of nuclei.

These improved many-body techniques along with the latest high-performance
computers have made much more accurate calculations possible. These results cou-
pled with theory-guided extrapolation methods have made possible theoretical pre-
dictions with quantified error estimates. Consequently, it is now possible to perform
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calculations to guide future experiments and to make meaningful predictions in terra
incognita.

As mentioned earlier, collaborations between nuclear theorists and computer
scientists play a crucial role in these calculations and have proven to be most benefi-
cial. Indeed, supercomputing has become an essential part of nuclear theory.

4.3 Nuclear-reaction theory and experiment:
Scattering, reactions, loosely bound/unbound nuclei

Speakers: {Navrátil, Hill, Leidemann, Polyzou, Rotureau, Shirokov}

The keynote address by Petr Navrátil presented an overview of some of the nu-
merous ab initio approaches that now exist for studying nuclear reactions, such as the
NCSM + Resonating Group Method (NCSM/RGM), the NCSMC, the QMC/GFMC,
the CCM with Berggren basis, the Fermionic Molecular Dynamics (FMD) approach,
etc., while other talks discussed approaches, such as the Lorentz Integral Trans-
form + Effective Interaction Hyperspherical Harmonics (LIT/EIHH) method, the
LIT/NCSM, the Gamow Shell + NCSM (NCGSM), etc. Significant progress has
been made with the NCSM/RGM and NCSMC approaches, which can now include
NNN forces and can handle three-body clusters. The LIT approach has the advan-
tage of having a controlled resolution, and it can also be used for ab initio calculations
far into the continuum. The NCGSM and the CCM methods have demonstrated the
usefulness of the Berggren basis for including the continuum into nuclear structure
and reaction calculations.

5 Summary of recent advances

I list below a few of the numerous recent advances in ab initio microscopic nuclear
structure and reaction theory. Although it is an impressive list, it is far from being a
complete list.

1. Petascale computers and GPUs

2. Increasing collaborations among nuclear theorists and computers scientists

3. First basis Light Front Quantization applications

4. Lattice QCD calculations with physical masses

5. Best fit (POUNDerS) NN interactions

6. Many excellent ab initio many-body methods

7. In-Medium SRG approach and results

8. UV and IR limits and extrapolations of results

9. NCSM/RGM and NCSMC with three-body clusters

10. New ab initio methods for nuclear-reaction theory

6 Some remaining challenges

As in Section 5, I will simply list a few of the remaining challenges that are faced in
ab initio nuclear structure and reaction theory. As before, this is only a partial list of
such challenges.
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1. Making the transition to exascale computers, GPUs, etc.

2. Finding the resources for Lattice QCD calculations with the physical pion mass

3. Determining how to link Lattice QCD and LFQCD with the nuclear many-body
machinery

4. Obtaining consistent NN and NNN interactions for all current potential ap-
proaches (AV18, EFT/CPT interactions, etc.)

5. Extending successful ab initio approaches for 0p-shell nuclei to heavier mass
nuclei

6. Developing error quantification for theoretical results

7. Establishing new collaborations, especially with computer scientists

8. And most important of all, recruiting more young physicists into nuclear-physics
research

7 Conclusions

The talks at this conference, along with the honoring of James Vary on his 70th
birthday, have reminded me of the closing statement by my Thesis Grandfather, Victor
F. Weisskopf, i. e., the thesis advisor of my thesis advisor, in his summary talk for the
International Conference on Nuclear Structure, held in Kingston, Canada, August 29
to September 3, 1960.

“But don’t let yourself be talked into believing that the nucleus is not interest-
ing. It is so small and it has so few parts and still it shows a tremendous variety
of phenomena. Its investigation requires the whole arsenal of presently available
experimental techniques and its understanding makes use of almost all branches of
theoretical physics. What a marvelous invention! It is worth devoting a lifetime to
it.” [1].

James Vary has, indeed, devoted his professional life to this challenging system.
We all wish him many more years of excellent health and excitement, as he continues
this task. Happy 70th birthday, James!

References

[1] V. F. Weisskopf, in Proc. Int. Conf. Nuclear Structure, Kingston, Canada, August
29 — September 3, 1960, edited by D. A. Bromley and E. W. Vogt. University of
Toronto Press, Toronto, 1960, p. 905.



List of participants

• Takashi Abe, University of Tokyo, Japan

• H. Metin Aktulga, Lawrence Berkeley National Laboratory, USA

• Bruce Barrett, University of Arizona, USA

• Scott Bogner, Michigan State University, USA

• Stan Brodsky, SLAC, Stanford University, USA

• Mark Caprio, University of Notre Dame, USA

• Joe Carlson, Los Alamos National Laboratory, USA
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