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Hypernuclear interactions
Why is understanding hypernuclear interactions interesting? 
• „phenomenologically“  

• hyperon contribution to the EOS, neutron stars, supernovae 
• Λ as probe to nuclear structure 

#2

(SN1987a, Wikipedia)

4. Acceptance of the SKS spectrometer

The effective solid angle of SKS (d!) was calculated
with a Monte Carlo simulation code GEANT "25#. The effects
of energy loss and multiple scattering through a trajectory
were included in this calculation. The effective solid angle
was averaged on the distribution of the beam profile obtained
from the experimental data. It was calculated as a function of
scattering angle $%& and momentum $p& as follows:

d!$% ,p&!!
%"$1/2&'%

%#$1/2&'%
d cos %!

0

2(
d)

$
number of events accepted
number of events generated , $3.5&

where events were generated uniformly from %" 1
2 '% to %

# 1
2 '% in the polar angle, from 0 to 2( in the azimuthal

angle, and from p" 1
2 'p to p# 1

2 'p in the momentum.

5. Total systematic errors

The error on the beam normalization and the experimental
efficiency factors was obtained to be %7% by adding in
quadrature assuming no correlations among the factors. As
for the effective solid angle of SKS, the possible change
caused by the long-term fluctuation of the beam profile was
taken into account as a systematic error, which was estimated
to be %1%. The error on the target thickness is shown in
Table I. The total systematic error on the cross section for
each target was obtained combining these errors; %9% for
*
89Y and *

12C, and %10% for *
51V.

The consistency among the cross sections obtained in the
different experimental cycles was examined by using the
12C((#,K#) data. As shown in Table III, the cross sections
of the *

12C ground-state peak, calculated separately for each
experimental cycle, agreed quite well within the statistical
errors.

F. Background level

The background levels for all the spectra were examined
by looking at the events in the region where the binding
energy is larger than that for the ground state of a produced
* hypernucleus. The backgrounds were almost uniform and
found to be less than 0.03 +b/srMeV for all the spectra.
The target-empty ((#,K#) data were analyzed using the

same analysis program as that for the normal ((#,K#) data.
The background was almost uniform and estimated to be less
than 0.04 +b/srMeV.
On the basis of the analyses, we assumed the backgrounds

around the bound regions of the obtained spectra were neg-
ligible and uniform.

IV. EXPERIMENTAL RESULTS

The hypernuclear mass spectra of *
89Y, *

51V, and *
12C $thin

target& are shown in Figs. 5, 6, and 7. The vertical scale is
shown in the average cross section obtained in the scattering
angles from 2 to 14 ° in the laboratory frame, which is de-
fined as follows:

,̄2° –14°-!
%!2°

%!14°" d,

d!#d! $ !
%!2°

%!14°
d! . $4.1&

The horizontal scale is shown in the binding energy calcu-
lated by Eq. $3.2&. For convenience, they are shown in the
tabular form in Tables IV, V, and VI.
Qualities of the spectra discussed in the last section are

summarized in Table VII.

A. !
89Y

The *
89Y spectrum showed characteristic bump structures

which reflect the major shell structure of the * orbits
coupled to the 0g9/2

"1 neutron-hole state. The widths for the p,
d, and f orbits were significantly wider than expected from
the energy resolution of 1.65 MeV $FWHM& and became
wider for the * orbits with higher angular momenta; the
widths were obtained to be 2.4%0.2, 3.0%0.2, and 4.6
%0.5MeV for the p, d, and f orbits by fitting each major
bump with a single Gaussian. In particular, the widest bump
of the f orbit appears to split into two peaks. In the present
experiment, the energy resolution can be accurately esti-

