

Evgeny Epelbaum, RUB

High-precision nuclear forces from chiral EFT: Where do we stand?

Chiral EFT yields <u>CONSISTENT</u> nuclear forces and currents.

Evgeny Epelbaum, RUB

High-precision nuclear forces from chiral EFT: Where do we stand?

Chiral EFT yields <u>CONSISTENT</u> nuclear forces and currents.

...but what does this actually mean??

Chiral Effective Field Theory

Chiral Effective Field Theory

Matching to the amplitude Kaiser et al.

Matching to the amplitude Kaiser et al.

Matching to the amplitude Kaiser et al.

Feynman graphs \rightarrow

 $V^{(2)} G_0 V^{(2)}$

Matching to the amplitude Kaiser et al.

Higher-order terms in the Hamiltonian "know" about the choice made for the off-shell extension (consistency...)

Matching to the amplitude Kaiser et al.

Higher-order terms in the Hamiltonian "know" about the choice made for the off-shell extension (consistency...)

Are nuclear potentials well-defined (i.e. finite)?

not necessarily

So far, it was always possible to renormalize nuclear forces by systematically exploiting their unitary ambiguity...

Chiral expansion of the nuclear forces [W-counting]

- Electromagnetic and weak currents worked out to N³LO Krebs, Kölling, EE, Meißner; Baroni, Pastori, Schiavilla et al.

— The derived forces and currents are consistent provided one uses dim. reg. for all loop integrals!

Chiral expansion of the nuclear forces [W-counting]

- Electromagnetic and weak currents worked out to N³LO Krebs, Kölling, EE, Meißner; Baroni, Pastori, Schiavilla et al.

- The derived forces and currents are consistent provided one uses dim. reg. for all loop integrals!

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda > \Lambda^{crit}$ make calculations for A > 3 unfeasible...
 - \rightarrow it is crucial to employ a regulator that minimizes finite- Λ artifacts!

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda > \Lambda^{crit}$ make calculations for A > 3 unfeasible...
 - \rightarrow it is crucial to employ a regulator that minimizes finite- Λ artifacts!

Nonlocal:
$$V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p'^4+p^4}{\Lambda^4}}}{\vec{q}\,^2+M_{\pi}^2} \longrightarrow \frac{1}{\vec{q}\,^2+M_{\pi}^2} \underbrace{\left(1-\frac{p'^4+p^4}{\Lambda^4}+\mathcal{O}(\Lambda^{-8})\right)}_{affect \, long-range \, interactions...} \overset{\text{EE, Glöckle, Meißner '04; Entem, Machleidt '03; Entem, Machleidt, Nosyk '17; ...}}$$

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda > \Lambda^{crit}$ make calculations for A > 3 unfeasible...
 - \rightarrow it is crucial to employ a regulator that minimizes finite- Λ artifacts!

Nonlocal:
$$V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p'^4+p^4}{\Lambda^4}}}{\vec{q}^2 + M_{\pi}^2} \longrightarrow \frac{1}{\vec{q}^2 + M_{\pi}^2} \underbrace{\left(1 - \frac{p'^4 + p^4}{\Lambda^4} + \mathcal{O}(\Lambda^{-8})\right)}_{affect \, long-range \, interactions...} \underbrace{\text{EE, Glöckle, Meißner '04; Entem, Machleidt '03; Entem, Machleidt '03; Entem, Machleidt, Nosyk '17; ...}}_{entem, Machleidt, Nosyk '17; ...}$$

Local (implemented in coordinate space)

 $V_{\pi}(ec{r}) ~\longrightarrow~ V_{\pi}(ec{r}) \left[1 - \exp(-r^2/R^2)
ight]^n$ used in EE, Krebs, Meißner (EKM) '15

- still an ad hoc procedure
- (technically) difficult to apply to 3NF and exchange currents

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda > \Lambda^{crit}$ make calculations for A > 3 unfeasible...
 - \rightarrow it is crucial to employ a regulator that minimizes finite- Λ artifacts!

Nonlocal:
$$V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p'^4+p^4}{\Lambda^4}}}{\vec{q}^2+M_{\pi}^2} \longrightarrow \frac{1}{\vec{q}^2+M_{\pi}^2} \underbrace{\left(1-\frac{p'^4+p^4}{\Lambda^4}+\mathcal{O}(\Lambda^{-8})\right)}_{affect \ long-range \ interactions...} \underbrace{\text{EE, Glöckle, Meißner '04; Entem, Machleidt '03; Entem, Machleidt '03; Entem, Machleidt, Nosyk '17; ...}}_{entem, Machleidt, Nosyk '17; ...}$$

