Quantified Density Functional Theory Witold Nazarewicz, Michigan State University/FRIB International Conference on Nuclear Theory in the Supercomputing Era – 2018 Daejeon, Korea, 29 October – 2 November, 2018

Menu

- Introduction to nuclear DFT
- Global applications: charge radii
- Model extrapolations and machine learning
 - Conclusions

10100100100101001

100100

Guiding principle: the scientific method...

MICHIGAN STATE UNIVERSITY

Mean-Field Theory ⇒ Density Functional Theory Degrees of freedom: nucleonic densities

Nuclear DFT

- two fermi liquids
- self-bound
- superfluid
- mean-field \Rightarrow one-body densities
- zero-range \Rightarrow local densities
- finite-range \Rightarrow gradient terms
- particle-hole and pairing channels
- Does not have to be related to a force
- Has been extremely successful. A broken-symmetry generalized product state does surprisingly good job for nuclei.

Nuclear Energy Density Functional

$$\begin{aligned} \text{soscalar (T=0) density } & (\rho_0 = \rho_n + \rho_p) \\ \text{sovector (T=1) density } & (\rho_1 = \rho_n - \rho_p) \end{aligned} \\ \begin{array}{l} \text{+isoscalar and isovector densities:} \\ \text{spin, current, spin-current tensor,} \\ \text{kinetic, and kinetic-spin} \\ \text{+ pairing densities} \end{aligned} \\ E &= \int \mathcal{H}(r) d^3 r \\ \mathcal{H}(r) &= \frac{\hbar^2}{2m} \tau_0(r) + \sum_{t=0,1}^{\text{p-h density } p-p \text{ density (pairing functional)} \\ \mathcal{H}(r) &= \frac{\hbar^2}{2m} \tau_0(r) + \sum_{t=0,1}^{p-h \text{ density } p-p \text{ density (pairing functional)} \\ \end{array} \end{aligned}$$

- Constrained by microscopic theory: ab-initio functionals provide quasi-data!
- Not all terms are equally important. Usually ~12 terms considered
- Some terms probe specific experimental data
- Pairing functional poorly determined. Usually 1-2 terms active
- Most popular: Skyrme, Gogny, Covariant
- Becomes very simple in limiting cases (e.g., unitary limit)
- Can be extended into multi-reference DFT (GCM) and projected DFT

Nuclear Density Functional Theory and Extensions

Quantified EDF

J. McDonnell et al. Phys. Rev. Lett. 114, 122501 (2015)

Bivariate marginal estimates of the posterior distribution for the 12-dimensional DFT UNEDF₁ parameterization.

- Developed a Bayesian framework to quantify and propagate statistical uncertainties of EDFs.
- Showed that new precise mass measurements do not impose sufficient constraints to lead to significant changes in the current DFT models (models are not precise enough)

Example: Charge radii of calcium isotopes Where *A*-body and DFT meet...

Garcia-Ruiz et al, Nature Physics 12, 594 (2016)

The local Fayans functional offers superb description of binding energies and charge radii: S. A. Fayans, JETP Lett. 68, 169 (1998)

From Calcium to Cadmium

M. Hammen et al. Phys. Rev. Lett. 121, 102501 (2018)

Summary (novel functionals, charge radii)

By using the tools of numerical optimization and linear regression, we developed new local Fayans energy density functional Fy(Δr , HFB). This functional provide excellent description of selected nuclear properties, such as charge radii and separation energies.

Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

R. Navarro Pérez, N. Schunck, A. Dyhdalo, R. J. Furnstahl, and S. K. Bogner Phys. Rev. C 97, 054304 - Published 2 May 2018

> TABLE II. Root mean square (rms) deviations between experimental and theoretical binding energies. Experimental values are taken from the 2016 Atomic Mass Evaluation [60,61]; see text for additional details.

EDF	rms	Number of nuclei		
UNEDF2	1.98	620		
LO	1.99	617		
NLO	2.02	617		
N2LO	1.57	616		
N2LO+3 N	1.58	613		
NLOΔ	1.41	618		
NLO $\Delta + 3N$	1.46	617		
N2LO Δ	1.26	615		
N2LO Δ +3N	1.72	617		

Bayesian approach to model-based extrapolation of nuclear observables PHYSICAL REVIEW C 98, 034318 (2018)

Editors' Suggestion

Bayesian approach to model-based extrapolation of nuclear observables

Léo Neufcour^{1,2} Yuchen Cao (曹字晨),³ Witold Nazarewicz,⁴ and Frederi Viens¹

¹Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA

²FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

³Department of Physics and Astronomy and NSCL Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ⁴Department of Physics and Astronomy and FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

In order to improve the quality of model-based predictions of nuclear properties of rare isotopes far from stability, we consider the information contained in the residuals in the regions where the experimental information exist. As a case in point, we discuss two-neutron separation energies S_{2n} of even-even nuclei. Through this observable, we assess the predictive power of global mass models towards more unstable neutron-rich nuclei and provide uncertainty quantification of predictions.

Some recent relevant references...

- S. Athanassopoulos, E. Mavrommatis, K. Gernoth, and J. Clark, Nucl. Phys. A 743, 222 (2004).
- R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93, 014311 (2016).
- G. F. Bertsch and D. Bingham, Phys. Rev. Lett. 119, 252501 (2017).
- H. F. Zhang et al., J. Phys. G 44, 045110 (2017).
- Z. Niu and H. Liang, Phys. Lett. B 778, 48 (2018).
- R. Utama and J. Piekarewicz, Phys. Rev. C 97, 014306 (2018).