FIG. 5. Hypernuclear mass spectra of *
89Y without $up&and with

$down& fitting curves described in the text. The quoted errors are
statistical.
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only interact via the two-body ΛN potential. As a matter of
fact, within the AFDMC framework hypernuclei turn out to
be strongly overbound when only the ΛN interaction is
employed [34,35]. The inclusion of the repulsive three-
body force [model (I)], stiffens the EOS and pushes the
threshold density to 0.34ð1Þ fm−3. In the inset of Fig. 1 the
neutron and lambda fractions are shown for the two
HNM EOSs.
Remarkably, we find that using the model (II) for ΛNN

the appearance of Λ particles in neutron matter is ener-
getically unfavored at least up to ρ ¼ 0.56 fm−3, the largest
density for which Monte Carlo calculations have been
performed. In this case the additional repulsion provided by
the model (II) pushes ρthΛ towards a density region where
the contribution coming from the hyperon-nucleon poten-
tial cannot be compensated by the gain in kinetic energy. It
has to be stressed that (I) and (II) give qualitatively similar
results for hypernuclei. This clearly shows that an EOS
constrained on the available binding energies of light
hypernuclei is not sufficient to draw any definite conclusion
about the composition of the neutron star core.
The mass-radius relations for PNM and HNM obtained

by solving the Tolman-Oppenheimer-Volkoff equations
[62] with the EOSs of Fig. 1 are shown in Fig. 2. The

onset of Λ particles in neutron matter sizably reduces the
predicted maximum mass with respect to the PNM case.
The attractive feature of the two-body ΛN interaction leads
to the very low maximum mass of 0.66ð2ÞM⊙, while the
repulsive ΛNN potential increases the predicted maximum
mass to 1.36ð5ÞM⊙. The latter result is compatible with
Hartree-Fock and Brueckner-Hartree-Fock calculations
(see for instance Refs. [2–5]).
The repulsion introduced by the three-body force plays a

crucial role, substantially increasing the value of the Λ
threshold density. In particular, when model (II) for the
ΛNN force is used, the energy balance never favors the
onset of hyperons within the density domain that has been
studied in the present work (ρ ≤ 0.56 fm−3). It is interest-
ing to observe that the mass-radius relation for PNM up to
ρ ¼ 3.5ρ0 already predicts a NS mass of 2.09ð1ÞM⊙ (black
dot-dashed curve in Fig. 2). Even if Λ particles appear at
higher baryon densities, the predicted maximum mass will
be consistent with present astrophysical observations.
In this Letter we have reported on the first quantum

MonteCarlo calculations for hyperneutronmatter, including
neutrons andΛ particles. As already verified in hypernuclei,
we found that the three-body hyperon-nucleon interaction
dramatically affects the onset of hyperons in neutron matter.
When using a three-body ΛNN force that overbinds hyper-
nuclei, hyperons appear at around twice the saturation
density and the predicted maximum mass is 1.36ð5ÞM⊙.
By employing a hyperon-nucleon-nucleon interaction
that better reproduces the experimental separation energies
of medium-light hypernuclei, the presence of hyperons is
disfavored in the neutron bulk at least up to ρ ¼ 0.56 fm−3

and the lower limit for the predicted maximum mass is
2.09ð1ÞM⊙. Therefore, within the ΛN model that we have
considered, the presence of hyperons in the core of the
neutron stars cannot be satisfactorily established and thus
there is no clear incompatibility with astrophysical obser-
vations when lambdas are included. We conclude that in
order to discuss the role of hyperons—at least lambdas—in
neutron stars, the ΛNN interaction cannot be completely
determined by fitting the available experimental energies in
Λ hypernuclei. In other words, the Λ-neutron-neutron
component of the ΛNN force will need both additional
theoretical investigation, possibly within different frame-
works such as chiral perturbation theory [63,64], and a
substantial additional amount of experimental data, in
particular for highly asymmetric hypernuclei and excited
states of the hyperon.

