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1 Introduction

With a resonance one usually associates an unstable (metastable) state that only
exists during a certain time.

S­matrix interpretation

Gamov (1928): resonances ⇐⇒ poles of the scattering amplitudes
[α decay of heavy nuclei] (that is, those of the S­matrix)

Titchmarsh (1946): Resonances are also poles
of the continued resolvent kernel

Jost functions (1940’s)

Complex scaling approach (rotation of the continuous spectrum)

Lovelace (∼ 1964), Balslev and Combes (1971) . . .

Hagedorn (1979): for a wide class of potentials the scaling resonances are also the
scattering matrix resonances.

We also mention the Lax­Phillips approach and various versions of perturbation
theory for resonances (Albeverio, Livšic, Howland, Rauch, ...)
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In contrast to the “normal” bound and scattering states, from the math­
ematical point of view the resonant ones are still a mysterious subject.
Many questions still remain unanswered.

For example: How to describe (“accurately” from the mathematical
point of view) scattering of a particle off a resonant state of other two
particles?

There is a difficulty even with the definition of resonance:

Resonances are NOT a unitary invariant of a self­adjoint (Hermitian)
operator

J. S. Howland (1974), B. Simon (1978): No satisfactory definition
of resonance can rely on a single operator on an abstract Hilbert
space. Always an extra structure is necessary. Say, an unperturbed
dynamics (in quantum scattering theory) or geometric setup (in acous­
tical or optical problems)..

Resonances are always as relative as the scattering matrix itself.
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We follow the typical setup

Kinetic energy operator H0 ⇐⇒ unperturbed dynamics

H = H0+V, V interaction.

The resolvent
R(z) = (H − z)−1

is an analytic operator­valued function of z ∈ C\σ(H).

The spectrum σ(H) is a natural boundary for holomorphy domain of
R(z) considered as an operator­valued function.
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However the kernel R(·, ·,z) (given in some specific representation)
may admit analytic continuation through the continuous spectrum σc(H).

Or the bilinear form (scalar product) ⟨R(z)φ,ψ⟩ admits such a continu­
ation for any φ,ψ of a dense subset of the Hilbert space H .

Or the “augmented” resolvent PR(z)P admits analytic continuation for
P the orthogonal projection onto a subspace of H .

In any case one deals with the Riemann surface of a holomorphic
function.
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Theorem on the uniqueness of analytic continuation: Analytic function
is uniquely defined by its values on an infinite set in C having limiting
point(s). Thus, if one knows the resolvent R(z) (or T ­matrix, S­matrix)
on the physical sheet then one may, in principle, to express it on
unphysical sheets through its values in the physical sheet.

Some time ago, we have derived just such expressions: Explicit rep­
resentations for R(z), T (z), and S(z) on unphysical sheets in terms of
these quantities themselves taken from the physical sheet.

In particular, these representations show which blocks of the scatter­
ing matrix (taken on the physical sheet) are “responsible” for reso­
nances on a certain unphysical sheet. (In such a case all the study of
resonances would reduce to a work completely on the physical sheet!)

These blocks of the scattering matrix are some its “truncations”. A
resonance on a certain unphysical sheet is nothing but the (complex)
energy at which the corresponding truncated scattering matrix has
eigenvalue zero.
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2 Two­Body Problem
in the center­of­mass frame

k =

[
m1+m2

2m1m2

]1/2

· m1p2−m2p1

m1+m2
(reduced relative momentum)

(h f )(k) = k2 f (k)+(V f )(k)

V (k,k′) =V (k−k′) — in case of local potentials —
and V (k) =V (−k), k ∈ R3.

For simplicity we assume that V (k) is holomorphic for all k ∈ C3. Such a situation
takes place if, in coordinate representation, say, V ∈ C∞(R3) and has a compact
support.