Separation energy residual:

$$\delta(Z, N) = S_{2n}^{\exp}(Z, N) - S_{2n}^{\operatorname{th}}(Z, N, \vartheta)$$

$S_{2n}^{\text{est}}(Z,N) = S_{2n}^{\text{th}}(Z,N,\vartheta) + \delta^{\text{em}}(Z,N)$

emulator of residual

We consider 10 global models based on nuclear Density Functional Theory with realistic energy density functionals as well as two more phenomenological mass models.

The emulators of S_{2n} residuals and confidence intervals defining theoretical error bars are constructed using Bayesian Gaussian processes and Bayesian neural networks. We consider a large training dataset pertaining to nuclei whose masses were measured before 2003. For the testing datasets, we considered those exotic nuclei whose masses have been determined after 2003. By establishing statistical methodology and parameters, we carried out extrapolations towards the 2n dripline.

We are not interested in mass formulae: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk" (John von Neumann)

Our objective: extrapolations

Residuals exhibit local trends

This information can be used to our advantage to improve model-based predictions!

Bayesian approach residual $y_i = f(x_i, \theta) + \sigma \epsilon_i$ (Z,N)_i

 $p(\theta,\sigma|y) \propto p(y|\theta,\sigma)\pi(\theta,\sigma)$ Bayes' theorem

$$p(y^*|y) = \int p(y^*|y,\theta,\sigma) p(\theta,\sigma|y) \, d\theta d\sigma$$

Prediction of unknown observable *y** given known data *y*

Two statistical models used:

- Gaussian process (**3** parameters)
- Bayesian neural network with sigmoid function (30 neurons, 1 layer; 181 parameters)

100,000 iterations of an ergodic Markov chain produced by the Metropolis-Hastings algorithm

Some refinements added based on our knowledge of trends

model	Std	Т	Н	T+H	
SkM* 1.25/1.01	$0.96(23) \\ 0.99(20)$	$0.96(23) \\ 0.81(35)$	$0.49(52) \\ 0.73(28)$	$0.49(52) \\ 0.53(47)$	\sim
SLy4 0.95/0.80	$0.82(13) \\ 0.91(3)$	$0.82(13) \\ 0.82(14)$	$0.52(35) \\ 0.71(11)$	$\begin{array}{c} 0.52(35) \\ 0.56(30) \end{array}$	tro
SkP 0.84/0.62	$0.75(11) \\ 0.76(9)$	$0.75(11) \\ 0.74(12)$	$0.38(39) \\ 0.59(5)$	$0.38(39) \\ 0.45(27)$	to
SV-min 0.78/0.49	$0.70(10) \\ 0.72(8)$	0.70(10) 1.35(-73)	$0.32(34) \\ 0.50(-1)$	$\begin{array}{c} 0.33(34) \\ 0.43(12) \end{array}$	ເບະ
UNEDF0 0.78/0.54	$0.73(6) \\ 0.87(-12)$	$\begin{array}{c} 0.73(6) \\ 0.73(7) \end{array}$	$\begin{array}{c} 0.34(37) \\ 0.55(0) \end{array}$	$\begin{array}{c} 0.34(37) \\ 0.46(16) \end{array}$	O Al
UNEDF1 0.66/0.49	$0.61(8) \\ 0.79(-20)$	$0.61(8) \\ 0.74(-12)$	$0.34(30) \\ 0.53(-10)$	$\begin{array}{c} 0.34(30) \\ 0.32(33) \end{array}$	fro 40
NL3* 1.19/0.86	$0.84(29) \\ 1.10(7)$	$0.84(29) \\ 0.90(24)$	$0.46(47) \\ 0.83(4)$	$0.45(47) \\ 0.69(20)$	ali
DD-ΜΕδ 1.13/0.96	$0.73(35) \\ 1.08(4)$	$0.74(35) \\ 0.91(19)$	$0.55(42) \\ 0.89(7)$	$\begin{array}{c} 0.55(42) \\ 0.75(22) \end{array}$	sta
DD-ME2 1.04/0.95	$0.71(32) \\ 1.00(4)$	$\begin{array}{c} 0.71(31) \\ 1.32(-27) \end{array}$	$0.63(34) \\ 0.90(5)$	$0.62(34) \\ 0.61(36)$	th
DD-PC1 1.10/0.91	$0.79(28) \\ 1.00(9)$	$\begin{array}{c} 0.79(28) \\ 1.33(-22) \end{array}$	$0.46(50) \\ 0.85(7)$	$0.46(50) \\ 0.54(41)$	Bl
FRDM-2012 0.63/0.49	$0.57(9) \\ 0.61(4)$	$0.57(9) \\ 0.72(-15)$	$0.36(25) \\ 0.48(2)$	$\begin{array}{c} 0.36(26) \\ 0.45(7) \end{array}$	
HFB-24 0.40/0.37	0.40(-1) 0.59(-48)	0.40(-1) 0.44(-10)	0.40(-8) 0.37(1)	0.40(-8) 0.35(6)	

aining dataset: AME2003

GP

BNN

sting dataset: AME2016-AME2003

verall, for the testing dataset ME2016-2003, the rms deviation om experimental S_{2n} values is 0.500 keV in the GP variant for I theoretical models employed in ar study, which suggests that our atistical methods capture most of e residual structure.

UT the predicted mean value is ertainly not the whole story!

Can one say: "DD-PC1 predicts the 2n dripline at N=126"?

Massive MCMC runs: BNN shows convergence issues!

Summary (Bayesian treatment)

Beam time and compute cycles are difficult to get and expensive

- What is the information content of measured observables?
- Are estimated errors of measured observables meaningful?
- What experimental data are crucial for better constraining current nuclear models?
- New technologies are essential for providing predictive capability, to estimate uncertainties, and to assess extrapolations
 - Theoretical models are often applied to entirely new nuclear systems and conditions that are not accessible to experiment

Statistical tools can help us revealing the structure of our models

- Parameter reduction
- Uncertainty quantification