We would like to thank J. Carlson, S. C. Pieper, S.
Reddy, A.W. Steiner, W. Weise, and R. B. Wiringa for
stimulating discussions. The work of D. L. and S. G. was
supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics, under the NUCLEI
SciDAC grant and A. L. by the Department of Energy,
Office of Science, Office of Nuclear Physics, under
Contract No. DE-AC02-06CH11357. The work of S. G.
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FIG. 2 (color online). Mass-radius relations. The key is the
same as of Fig. 1. Full dots represent the predicted maximum
masses. Horizontal bands at ∼2M⊙ are the observed masses of
the heavy pulsars PSR J1614-2230 [18] and PSR J0348þ 0432
[19]. The grey shaded region is the excluded part of the plot due
to causality.

TABLE II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

Hyperon-nucleon potential c1½MeV& c2½MeV&
ΛN −71.0ð5Þ 3.7(3)
ΛN þ ΛNN (I) −77ð2Þ 31.3(8)
ΛN þ ΛNN (II) −70ð2Þ 45.3(8)
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ρΛ ¼ xρ are the neutron and hyperon densities, respec-
tively. The energy per particle can be written as

EHNMðρ; xÞ ¼ ½EPNMðð1 − xÞρÞ þmn&ð1 − xÞ

þ ½EPΛMðxρÞ þmΛ&xþ fðρ; xÞ: ð2Þ

To deal with the mass difference Δm≃ 176 MeV between
neutrons and lambdas the rest energy is explicitly taken into
account. The energy per particle of PNM EPNM has been
calculated using the AFDMC method [42,43] and it reads

EPNMðρnÞ ¼ a
!
ρn
ρ0

"
α
þ b

!
ρn
ρ0

"
β
; ð3Þ

where the parameters a, α, b, and β are reported in Table I.
We parametrized the energy of pure lambda matter EPΛM

with the Fermi gas energy of noninteracting Λ particles.
Such a formulation is suggested by the fact that in the
Hamiltonian of Eq. (1) there is no ΛΛ potential. The reason
for parametrizing the energy per particle of hyperneutron
matter as in Eq. (2) lies in the fact that, within AFDMC
calculations, EHNMðρ; xÞ can be easily evaluated only for a
discrete set of x values. They correspond to a different
number of neutrons (Nn¼ 66; 54; 38) and hyperons
(NΛ ¼ 1; 2; 14) in the simulation box giving momentum
closed shells. Hence, the function fðρ; xÞ provides an
analytical parametrization for the difference between
Monte Carlo energies of hyperneutron matter and pure
neutron matter in the (ρ; x) domain that we have consid-
ered. Corrections for the finite-size effects due to the
interaction are included as described in Ref. [60] for both
nucleon-nucleon and hyperon-nucleon forces. Finite-size
effects on the neutron kinetic energy arising when using
different number of neutrons have been corrected adopting
the same technique described in Ref. [61]. Possible addi-
tional finite-size effects for the hypernuclear systems have
been reduced by considering energy differences between
HNM and PNM calculated in the same simulation box, and
by correcting for the (small) change of neutron density.
As can be inferred by Eq. (2), both hyperon-nucleon

potential and correlations contribute to fðρ; xÞ, whose
dependence on ρ and x can be conveniently exploited
within a cluster expansion scheme. Our parametrization is

fðρ; xÞ ¼ c1
xð1 − xÞρ

ρ0
þ c2

xð1 − xÞ2ρ2

ρ20
: ð4Þ

Because the ΛΛ potential has not been included in the
model, we have only considered clusters with at most one