(In fact it suffices to require the holomorphy of V (k) only in a “strip” | Imk| < a for
some a > 0.)
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Resolvents (Green functions):

r0(z) = (h0− z)−1, (h0 f )(k) = k2 f (k),
r(z) = (h− z)−1.

r0(k,k
′,z) =

δ (k−k′)

k2− z

T ­operator (T ­matrix):

t(z) =V −V r(z)V =⇒ r(z) = r0(z)− r0(z)t(z)r0(z)
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The Lippmann­Schwinger equation for t(z)

t(z) =V −V r0(z)t(z),

that is

t(k,k′,z) =V (k,k′)−
∫
R3

dq
V (k,q)t(q,k′,z)

q2− z
. (2.1)

Clearly, all the dependence of t on z in (2.1) is determined by the
integral term on the r.h.s. part. This integral is nothing but a particular
case of the Cauchy type integral

Φ(z) =
∫
RN

dq
f (q)

λ +q2− z
(here, N = 3; N = 6 in the Faddeev eqs.).

Cauchy­type integrals of the same form are also present in the three­
body Faddeev equations.
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Analytic continuation of the Cauchy integral

F(z) =
∫

γ
dξ

f (ξ )
ξ − z

with a holomorphic f through the integration
path γ. ( f is assumed to be holomorphic in
a domain D ⊂ C having a non­empty inter­
section with γ.)

After continuation across γ from the bottom
up,

F̃(z) =
∫

γ
dξ

f (ξ )
ξ − z

−2πi f (z)

= F(z)−2πi f (z).

Similarly, after continuation across γ from the
top down,

F̃(z) =
∫

γ
dξ

f (ξ )
ξ − z

+2πi f (z)

= F(z)+2πi f (z).
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Denote by Rλ the Riemann surface of the function

ζ (z) =
{
(z−λ )1/2, N odd,
ln(z), N even.
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Lemma 1. For a holomorphic f (q), q ∈ CN, the function

Φ(z) =
∫
RN

dq
f (q)

λ +q2− z

is holomorphic on C \ [λ ,+∞) and admits the analytic continuation
onto Rλ as follows

Φ(z)|Πl = Φ(z)− l πi(
√

z−λ )N−2
∫

SN−1
dq̂ f (

√
z−λ q̂). (2.2)

Do not confuse l with orbital moment! Here l is the first letter of the
Russian word “list” ⇔ “sheet”.
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Now for r0(z) = (h0− z)−1 set

(
r0(z) f1, f2

)
≡

∫
R3

dq
f1(q) f2(q)

q2− z

(
= Φ(z), λ = 0

)
,

where f1 and f2 are holomorphic functions. Then by Lemma 1

(
r0(z) f1, f2

)
|Π1 =

(
r0(z) f1, f2

)
|Π0 −πi

√
z
∫

S2
dq̂ f1(

√
zq̂) f2(

√
zq̂)

⇕
r0(z)|Π1 = r0(z)+ a0(z)j†(z)j(z),

where a0(z) =−πi
√

z, and

(
j(z) f

)
(k̂) = f (

√
zk̂).
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What can be said about the operator t(z)?

t(z) =V −V r0t.

After the continuation to the sheet Π1 we obtain

t ′ =V −V (r0+ a0j†j)t ′, t ′ = t|Π1,

which implies that
(I +V r0)t ′ =V − a0V j†j t ′.

Perform inversion of (I +V r0) taking into account that t(z) = V −V r0t
and, hence, (I +V r0)

−1V = t:

t ′ = t − a0 tj†j t ′. (2.3)
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Further on, apply j to the both parts and get

j t ′ = j t − a0 j tj† j t ′,

which means
(I + a0 j tj†) j t ′ = j t. (2.4)

Notice that

I + a0 j tj† = s(z) is the scattering matrix,

s(k̂, k̂′,z) = δ (k̂, k̂′)−πi
√

z t(
√

zk̂,
√

zk̂′,z).
Hence,

j t ′ = [s(z)]−1 j t
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Come back to Eq. (2.3) and conclude that

t ′ = t − a0 tj† [s(z)]−1 j t, (2.5)

a0(z) =−πi
√

z,

that is

t(z)|Π1 = t(z)− a0(z) t(z)j†(z) [s(z)]−1 j(z) t(z). (2.6)

All the entries on the r.h.s. of (2.6) are taken on the physical sheet!
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From (2.6) we derive that

s(z)|Π1 = E [s(z)]−1 E , ,

where E is the inversion, (E f )(k̂) = f (−k̂).