$$\begin{aligned} & \text{Local: } V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{\vec{q}^2 + M_{\pi}^2}{\Lambda^2}}}{\vec{q}^2 + M_{\pi}^2} \longrightarrow \frac{1}{\vec{q}^2 + M_{\pi}^2} \left(1 + \text{short-range terms}\right) & \text{Reinert, Krebs, EE '18;} \\ & \text{Inspired by} \\ & \text{Thomas Rijken]} & \text{does not affect long-range physics at any order in 1/\Lambda^2-expansion} \\ & - \text{Application to } 2\pi \text{ exchange does not require re-calculating the corresponding diagrams:} \\ & V(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} \mu \, d\mu \frac{\rho(\mu)}{q^2 + \mu^2} + \dots \xrightarrow{\text{reg.}} V_{\Lambda}(q) = e^{-\frac{q^2}{2\Lambda^2}} \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} \mu \, d\mu \frac{\rho(\mu)}{q^2 + \mu^2} e^{-\frac{\mu^2}{2\Lambda^2}} + \dots \\ & \text{- Convention: choose polynomial terms such that } \Delta^n V_{\Lambda, \log}(\vec{r}) \Big|_{r=0} = 0 \end{aligned}$$

Partial wave analysis of NN data

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

- Contacts at N⁴LO⁺: 2 [Q⁰] + 7 [Q²] + 12 [Q⁴] + 4 [F-waves, Q⁶] + IB; Gauss regulator

- Clear evidence of the parameter-free chiral 2π exchange (Roy-Steiner LECs)!

Partial wave analysis of NN data

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

χ^2 /datum for the description of the Granada-2013 database: χ EFT vs. phenomenology

$E_{ m lab}~{ m bin}$	CD Bonn ₍₄₃₎	Nijm I ₍₄₁₎	Nijm II ₍₄₇₎	$\operatorname{Reid93}_{(50)}$	$N^4LO^+_{(27+1)}$, this work
neutron-pr	coton scattering dat	ta			
0 - 100	1.08	1.06	1.07	1.08	1.07
0 - 200	1.08	1.07	1.07	1.09	1.07
0 - 300	1.09	1.09	1.10	1.11	1.06
proton-pro	oton scattering data	ı			
0 - 100	0.88	0.87	0.87	0.85	0.86
0 - 200	0.98	0.99	1.00	0.99	0.95
0 - 300	1.01	1.05	1.06	1.04	1.00

For the first time, chiral EFT potentials qualify for being regarded as PWA!

N⁴LO⁺: semilocal (Reinert, Krebs, EE) vs. nonlocal (Entem, Machleidt, Nosyk)

Error analysis P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Error analysis: statistical, truncation, πN LECs, fit energy. In most cases, the uncertainty is dominated by truncation errors. At N⁴LO & low energies, other errors become comparable.

Example: deuteron asymptotic normalizations (relevant for nuclear astrophysics)

Our determination:

$$\begin{array}{rcl} & & \text{truncation error} & & & & \pi \text{N LECs} \\ & & \text{statistical error} & & & & & & & \\ & & & A_S &= & 0.8847^{(+3)}_{(-3)}(3)(5)(1) \text{ fm}^{-1/2} \\ & & \eta \equiv \frac{A_D}{A_S} \,=\, 0.0255^{(+1)}_{(-1)}(1)(4)(1) \end{array}$$

Exp: $A_S = 0.8781(44) \, {
m fm}^{-1/2}, \quad \eta = 0.0256(4)$ Borbely et al. '85 Rodning, Knutson '90

Nijmegen PWA [errors are "educated guesses"] Stoks et al. '95 $A_S = 0.8845(8) \text{ fm}^{-1/2}, \quad \eta = 0.0256(4)$

Granada PWA [errors purely statistical] Navarro Perez et al. '13 $A_S = 0.8829(4)~{
m fm}^{-1/2}, ~~\eta = 0.0249(1)$

Beyond the two-nucleon system

- N²LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02
- N³LO: leading 1 loop, parameter-free Ishikawa, Robilotta '08; Bernard, EE, Krebs, Meißner '08, '11
- N⁴LO: full 1 loop, almost completely worked out, several new LECs Girlanda, Kievski, Viviani '11; Krebs, Gasparyan, EE '12,'13; EE, Gasparyan, Krebs, Schat '14

Beyond the two-nucleon system

N²LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02

Beyond the two-nucleon system

N²LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02

Determination of the LECs c_D, c_E

- Triton BE (c_D-c_E correlation)
- Explore various 3N observables and let theory and/or data decide...

c_D c_D 3NFs Light nuclei up to N²LO

EE et al. (LENPIC), arXiv:1807.02848

(c_D, c_E fixed from ³H BE and Nd scattering)