Λ. We checked that contributions coming from clusters of
two or more hyperons and three or more neutrons give
negligible contributions in the fitting procedure. We have
also tried other functional forms for fðx; ρÞ, including
polytropes inspired by those of Ref. [20]. Moreover, we
have fitted the Monte Carlo results using different x data
sets. The final results weakly depend on the choice of
parametrization and on the fit range, in particular for the
hyperon threshold density. The resulting EOSs and mass-
radius relations are represented by the shaded bands in
Fig. 1 and Fig. 2. The parameters c1 and c2 corresponding
to the centroids of the figures are listed in Table II.
Once fðρ; xÞ has been fitted, the chemical potentials for

neutrons and lambdas are evaluated via

μnðρ; xÞ ¼
∂EHNM

∂ρn ; μΛðρ; xÞ ¼
∂EHNM

∂ρΛ ; ð5Þ

where EHNM ¼ ρEHNM is the energy density. The hyperon
fraction as a function of the baryon density, xðρÞ, is
obtained by imposing the condition μΛ ¼ μn. The Λ
threshold density ρthΛ is determined where xðρÞ starts being
different from zero.
In Fig. 1 the EOS for PNM (green solid curve) and HNM

using the two-body ΛN interaction alone (red dotted curve)
and two- plus three-body hyperon-nucleon force in the
original parametrization (I) (blue dashed curve) are dis-
played. As expected, the presence of hyperons makes the
EOS softer. In particular, ρthΛ ¼ 0.24ð1Þ fm−3 if hyperons

TABLE I. Fitting parameters for the neutron matter EOS of
Eq. (3) [42].

a½MeV& α b½MeV& β

13.4(1) 0.514(3) 5.62(5) 2.436(5)
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FIG. 1 (color online). Equations of state. Green solid curve
refers to the PNM EOS calculated with the AV8’þ UIX
potential. The red dotted curve represents the EOS of hypermatter
with hyperons interacting via the two-body ΛN force alone. The
blue dashed curve is obtained including the three-body hyperon-
nucleon potential in the parametrization (I). Shaded regions
represent the uncertainties on the results as reported in the text.
The vertical dotted lines indicate the Λ threshold densities ρthΛ . In
the inset, neutron and lambda fractions corresponding to the two
HNM EOSs.
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(Hotchi et al. (2001))

(Lonardoni et al. (2015))

(Lonardoni et al. (2015))

89Y(π+,K+)
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Hypernuclear interactions

Why is understanding hypernuclear interactions interesting? 
• conceptually  

• Λ-Σ conversion process is long-range part of the interaction (assuming 
isospin conservation) 

• experimental access to explicit chiral symmetry breaking

#3

π

Λ

Σ

N

N

π

Λ N

Λ N

K

Λ

N Λ

N Λ

NΛ

N
π

π

Σ

suppressed by  
isospin symmetry (CSB!)

But it is difficult to pin down the properties of YN interactions, …
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Hypernuclear interactions
37 YN data, no YN bound state, large uncertainties            no partial wave analysis possible 

Recipe for more than 40 years:  
• extend a OBE exchange model for the NN interaction 
• assume flavor SU(3) symmetry  
• break flavor SU(3) symmetry where it seems appropriate  

             several YN interaction models (Jülich 89/04, Nijmegen 89/97a-f, ESC, …)  
                      describe all YN data more than perfectly, but are not phase equivalent  
  

#4

1a(Λp) [fm] 3a(Λp) [fm]
SC97a -0.7 -2.15
SC97b -0.9 -2.11
SC97c -1.2 -2.06
SC97d -1.7 -1.93
SC97e -2.1 -1.83
SC97f -2.5 -1.73
SC89 -2.6 -1.38
Jülich ´04 -2.6 -1.73
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Chiral NN & YN interactions
additional constraints required (only 37 data, but 23 parameters at NLO) 
data too sparse to uniquely determine the short range LECs! 