In a similar way,

r(z)|Π1 = r+ a0 (I − rV )j† [s(z)]−1j(I −V r).

Hence the resonances are nothing but zeros of s(z) in the physical
sheet, that is,

z is a resonance ⇐⇒ there is A ∈ L2(S2) such that s(z)A = 0.
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3 Multichannel problem with binary channels

h =


λ1+h(1)

0 +V11 V12 . . . V1m

V21 λ2+h(2)
0 +V22 . . . V2m

. . . . . . . . . . . .

Vm1 Vm2 . . . λm+h(m)
0 +Vmm

 ,

in momentum representation

(h(α)
0 fα)(kα) = k2

α fα(kα), kα ∈ Rnα , fα ∈ L2(Rnα), α = 1,2, . . . ,m.

Assume that V (kα,kβ) are analytic in kα ∈ Cnα ,kβ ∈ Cnβ

and sufficiently rapidly decreasing along Rekα and Rek′
β

Channel dimensions nα ≥ 3.
The thresholds: distinct, λ1 < λ2 < .. . < λm.
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Riemann surface R coincides with that of the vector­valued function

ζ(z) =
(
ζ1(z),ζ2(z), . . . ,ζm(z)

)
,

where

ζα(z) =
{
(z−λα)

1/2 if nα is odd,
log(z−λα) if nα is even,

α = 1,2, . . . ,m.

To enumerate the sheets of R it is natural to use a multiindex

l = (l1, l2, . . . , lm),

Below we assume that all nα’s are odd. (For more sophisticated case
of nα we refer to [AM, Phys. Atom. Nucl. 77 (2014), 453].)

Then 2m sheets and lα = 0 or lα = 1.

Πl — notation for the sheets of R.
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Result:

t(z)
∣∣
Πl
= t(z)− t(z)J†(z)LA(z)[sl(z)]−1LJ(z)t(z) ,

where

L=


l1 0 . . . 0
0 l2 . . . 0
. . . . . . . . . . . .
0 0 . . . lm

 , A(z)=−πi

 (
√

z−λ1)
n1−2 . . . 0

. . . . . . . . .
0 . . . (

√
z−λm)

nm−2

 ,

J(z) =


j1(z) 0 . . . 0

0 j2(z) . . . 0
. . . . . . . . . . . .
0 0 . . . jm(z)

 ,
(
jα(z) f

)
(q̂) = f (

√
z−λαq̂),

sl(z) = I +L
(
s(z)− I)L = I +LJt(z)J†LA(z).

The operator sl(z) represents the result of truncation of the total scat­
tering matrix

s(z) = I + Jt(z)J†A(z).
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Representations for t(z)
∣∣
Πl

=⇒ Explicit representations for s(z)
∣∣
Πl

and

r(z)
∣∣
Πl

Main conclusion:

z is a resonance on Πl ⇐⇒ there is A such that sl(z)A = 0.

Underline: Aα ̸= 0 only for those channels α where lα ̸= 0. This means

(I −L)A = 0.