DARMSTADT

universität**bonn**

RUB

LENPIC

3NFs

More results in the talks by James Vary and Roman Skibinski

National Laboratory

LENPIC: Low Energy Nuclear Physics International Collaboration JAGIELLONIA University In Krakow UNIVERSITÄT

Intermediate summary

NN@N4LO+: accurate and precise

Intermediate summary

NN@N4LO+: accurate and precise

Few-N@N²LO: accurate but imprecise

Intermediate summary

NN@N4LO+: accurate and precise

Few-N@N²LO: accurate but imprecise

Few-N@N^{3,4}LO (not yet available): precise, **hopefully also accurate**

(consistency, error analysis)

• Neutron-neutron scattering length from few-N reactions

• CSB nuclear forces and the BE difference of ³H and ³He

Coulomb	Breit	K.E.	Two-Body	Three-body	Theory	Experiment
648	28	14	65(22)	5	760(22)	764

Friar et al., PRC 71 (2005) 024003

Neutron-neutron scattering length from few-N reactions

• CSB nuclear forces and the BE difference of ³H and ³He

648 28 14 65(22) 5 760(22) 764	Coulomb	Breit	K.E.	Two-Body	Three-body	Theory	Experiment
	648	28	14	65(22)	5	760(22)	764

Friar et al., PRC 71 (2005) 024003

$$\pi^{-} + {}^{2}\text{H} \rightarrow \text{n} + \text{n} + \gamma \longrightarrow a_{nn} = -18.50 \pm 0.53 \text{ fm} \text{ Howell et al. '98}$$

$$n + {}^{2}\text{H} \rightarrow \text{n} + \text{n} + \text{p} \longrightarrow \begin{cases} a_{nn} = -18.7 \pm 0.6 \text{ fm} \text{ Gonzales Trotter et al. '99} \\ a_{nn} = -16.3 \pm 0.4 \text{ fm} \text{ Huhn et al. '00} \end{cases}$$

$$\pi^{-} + {}^{2}\text{H} \rightarrow \text{n} + \text{n} + \gamma \longrightarrow a_{nn} = -18.50 \pm 0.53 \text{ fm} \text{ Howell et al. '98}$$

$$n + {}^{2}\text{H} \rightarrow \text{n} + \text{n} + \text{p} \longrightarrow \begin{cases} a_{nn} = -18.7 \pm 0.6 \text{ fm} \text{ Gonzales Trotter et al. '99} \\ a_{nn} = -16.3 \pm 0.4 \text{ fm} \text{ Huhn et al. '00} \end{cases}$$

$$\pi^{-} + {}^{2}\text{H} \rightarrow \text{n} + \text{n} + \gamma \longrightarrow a_{nn} = -18.50 \pm 0.53 \text{ fm} \text{ Howell et al. '98}$$

$$n + {}^{2}\text{H} \rightarrow \text{n} + \text{n} + \text{p} \longrightarrow \begin{cases} a_{nn} = -18.7 \pm 0.6 \text{ fm} \text{ Gonzales Trotter et al. '99} \\ a_{nn} = -16.3 \pm 0.4 \text{ fm} \text{ Huhn et al. '00} \end{cases}$$

Can reproduce ${}^{2}a_{nd}$ using $a_{nn} \sim -16.5$ fm! Alternatives (3NF beyond N²LO, IB effects) need to be checked. Can one then still understand the BE differences of mirror nuclei?

• Point-proton radius of the deuteron $\langle r^2 \rangle_{\rm pt} = \langle r^2 \rangle_{\rm ch} - \langle r^2 \rangle_{\rm ch}^{\rm p} - \langle r^2 \rangle_{\rm ch}^{\rm n}$

All high-precision NN forces yield similar matter radii:

	RKE N ⁴ LO ⁺	Granada PWA ($\boldsymbol{\delta}$ -shell)	Nijm I	Nijm II	Reid93	CD-Bonn
$\sqrt{\langle r^2 angle_{ m m}}$ (fm)	$1.965 \dots 1.968$	1.965	1.967	1.968	1.969	1.966

The difference (-0.4%) to $(\langle r^2 \rangle_{pt}^{1/2})_{exp} = 1.97507(78)$ fm has to come from MECs + relativity

• Point-proton radius of the deuteron $\langle r^2 \rangle_{\rm pt} = \langle r^2 \rangle_{\rm ch} - \langle r^2 \rangle_{\rm ch}^{\rm p} - \langle r^2 \rangle_{\rm ch}^{\rm n}$

All high-precision NN forces yield similar matter radii:

	RKE N^4LO^+	Granada PWA ($\boldsymbol{\delta}$ -shell)	Nijm I	Nijm II	Reid93	CD-Bonn
$\sqrt{\langle r^2 angle_{\mathbf{m}}} \; (\mathrm{fm})$	$1.965 \dots 1.968$	1.965	1.967	1.968	1.969	1.966