#5

5 YN short range 
parameters

23  YN short range 
parameters

chiral SU(2) symmetry of QCD. The symmetry breaking pattern places stringent
constraints on the interaction of the Goldstone bosons. In particular, they do
not interact with hadrons at very low energies in the so-called chiral limit (i.e.,
the limit of massless up and down quarks). If the typical hadronic momenta in-
volved in a process are of the order of the pion mass, one is still sufficiently close
to this non-interacting limit in order for the scattering amplitude to be calculable in
perturbation theory (via the so-called chiral expansion). This method is applicable
in the Goldstone boson and single-baryon sectors and is referred to as chiral per-
turbation theory (ChPT), see [2] for a recent review. On the other hand, the in-
teraction between nucleons does not vanish and, in fact, remains strong in the
above-mentioned limit. Indeed, the appearance of shallow bound=virtual states
signals the failure of perturbation theory already at very low energies. One way
to circumvent this difficulty in the few-nucleon sector is to apply ChPT to the
irreducible part of the amplitude (i.e., the one which does not involve contributions
generated by iterations of the Schr€oodinger equation) which gives rise to the nuclear
forces [3].

In this talk, I discuss some recent developments in chiral EFT for few-nucleon
systems. In Sect. 2, I briefly outline the structure of nuclear forces in few lowest
orders of the chiral expansion. Selected applications to few-nucleon observables
are discussed in Sect. 3. I end with the summary and outlook in Sect. 4.

2 Nuclear forces in chiral EFT

The hierarchy of the nuclear forces in EFT without explicit delta degrees of free-
dom at lowest orders in the chiral expansion is depicted in Fig. 1. The diagrams

Fig. 1 Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting [3]. Solid and

dashed lines denote nucleons and pions, respectively. Solid dots, filled circles and filled squares refer

to the leading, subleading and sub-subleading vertices, respectively. The crossed square denotes 2N

contact interactions with 4 derivatives

58 E. Epelbaum

(adapted from Epelbaum, 2008)

(J. Haidenbauer et al., 2013 & work in progress)

we have two realization for the YN interaction at NLO  
     with different assumptions on the LECs

BB force 3B force 4B force
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Chiral YN interactions
Additional constraints are required that are  
     not required by power counting 
     should be relaxed in future to explore YN realm 
      
• SU(3) broken by physical mπ,mK,mη    
•  but: no SU(3) breaking in Fπ,FK,Fη“   

• but: "minimize" P-waves and 1P1-3P1 mixing  
to determine P-wave counter terms  
           

• cutoff dependence can be studied  
to get first estimate of higher orders (including 3BFs)  
Λ ≈ 450 ... 700 MeV 
 

• different versions of the YN interactions: 
SU(3) symmetry used for contact interactions but  
1. LO:            NN constraints are not used 
2. NLO(13):   NN constraints are not used (best      ) 
3. NLO(15):   NN constraints are used for subleading contact interaction    

                                        (        increases slightly) 

#6

36 J. Haidenbauer et al. / Nuclear Physics A 915 (2013) 24–58

Fig. 2. “Total” cross section σ (as defined in Eq. (24)) as a function of plab. The experimental cross sections are taken
from Refs. [54] (filled circles), [55] (open squares), [69] (open circles), and [70] (filled squares) (Λp → Λp), from [56]
(Σ−p → Λn, Σ−p → Σ0n) and from [57] (Σ−p → Σ−p, Σ+p → Σ+p). The red/dark band shows the chiral EFT
results to NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band are results to
LO for Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

also for Λp the NLO results are now well in line with the data even up to the ΣN threshold.
Furthermore, one can see that the dependence on the cutoff mass is strongly reduced in the NLO
case. We also note that in some cases the LO and the NLO bands do not overlap. This is partly
due to the fact that the description at LO is not as precise as at NLO (cf. the total χ2 values in
Table 5). Also, the error bands are just given by the cutoff variation and thus can be considered
as lower limits.