Along with A we introduce ≪extended≫ vector Ã defined by

Ã =−Jt(z)J†LA(z)A . (3.1)

Obviously, A = LÃ .
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Our claim is that up to numerical coefficients, the components Ã1( k̂1),
Ã2( k̂2), . . ., Ãm( k̂m) of the vector Ã represent the breakup ampli­
tudes for the corresponding resonance state along the channels 1,
2,. . ., m. Just these amplitudes determine the angular dependence of
the asymptotical spherical waves in the channel components of the cor­
responding ≪Gamow vector≫ ψ#

res in the coordinate representation.
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4 Three­Body Problem

kα =

(
mβ +mγ

2mβ mγ

)1/2 mβ pγ −mγpβ

mβ +mγ
,

pα =

(
m1+m2+m3

2mα(mβ +mγ)

)1/2 (mβ +mγ)pα −mα(pβ +pγ)

m1+m2+m3

Here, (α,β ,γ) is a cyclic permutation of the indices (1,2,3).

H0 = k2
α +p2

α, V =V1+V2+V3, H = H0+V

R0(z) = (H0− z)−1, R(z) = (H − z)−1
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T ­operator: T (z) =V −V R(z)V

Faddeev components:

Mαβ = δαβVα −VαR(z)Vβ (α,β = 1,2,3)

Faddeev equations in the matrix form:

M(z) = t(z) − t(z)R0(z)ϒM(z) .

Here

R0 =

 R0 0 0
0 R0 0
0 0 R0

 and t =

 t1 0 0
0 t2 0
0 0 t3


with

tα(P,P′,z) = tα(kα,k
′
α,z−p2

α)δ (pα −p′
α).

ϒ =

 0 1 1
1 0 1
1 1 0

 , M =

 M11 M12 M13

M21 M22 M23

M31 M32 M33


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Let hα be the Hamiltonian of the two­body subsystem α, and εα and
ψα the (only) binding energy and b.s. wave function, respectively,
that is,

hαψα = εαψα.

Then

tα(k,k′,z) =−φα(k)φα(k′)

εα − z
+ t̃α(k,k′,z)

with the formfactor
φα =Vαψα.

Recall that

R0(P,P′,z) =
δ (P−P′)

P2− z
.

These kernels (associated with the corresponding thresholds) are the
sources of the Cauchy type integrals in Faddeev equations.
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Further, we perform the analytic continuation of the Faddeev equa­
tions. It is remarkable that

the continued Faddeev equations can be solved explicitly (!)
— in terms of the matrix M itself,

and the “values” of M(z) are taken exclusively from the physical energy
sheet. The situation is very the same as in the case of the two­body
T ­matrix.

Surely, the result of continuation depends on the unphysical sheet
under consideration.

How many sheets do we have in the three­body case?
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Two­body binding energies ε1, ε2, ε3 are square root branching points
The three­body threshold 0 is a logarithmic branching point

Hence, only encircling the two­body thresholds one arrives at seven
different unphysical sheets.

The three­body threshold generates infinitely many unphysical sheets.

There is also a “fine structure”: in particular, additional branching points, already on
the unphysical sheets, may be generated by the two­body resonances. We did not
yet have a look at the unphysical sheets of the “second order”.
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In order to enumerate the sheets (of the “first” order only) we need a
multi­index,

l = (l0, l1, l2, l3),
with

l0 = . . . ,−1,0,1, . . . (0 physical, ±1,±2, . . . unphysical)
lα =0,1 (0 physical, 1 unphysical)

Πl the corresponding unphysical sheet

Also introduce

L =


l0 0 0 0
0 l1 0 0
0 0 l2 0
0 0 0 l3

 and L̃ =


|l0| 0 0 0
0 l1 0 0
0 0 l2 0
0 0 0 l3

 .
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Only physical sheet and three neighboring sheets of infinitely many unphysical
sheets are shown here: the only two­cluster unphysical sheet and two three­body
unphysical sheets.
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In the simple four­channel case under consideration the three­body
scattering matrix is a 4×4 operator matrix of the form