The difference (-0.4%) to $(\langle r^2 \rangle_{\rm pt}^{1/2})_{\rm exp} = 1.97507(78)$ fm has to come from MECs + relativity

• Point-proton radii of light nuclei

	r_p , ² H (fm)	$r_p, {}^3\mathrm{H} \ \mathrm{(fm)}$	r_p , ⁴ He (fm)
AV18 + UIX	1.967	1.584	1.44
CD- $Bonn + TM99$	1.966	1.576	1.42
$\frac{N^4LO^+ + 3NF@N^2LO}{2}$	$1.967\;(-\mathbf{0.4\%})$	1.580 (-1%)	1.43 (-2%)

• Point-proton radius of the deuteron $\langle r^2 \rangle_{\rm pt} = \langle r^2 \rangle_{\rm ch} - \langle r^2 \rangle_{\rm ch}^{\rm p} - \langle r^2 \rangle_{\rm ch}^{\rm n}$

All high-precision NN forces yield similar matter radii:

	RKE N^4LO^+	Granada PWA ($\boldsymbol{\delta}$ -shell)	Nijm I	Nijm II	Reid93	CD-Bonn
$\sqrt{\langle r^2 angle_{\mathbf{m}}} \ (\mathrm{fm})$	$1.965 \dots 1.968$	1.965	1.967	1.968	1.969	1.966

The difference (-0.4%) to $(\langle r^2 \rangle_{pt}^{1/2})_{exp} = 1.97507(78)$ fm has to come from MECs + relativity

• Point-proton radii of light nuclei

	r _{p} , ² H (fm)	$r_p, {}^3\mathrm{H} \ \mathrm{(fm)}$	$r_p, { m ^4He} \; ({ m fm})$
AV18 + UIX	1.967	1.584	1.44
CD-Bonn + TM99	1.966	1.576	1.42
$N^4LO^+ + 3NF@N^2LO$	$1.967\;(\mathbf{-0.4\%})$	1.580 (-1%)	1.43 (-2%)

 Point-proton radius of ¹⁶O: off by ~15% based on N⁴LO⁺ + 3NF@N²LO (preliminary...) MECs + relativity + 3NF beyond N²LO + 4NF ??

• Point-proton radius of the deuteron $\langle r^2 \rangle_{\rm pt} = \langle r^2 \rangle_{\rm ch} - \langle r^2 \rangle_{\rm ch}^{\rm p} - \langle r^2 \rangle_{\rm ch}^{\rm n}$

All high-precision NN forces yield similar matter radii:

	RKE N ⁴ LO ⁺	Granada PWA ($\boldsymbol{\delta}$ -shell)	Nijm I	Nijm II	Reid93	CD-Bonn
$\sqrt{\langle r^2 angle_{\mathbf{m}}} \ (\mathrm{fm})$	$1.965 \dots 1.968$	1.965	1.967	1.968	1.969	1.966

The difference (-0.4%) to $(\langle r^2 \rangle_{\rm pt}^{1/2})_{\rm exp} = 1.97507(78)$ fm has to come from MECs + relativity

Point-proton radii of light nuclei

	r _{p} , ² H (fm)	$r_p,{}^3\mathrm{H}~(\mathrm{fm})$	r_p , ⁴ He (fm)
AV18 + UIX	1.967	1.584	1.44
CD-Bonn + TM99	1.966	1.576	1.42
$\frac{N^4LO^+ + 3NF@N^2LO}{2}$	1.967~(-0.4%)	1.580 (-1%)	1.43 (-2%)

- Point-proton radius of ¹⁶O: off by ~15% based on N⁴LO⁺ + 3NF@N²LO (preliminary...) MECs + relativity + 3NF beyond N²LO + 4NF ??
- NNLO_{sat} and Δ NNLO reproduce r_p for ¹⁶O: A coincidence? E.g. matter radius of ²H:

	NNLO _{sat}	Δ NNLO ₄₅₀	$\mathrm{EMN}~\mathrm{N^4LO}^+_{450}$	EMN N ⁴ LO ⁺ ₅₀₀	$\mathrm{EMN}\;\mathrm{N^4LO}^+_{550}$
$\sqrt{\langle r^2 \rangle_{\rm m}}$ (fm)	1.978 (+0.15%)	$1.982 \ (+0.35\%)$	1.966 (-0.45%)	1.973~(-0.1%)	1.971 (-0.2%)

Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N³LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite- Λ artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N³LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite- Λ artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N³LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite- Λ artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

(finite in DR)

Linearly divergent: $\propto \Lambda rac{q_3^a \, q_3^b}{ec q_3^2 + M_\pi^2}$

Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N³LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite- Λ artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N³LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite- Λ artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N³LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite- Λ artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Renormalization of the iteration requires χ -symmetry breaking counter terms!

Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N³LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite- Λ artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Renormalization of the iteration requires χ -symmetry breaking counter terms!

- The problematic divergence cancels out if $V_{3N}^{2\pi-1\pi}$ is calculated using cutoff regularization.
- Irrelevant for V_{2N} : momentum dependence of 2N contacts is not constrained by χ -symm.
- Regularization of V_{3N} must be **consistent** to maintain matching (of finite pieces).
- Can one enforce renormalizability of V_{3N} (i.e. remove problematic divergences) by systematically exploiting unitary ambiguities? This indeed seems to be possible!

Regularization and the chiral symmetry

The same problems affect loop contributions to the exchange charge/current operators.

Is it enough to recalculate all loop contributions to the 3NF/exchange currents by modifying the pion propagators via $(\vec{q}^2 + M_{\pi}^2)^{-1} \longrightarrow \exp[-(\vec{q}^2 + M_{\pi}^2)/\Lambda^2] (\vec{q}^2 + M_{\pi}^2)^{-1}$?

Regularization and the chiral symmetry

The same problems affect loop contributions to the exchange charge/current operators.

Is it enough to recalculate all loop contributions to the 3NF/exchange currents by modifying the pion propagators via $(\vec{q}^2 + M_{\pi}^2)^{-1} \longrightarrow \exp[-(\vec{q}^2 + M_{\pi}^2)/\Lambda^2] (\vec{q}^2 + M_{\pi}^2)^{-1}$?

Not quite... Have to ensure that regularization maintains the chiral symmetry.

$$U(ec{\pi}) = 1 + rac{i}{F_\pi}ec{ au} \cdot ec{\pi} - rac{1}{2F_\pi^2}ec{\pi}^2 - rac{ilpha}{F_\pi^3}(ec{ au} \cdot ec{\pi})^3 - rac{8lpha - 1}{8F_\pi^4}ec{\pi}^4 + \dots$$

All observables should be α -independent.

is independent on α in DR, but not of one uses (naive) cutoff regularization

Regularization and the chiral symmetry

The same problems affect loop contributions to the exchange charge/current operators.

Is it enough to recalculate all loop contributions to the 3NF/exchange currents by modifying the pion propagators via $(\vec{q}^2 + M_{\pi}^2)^{-1} \longrightarrow \exp[-(\vec{q}^2 + M_{\pi}^2)/\Lambda^2] (\vec{q}^2 + M_{\pi}^2)^{-1}$?

Not quite... Have to ensure that regularization maintains the chiral symmetry.

$$U(ec{\pi}) = 1 + rac{i}{F_\pi}ec{ au} \cdot ec{\pi} - rac{1}{2F_\pi^2}ec{\pi}^2 - rac{ilpha}{F_\pi^3}(ec{ au} \cdot ec{\pi})^3 - rac{8lpha - 1}{8F_\pi^4}ec{\pi}^4 + \dots$$

All observables should be α -independent.

is independent on α in DR, but not of one uses (naive) cutoff regularization

Solution: higher-derivative regularization [Slavnov, Nucl. Phys. B31 (1971) 301]

(designed to coincide with the employed local regularization in the NN sector)

$$\mathcal{L}_{\pi,\Lambda}^{(2)} = \mathcal{L}_{\pi}^{(2)} + \frac{F^2}{4} \operatorname{Tr} \left[\operatorname{EOM} \frac{1 - \exp\left(\frac{\operatorname{ad}_{D\mu}\operatorname{ad}_{D\mu} + \frac{1}{2}\chi_+}{\Lambda^2}\right)}{\operatorname{ad}_{D\mu}\operatorname{ad}_{D\mu} + \frac{1}{2}\chi_+} \operatorname{EOM} \right], \qquad \mathcal{L}_{\pi}^{(2)} = \frac{F^2}{4} \operatorname{Tr} \left[u_{\mu}u^{\mu} + \chi_+ \right]$$
Hermann Krebs et al. (preliminary)

with
$$\operatorname{EOM} \equiv -[D_{\mu}, \, u^{\mu}] + rac{i}{2}\chi_{-} - rac{i}{4}\operatorname{Tr}(\chi_{-})$$
 and $\operatorname{ad}_{X}Y \equiv [X, \, Y]$

Requires recalculation of the loop contributions to the 3NF/exchange currents (in progress)

Summary and outlook

- Precision calculations of few-N systems at N^{3,4}LO will challenge chiral EFT! (especially in the 3N continuum — talk by Kimiko Sekiguchi)
- Naive regularization of 3NF and MECs, calculated using DR, should NOT be applied beyond N²LO!
- Need to recalculate loop contributions to 3NF and MECs using regularization which maintains the chiral symmetry and is consistent with the NN force (in progress...)