A quantitative comparison with the experiments is provided in Table 5. There we list the
obtained overall χ2 but also separate values for each data set that was included in the fitting
procedure. Obviously the best results are achieved in the range Λ = 500–650 MeV. Here, in
addition, the χ2 exhibits also a fairly weak cutoff dependence so that one can really speak of
a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically

(J. Haidenbauer et al., 2013)

LO

Jülich ‘04

NLO(13)

�2

�2
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Hypernuclei - calculations

#7

To further constrain the interactions, we need techniques that reliable  
predict hypernuclei binding energies based on various interactions.
For complex hypernuclei/hypernuclear matter 

• shell model: Millener, Hungerford, Gal (2016), … 
• cluster models: Hiyama (2012), … 
• density functional theory: Lu, Zhao, Zhou (2011), … 
• AFDMC w/o Λ-Σ conversion: Lonardoni et. al. (2015), …

These approaches allow one to study very complex systems  
              and connect the results for different hypernuclei 

But the direct connection to a YN interaction is lost! 

We use two techniques that work for light hypernuclei but are based 
 on a direct solution of the hypernuclear (non-relativistic) Schrödinger equation: 

1. solving Faddeev-Yakubovsky eq. in momentum space (used for many years) 
2. NCSM using Jacobi HO states as basis (work in progress)

A lot of progress recently: Wirth, Roth, Gazda, Navratil, … (2012-2018) 
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for chiral & phenomenlogical 
interactions

#8

3
ΛH

ESC16/17 unbound

•       is often used to fix relative strength of 1S0 and 3S1 scattering length 

• cutoff variation for chiral interactions 
• is lower bound for magnitude of higher order contributions 
• less cutoff dependence for NLO(15) 

• two-parameterizations at NLO (2013/2015) 

• 3BFs seem to be small, further insight into (long range) 3BFs is needed

(here NN =Idaho N3LO)

3
ΛH
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for chiral & phenomenlogical 
interactions

#9

4
ΛHe

•          is not well described by any model or 
LO/NLO interactions 

• cutoff variation for chiral interactions is no 
good estimate of uncertainty in LO 

• two-parameterizations at NLO (2013/2015) 
are similar for the 0+ state but deviate for 1+ 

• Λ-Σ conversion is related to spin 
dependence of separation energy

0+
(here NN =Idaho N3LO)

4
ΛHe

1+
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Jacobi-NCSM 

#10

• uses Jacobi coordinates separating off the CM motion 
• allows one to go beyond A=4 
• efficient for soft interactions 
• long distance tails of wave functions cannot be well represented 
• requires soft interactions (effective NCSM, vlowk, SRG) 

Basic idea: use HO states and soft interactions 
• m-scheme uses single particle states (CM not separated)  

antisymmetrization for nucleons easily perform 
larger dimensions (see application to p-shell hypernuclei by Wirth et al. (2014,2016)) 

• Jacobi-NCSM uses relative coordinates 
antisymmetrization for nucleons difficult but possible for A ≤ 8 (cfp-coefficients) 
small dimensions (see also application to s-shell hypernuclei by Gazda et al. (2014))  



The CFP coefficients ❬   ｜    ❭ are obtained by diagonalization of the antisymmetrizer. 

HO states guarantee: 
• complete separation of antisymmetrized and other states 
• independence of HO length/frequency

November 1st, 2018 #11

Jacobi-NCSM 
First, generate antisymmetrized states for the A-1 nucleon system

antisymmetrized A-2 nucleons

spectator nucleon
CFP of A-2 system

total antisymmetrical A-1 system

(Liebig, Meißner, AN (2016))

CFP coefficients will be openly accessible as HDF5 data files  
            (download server is in preparation (please ask me when interested!))

diagonalization of the  
antisymmetrizer
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Jacobi-NCSM 
Second, generate A-body hypernuclei state (no antisymmetrization required)
Third, rearrange baryons for the application of interactions, …

A-1 nucleons

hyperon (Y=Λ,Σ)

(Le, Liebig, Meißner, AN  (in progress))

. 

. 

. 

Again HO states guarantee the independence of HO length/frequency. 
Transition coefficients will also be openly accessible as HDF5 data files
Leads to converged results for "soft" interactions.