S(z) = Î +A(z)T̂ (z),

T̂ =


T̂00 T̂01 T̂02 T̂03

T̂10 T̂11 T̂12 T̂13

T̂20 T̂21 T̂22 T̂23

T̂30 T̂31 T̂32 T̂33

 ,

where

A(z) = diag{−πiz2,−πi
√

z− ε1,−πi
√

z− ε2,−πi
√

z− ε3}

Up to a scalar function of z the kernel of the entry T̂αβ coincides with
the amplitude for the corresponding process,

T̂00 : 3 −→ 3

T̂α0 : 2 −→ 3, α = 1,2,3

T̂0β : 3 −→ 2, β = 1,2,3

T̂αβ : 2 −→ 2, α,β = 1,2,3
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T =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33


with elements

T00(z) = T (z) =V −V R(z)V,
∣∣ T00(P,P′,z)

T0β(z) =
(
V β −V R(z)V β

)
|ψβ⟩,

∣∣ T0β(P, p′
β ,z)

Tα0(z) = ⟨ψα|
(
V α −V αR(z)V

)
,

∣∣ Tα0(pα,P′,z)
Tαβ(z) = ⟨ψα|

(
V α −V αR(z)V β

)
|ψβ⟩,

∣∣ Tαβ(pα, p′
β ,z)

α,β = 1,2,3.

(!!) U00 = T , U0β =V β −V RV β , Uα0 =V α −V αRV , Uαβ =V α −V αR(z)V β

— transition operators

T̂00(P̂, P̂′,z) = T00(
√

zP̂,
√

zP̂′,z),

T̂0β(P̂, p̂′
β ,z) = T0β(

√
zP̂,

√
z− εβ p̂′

β ,z),

T̂α0(p̂α, P̂′,z) = Tα0(
√

z− εα p̂α,
√

zP̂′,z),

T̂αβ(p̂α, p̂′
β ,z) = Tα0(

√
z− εα p̂α,

√
z− εβ p̂′

β ,z),



33

Explicitly solving the continued Faddeev equations results in the fol­
lowing

M|Πl = M+QM LS−1
l L̃ Q̃M.

where QM and Q̃M are explicitly written in terms of the Faddeev com­
ponents Mαβ taken immediately from the physical sheet. Sl is a “trun­
cation” of the total three­body scattering matrix S,

Sl = I +A(z)LT̂ L̃.
Similarly,

R|Πl = R+QR LS−1
l L̃ Q̃R.

Therefore, the singularities of M(z)|Πl and S(z)|Πl (as well as the ones
of R(z)|Πl)) are determined by the inverse truncated scattering matrix
in Sl(z)−1.

L̃ is nothing but a projection! — An example at the blackboard.
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Thus, to find the resonances on the sheet Πl one should simply look
for the zeros of the truncated scattering matrix Sl(z) in the physical
sheet, that is, for the points z where Sl(z) has eigenvalue zero:

Sl(z)A = 0.

The vector A will consist of breakup amplitudes of the resonance state
into the channels 0, 1, 2, and 3,

A =


A0(X̂)
A1(ŷ1)
A0(ŷ2)
A0(ŷ3)

 (in coordinate space).

To this end one can employ any approach that allows to calculate the
corresponding truncation of the scattering matrix (surely, only for the
energies z in the physical sheet). That is, any approach that allows
to calculate the appropriate scattering, rearrangement and breakup
amplitudes.
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5 Configuration space. Applications

In order to find the amplitudes involved in Sl, one can use in particular
the Faddeev differential equations.

We have employed the two­dimensional partial­wave Faddeev equa­
tions (arising as the result of a decomposition of the six­dimensional
Faddeev equations over bispherical harmonics).

• nnp system

• System of three bosons with nucleon masses

• 4He three­atomic system
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6 Conclusions

• Explicit representations for the multi­channel/three­body T ­matrix,
scattering matrix, and resolvent on unphysical energy sheets not
only describe the structure of these quantities but also suggest the
ways to calculate multi­channel/three­body resonances.