Thanks to:

- my Bochum collaborators on these topics:
 Vadim Baru, Arseniy Filin, Ashot Gasparyan, Hermann Krebs, Patrick Lipka, Daniel Möller, Patrick Reinert
- Ulf Meißner, Andreas Nogga and the whole LENPIC

NN data analysis

P. Reinert, H. Krebs, EE, arXiv:1711.08821[nucl-th]

Convergence of the chiral expansion for np phase shifts

Description of the scattering data

ي 0.1 [) [fm	0.1	N.	
Ela0.105	LO (Qº)	NLO	(Q ²)	$^{12}LO(Q^3)\overset{\smile}{\geq}$	0103LO	(Q^4) N ⁴ LO (Q^5)	N ⁴ LO ⁺
neutron-pro	on scattering d	lata		2	1.00	1.00	
0 - 100	<u></u>	<u>2.2</u> 3 - 4	l	.2	1.68	1 1200 3	<u></u>
0 = 2000 0 = 300	1 62 Z 75 r	5 5.4 [fm] ¹⁴	5 y 4	.8 .4	1.09 1.99	¹ ^{1,18} r [fm]	+ 1.065 C
proton-proto	on scattering da	ita					
0 - 100	2300	10	2	.1	0.91	0.88	0.86
0 - 200	1780	91	3	3	2.00	1.42	0.95
0 - 300	1380	89	3	8	3.42	1.67	0.99
	2 LECs	+ 7 + 1 IB	LECs	-	+ 12 LECs	+ 1 LEC (np)	+ 4 LEC
	A 400 M		A 450 M.	5.7 A			D

	$\Lambda = 400 \text{ MeV}$	$\Lambda = 450 \text{ MeV}$	$\Lambda = 500 \text{ MeV}$	$\Lambda = 550 \text{ MeV}$	Empirical
$A_{S} \; ({\rm fm}^{-1/2})$	$0.8847_{(-3)}^{(+3)}(6)(4)(4)$	$0.8847_{(-3)}^{(+3)}(3)(5)(1)$	$0.8849^{(+3)}_{(-3)}(1)(7)(0)$	$0.8851_{(-3)}^{(+3)}(3)(8)(1)$	0.8846(8) [117]
η	$0.0255^{(+1)}_{(-1)}(1)(3)(2)$	$0.0255^{(+1)}_{(-1)}(1)(4)(1)$	$0.0257^{(+1)}_{(-1)}(1)(5)(1)$	$0.0258^{(+1)}_{(-1)}(1)(5)(1)$	0.0256(4) [118]

Description of the scattering data

٤ 0.1 [) [fm	0.1					
₹la0.105	LO (Qº)	NLO (Q²)	N ² LO	(Q ³) ≥	0.10 ³ 5L	O (Q ⁴)	N ⁴ LO	(Q ⁵)	N ⁴ LO ⁺	
neutron-p 0 - 100	roton scattering of 73	lata 2.2 3 5 4 no new	1.2		1.08) 1	1.08	3	4 1 065	6
$0 = 200 \circ$ 0 = 300	- 02 - 75 r	$[fm]^{14} \xrightarrow{\text{LECs}}$	4.4		1.09 1.99	_	1.18 _r	[fm]	1.10	
proton-pro	oton scattering da	ata								
0 - 100	2300	10	2.1		0.91	no new	0.88		0.86	
0-200	1780	91	33		2.00		1.42		0.95	
0 - 300	1380	89	38		3.42		1.67		0.99	
	2 LECs	+ 7 + 1 IB LECs		+	12 LEC	s +	1 LEC (np	o)	+ 4 LEC	

Clear evidence of the (parameter-free) chiral 2π -exchange!

	$\Lambda = 400 \ {\rm MeV}$	$\Lambda = 450 \ {\rm MeV}$	$\Lambda = 500~{\rm MeV}$	$\Lambda = 550~{\rm MeV}$	Empirical
$\overline{A_S \text{ (fm}^{-1/2})}$	$0.8847^{(+3)}_{(-3)}(6)(4)(4)$	$0.8847^{(+3)}_{(-3)}(3)(5)(1)$	$0.8849^{(+3)}_{(-3)}(1)(7)(0)$	$0.8851_{(-3)}^{(+3)}(3)(8)(1)$	0.8846(8) [117]
η	$0.0255^{(+1)}_{(-1)}(1)(3)(2)$	$0.0255^{(+1)}_{(-1)}(1)(4)(1)$	$0.0257^{(+1)}_{(-1)}(1)(5)(1)$	$0.0258^{(+1)}_{(-1)}(1)(5)(1)$	0.0256(4) [118]

• ∃ some very precise pp data...