(Liebig, Meißner, AN (2016))
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SRG interactions

#13

dHs

ds
=

⇥
[T , H(s) ]| {z }

⌘⌘(s)

, H(s)
⇤

H(s) = T + V (s)

Similarity renormalization group is by now a standard tool to obtain soft effective  
interactions for various many-body approaches (NCSM, coupled-cluster, MBPT, …) 

Idea: perform a unitary transformation of the NN (and YN interaction) using a cleverly  
         defined "generator"

this choice of generator drives V(s) into  
a diagonal form in momentum space

• V(s) will be phase equivalent to original interaction 
• short range V(s) will change towards softer interactions 
• 3BF, 4BF, … can in principle be generated but are omitted here 
•                            is a measure of the width of the interaction in momentum space

(Bogner, Furnstahl, Perry (2007))

� =

✓
4µ2

BN

s

◆1/4



November 1st, 2018 

SRG interactions (YN)

#14
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EN = E1 +A e�bNEb (!) = EN + 
�
log (!)� log

�
!opt

��2

4
ΛHe

E∞ = − 10.7034(13)

Convergence of NCSM

• automatized extrapolation of results to converged result 
• ω and N dependence is taken into account 
• conservative estimate of numerical uncertainty 

NLO(15)-600  

• λNN=1.6 fm-1 and λYN=1.6 fm-1
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Chiral and SRG 3BF - hypertriton
Cutoff dependence of A=3 separation energy is small for chiral interactions

but: SRG cutoff dependence is much more important 
       than the chiral cutoff dependence!

Unfortunately, at least SRG induced 3BF are large  (see also Wirth, Roth (2016)) ! 
      Are parameter-free 3BFs for SRG different to size of chiral 3BFs? 
      Are 3BFs generally more important for hypernuclei?

Faddeev

Can we learn something from Jacobi-NCSM calculations based on SRG?  
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Momentum distribution

#17

• Σ momentum distribution before SRG has a high momentum tail 
• high momentum tail is removed which reduces the Σ probability 
• Σ probability is not necessarily going to zero !

Σ

4
ΛHe

4
ΛHe



4
ΛHe/4ΛH(Jπ = 1+)

3
ΛH
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Correlation of separation energies

4
ΛHe/4

ΛH(Jπ = 0+)

• YN interaction: NLO(15) 600   
• strong overbinding for 
• but A=3 and A=5 consistently 

predicted for 

λ ≳ 1.0 fm−1

λ ≈ 0.836 fm−1

Separation energies of s-shell hypernuclei are strongly correlated (to             )5
ΛHe
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p-shell hypernuclei
Separation energies of p-shell hypernuclei are also correlated (to             )5

ΛHe

7
ΛLi6

ΛHe/6ΛLi

• YN interaction: NLO(15) 600 
•         astonishingly well reproduced at "magic"  
• A=6 in our calculations  not particle stable 
• NCSM works for narrow resonances 
• Coulomb contribution to CSB

λ ≈ 0.836 fm−17
ΛLi
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Conclusions & Outlook
• YN interactions are interesting and not well understood 

• Λ-Σ conversion, explicit chiral symmetry breaking 
• well known: YN models fail  
• NLO of chiral interactions: still freedom to adjust YN forces 

• hypernuclei are an essential source of information on YN forces 
• it is not trivial to describe the simplest systems consistently 
• experiments for very light hypernuclei are important!  

The data needs to be accurate and reliable  
(better data for the hypertriton or A=4 hypernuclei?)  

•  Extension of complete calculations to larger systems (to access more data) 
• Jacobi-NCSM works and will provide further constraints for YN interactions  

•  SRG dependence of p-shell results  

• SRG cutoff dependence is large in all systems A=3,4,5, …       

• strong correlations of binding energy can help to avoid SRG-YNN forces          

• we nevertheless need SRG induced 3BFs (see also Wirth et al. (2016))  

• further estimates of 3BFs are needed (implementing Petschauer et al., (2016)) 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