• A resonance on a sheet Πl corresponds to a point z on the physical
sheet where the truncated scattering matrix Sl(z) has eigenvalue
zero,

Sl(z)A = 0.

• The corresponding eigenvector A consists of breakup amplitudes
of the resonant state into various channels.
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With our computer code we could only calculate the 2 → 2 and 2 → 3
amplitudes. Hence we were restricted to the study of resonances
on the two­cluster unphysical sheet, the one neighboring the physical
sheet along the interval (εd,0).

The resonances were looked for as zeros of the scattering matrix

S(0,1)(z) = S0(z) = 1+2ia0(z),

where a0(z) stands for the s­wave 2 → 2 elastic scattering amplitude.
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Admissible domain in the case of three particles with the same mass;
εd stands for the deuteron (or dimer) binding energy (the picture is

borrowed from [E. A. Kolganova and AM, Phys. Atom. Nucl. 62 (1999), 1179];

for explanations see this paper).

An advantage: with this approach we can, of course, calculate virtual
levels.

http://uk.arxiv.org/abs/physics/9808027
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More details on formalism

Example of the symmetric 4He3 system. Restrict to a total angular momentum L = 0.
Two­dimensional integro­differential Faddeev equations[

− ∂ 2

∂x2 −
∂ 2

∂y2 + l(l +1)
(

1
x2 +

1
y2

)
−E

]
Φl(x,y) =

{
−V (x)Ψl(x,y), x > c

0, x < c . (6.1)

Here, x,y stand for the standard Jacobi variables and c for the core range. The
angular momentum l corresponds to a dimer subsystem and a complementary atom;
for an S­wave three­boson state. The partial wave function Ψl(x,y) is related to the
Faddeev components Φl(x,y) by

Ψl(x,y) = Φl(x,y)+∑
l′

∫ +1

−1
dη hll′(x,y,η)Φl′(x′,y′), (6.2)

where

x′ =

√
1
4

x2+
3
4

y2−
√

3
2

xyη , y′ =

√
3
4

x2+
1
4

y2+

√
3

2
xyη ,

and 1 ≤ η ≤ 1.
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The functions Φl(x,y) satisfy the boundary conditions

Φl(x,y) |x=0 = Φl(x,y) |y=0 = 0 . (6.3)

Moreover, in the hard­core model they are required to satisfy the condition

Φl(c,y)+∑
l′

∫ +1

−1
dη hll′(c,y,η)Φl′(x′,y′) = 0 . (6.4)

This guarantees the wave function Ψl(x,y) to be zero not only at the core boundary
x = c but also inside the core domains.

The asymptotic boundary condition for the partial­wave Faddeev components of
the two­fragment scattering states reads, as ρ → ∞ and/or y → ∞,

Φl(x,y; p) = δl0ψd(x)
{

sin(py)+ exp(ipy)
[
a0(p)+o

(
y−1/2

)]}
+

exp(i
√

Eρ)
√ρ

[
Al(θ)+o

(
ρ−1/2

)]
.

(6.5)

Here, ψd(x) is the dimer wave function, E stands for the scattering energy given by
E = εd + p2 with εd the dimer energy, and p for the relative momentum conjugate to

the variable y. The variables ρ =
√

x2+ y2 and θ = arctan
y
x

are the hyperradius and

hyperangle, respectively. The coefficient a0(p) is nothing but the elastic scattering
amplitude, while the functions Al(θ) provide us, at E > 0, with the corresponding
partial­wave Faddeev breakup amplitudes.
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4He3 [E. A. Kolganova and AM, Phys. Atom. Nucl. 62 (1999), 1179]

http://uk.arxiv.org/abs/physics/9808027
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The figure below has been borrowed from [E. Kolganova and AM, Proc. of 9th Intern. Conf. on

Computational Modelling and Computing in Physics, p. 177]

http://uk.arxiv.org/abs/nucl-th/9702037
http://uk.arxiv.org/abs/nucl-th/9702037
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