• ∃ some very precise pp data...

 much lower χ² per datum without the outliers • I some very precise pp data... (which are, however, still reasonably well described...)

• \exists some very precise pp data... (which are, however, still reasonably well described...)

- much lower χ² per datum without the outliers
- probe *l* > 2 waves which are parameter-free at N⁴LO...

N⁴LO⁺: include N⁵LO contacts in ³F₂, ¹F₃, ³F₃ and ³F₄

Step 4: Uncertainty quantification

1. Truncation error [USe the algorithm Of EE, Krebs, Meißner, EPJA 51 (2015) 53]

For any observable:
$$X^{(i)}(p) = X^{(0)} + \Delta X^{(2)} + \dots + \Delta X^{(i)}$$

 $\sim Q^2 X^{(0)} + \dots + \Delta X^{(i)}$ with $Q = \max(p/\Lambda_b, M_\pi/\Lambda_b)$

Use the explicitly calculated $\Delta X^{(i)}$ to estimate the uncertainty $\delta X^{(i)}$ at order Qⁱ:

 $\delta X^{(0)} = Q^2 |X^{(0)}|,$

 $\delta X^{(i)} = \max_{2 \leq j \leq i} \left(Q^{i+1} | X^{(0)} |, \, Q^{i+1-j} | \Delta X^{(j)} |
ight)$

subject to the additional constraint

 $\delta X^{(i)} \, \geq \, \max_{j,k} ig(|X^{(j \geq i)} - X^{(k \geq i)}| ig).$

- no reliance on the cutoff variation (not reliable)
- easily applicable to any observable (scattering, bound states, 3N, ...)
- no reliance on experimental data
- for σ_{tot}, errors found to be consistent with 68% degree-of-belief intervals
 Furnstahl et al., PRC 92 (2015) 024005

np scattering observables at Elab=143 MeV

Step 4: Uncertainty quantification

2. Statistical uncertainties

Assume $\chi^2(c) \approx \chi^2_{\min} + \frac{1}{2}(c - c_{\min})^T H(c - c_{\min})$ where $H_{ij} = \frac{\partial^2 \chi^2}{\partial c_i \partial c_j}\Big|_{c=c_{\min}}$ Quadratic approximation is employed to propagate stat. errors in observables $O(c) = O(c_{\min}) + J_O(c - c_{\min}) + \frac{1}{2}(c - c_{\min})^T H_O(c - c_{\min})$ see also: Carlsson et al., PRX 6 (16) 011019

3. Uncertainties due to π **N LECs c**_{1,2,3,4}, d_{1,2,3,5,14,15} and e_{14,17}

Estimated based on the results using a different set of LECs (KH PWA of π N scattering) see EE, Krebs, Meißner, PRL 115 (15) 122301

4. Choice of E_{max} in the fits

Uncertainty estimated at N⁴LO/N⁴LO⁺ by performing fits with $E_{max} = 220...300 \text{ MeV}$

$E_{ m lab}$ bin	$220~{ m MeV}$	$260 { m ~MeV}$	$300 { m ~MeV}$		
neutron-prot	on scattering data				
0 - 100	1.07	1.07	1.08		
0 - 200	1.06	1.07	1.07		
0 - 300	1.10	1.06	1.06		
proton-proto	on scattering data				
0 - 100	0.86	0.86	0.87		
0 - 200	0.95	0.95	0.96		
0 - 300	1.00	1.00	0.98		

N⁴LO⁺, Λ = 450 MeV

	201	22		hulan Ds/uu	00, 10,										ae ae				ae ae				\mathcal{D}_{3D_2}				374	
\widetilde{C}_{inc}^{np}	100	$\overline{\mathbf{N}}$														~				7	~	4			4	4	4	
C_{1S0}^{np}	-99.8	100																									\square	
\widetilde{C}_{pp}^{pp}	21	-25	100																									
C ^{pp/nn}	22	-33	00.7	100																								
D_{1S0}	-52		-99.7 Q/	-97	100																							
— 130 Стрт		19		-07	100	100																						
	-45	40	10	_12	15	-42	100																				\square	
	<i>3</i>	-9	12	-13	10 _27	12	100	100																				
\tilde{C}_{aa}	_12	19			-31	-25	13	100	100																			
	20	10				-20	40	- * 	_07	100																		
	20	-20		-	- U - E	о 22	-40		-0/	61	100																H	
C.	10	10			-0	20	20	-	23	-01	100	100																
Ο _{ε1}	-13	13			-2	-32	31	0	94	-/1	-7	100																
D _{ε1}	17	-16				20	-36	~~2	-92	82	-9	-90	100															
	19	-18			-2	2	-53		-56	59	-45	-32	56	100														
O _{3P0}		-8	11	-10		-15	8	->	9	-8	2	8	-8	-4	100													
С С		2	-7	- 7	-5	- 7	-	6	4	-7	2	3	-9	-8	-54	100												
O _{3P1}		2	-12	13	-20		-13			1	11	1	3	8	-16	9	100											
C D _{3P1}	12	-11	-5	6	-10	-7	-25	-11	-15	4	17	-15	16	19	16	-16	5	100										
O _{3P2}	-3	3	-13	13	-6	3	-9	-13	-6	2	-1	-8	2	-6	-37	23	4		100									-
U _{3P2}			9	-8			4	18	3	2	2	8	3	16	19	-21	6	2	-87	100								
υ _{ε2} Ε			-2	3	-11	-2	9	34	10	-7	2	8	-10	-12	19	16	-9	-13	-32	8	100							
⊏ _{3F2}	-7	8	-5	7	-15	7	-5	12	-3	-4	5		7	10	-9	-19	7	8	-14	21	-12	100						
D _{3D2}	-34	33	0	0	2	23	-9	-11	-29	35	-28	-19	32	37	-3	-7	8	9	11	-8	-20	-8	100					
	6	-5	-2	2	-3	18	16	9	20	-32	26	17	-29	-12	-6	0	-11	-9	-6	6	4	24	-28	100				
⊨ _{1F3}	13	-12	-6	7	-13	-20	-14	12	19	-19	-1	27	-25	16	-1	-7	9	12	3	3	-9	-2	-19	46	100			
E _{3F3} ┏	-2		3	-6	21	-2	8	-36	1	-2	-10	-1	-6	-11	4	6	-33	-20	29	-37	-37	-48	14	-7	-2	100		
E _{3F4}	-3	1	17	-18	20	10	9	14	2	-4	-2	0	-7	-12	-6	-1	-34	-17	-4	-25	18	21	-10	22	-11	6	100	

	<i>c</i> ₁	<i>C</i> ₂	<i>c</i> ₃	<i>C</i> ₄	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$ar{d}_{14}-ar{d}_{15}$	\bar{e}_{14}	\bar{e}_{15}	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
Fit to the GW PWA [79]	-1.31	0.11	-2.54	1.85	1.43	-0.90	-0.16	-2.09	0.07	-3.44	1.65	-0.46	0.47
Statistical error	0.19	0.48	0.08	0.04	0.14	0.19	0.11	0.28	0.02	0.04	0.33	0.17	1.48
Fit to the KH PWA [80]	-1.35	-0.89	-2.19	1.63	2.08	-2.13	0.45	-3.69	-0.05	-6.59	7.22	-0.35	1.88
Statistical error	0.21	0.51	0.08	0.05	0.15	0.20	0.11	0.29	0.02	0.04	0.37	0.22	1.57

29.2681
0.3481
0.2025
0.1225
0.0841
0.0144
0.0025
0.0009
0.0009
0.0004
0.0004
0.0001
0.0001

Eigenvalues of the covariance matrix:

Eigenvalues of the covariance matrix

$$\Sigma = 2 \frac{\chi^2}{N_{\rm dof}} H^{-1}$$

for LECs taken in natural units (N⁴LO⁺, Λ = 450 MeV)

4.274396e-02 2.474783e-02 1.902965e-02 1.035190e-02 6.300807e-03 3.912243e-03 2.902483e-03 2.251440e-03 1.902579e-03 1.089075e-03 9.322493e-04 5.588222e-04 3.562153e-04 1.610448e-04 1.409259e-041.229603e-04 8.654795e-05 4.958497e-05 4.316301e-05 3.576713e-05 1.911708e-05 1.448694e-058.518138e-06 8.268942e-07 4.213655e-10 2.063609e-11 1.614358e-11

Natural units for the LECs according to NDA:

$$| ilde{C}_i| \sim rac{4\pi}{F_\pi^2}, \qquad |C_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^2}, \qquad |D_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^4}, \qquad |E_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^6}$$

Assuming $\Lambda_b = 600 \text{ MeV}$ [EE, Krebs, Meißner EPJA 51 (15) 53; Furnstahl, Klco, Phillips, Wesolowski, PRC 92 (15) 024005], all LECs come out of a natural size.

Natural units for the LECs according to NDA:

$$| ilde{C}_i| \sim rac{4\pi}{F_\pi^2}, \qquad |C_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^2}, \qquad |D_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^4}, \qquad |E_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^6}$$

Assuming $\Lambda_b = 600 \text{ MeV}$ [EE, Krebs, Meißner EPJA 51 (15) 53; Furnstahl, Klco, Phillips, Wesolowski, PRC 92 (15) 024005], all LECs come out of a natural size.

